
International Journal on Artificial Intelligence Tools
Vol. XX, No. X (2007) 1–17
 World Scientific Publishing Company

1

RANDOM SUBSETS SUPPORT LEARNING A MIXTURE OF HEURISTICS

SMILJANA PETROVIC

Department of Computer Science, The Graduate Center of The City University of New York,
New York, NY, USA,

spetrovic@gc.cuny.edu

SUSAN L. EPSTEIN

Department of Computer Science, Hunter College and The Graduate Center of The City University of New
York,

New York, NY, USA,
susan.epstein@hunter.cuny.edu

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Problem solvers, both human and machine, have at their disposal many heuristics that may support
effective search. The efficacy of these heuristics, however, varies with the problem class, and their
mutual interactions may not be well understood. The long-term goal of our work is to learn how to
select appropriately from among a large body of heuristics, and how to combine them into a mixture
that works well on a specific class of problems. The principal result reported here is that randomly
chosen subsets of heuristics can improve the identification of an appropriate mixture of heuristics. A
self-supervised learner uses this method here to learn to solve constraint satisfaction problems
quickly and effectively.

Keywords: mixture of heuristics, learning for constraint satisfaction

1. Introduction

Even within a familiar environment, well-trusted heuristics can vary dramatically in their
performance on different problem classes. Some traditionally good heuristics actually
perform quite poorly compared to their duals (opposites) on particular kinds of problems.
Because it is difficult to predict which heuristics will perform best, we argue here for the
selection of a mixture of heuristics from among a large, contradictory set.

Nonetheless, learning with a large, inconsistent set of heuristics presents considerable
challenges. A self-supervised learner that gleans its training instances from problem
traces requires solved problems. If such a learner is forced to work within a resource
limit, and with many search heuristics of uncertain quality, it is put at a considerable
disadvantage. Rather than use all the heuristics at once, our method consults a new,
randomly-selected subset of them for each learning problem. As a result, the solver learns
effective combinations of heuristics for challenging problems within a reasonable
resource limit. The thesis of this work is that randomly chosen subsets from a large pool

Smiljana Petrovic and Susan L. Epstein2

of general, potentially inappropriate heuristics, can support the creation of a small,
weighted mixture of heuristics that effectively guides search. Our principle result is a
demonstration of this idea in heuristic-guided global search to solve constraint
satisfaction problems.

After a review of constraint satisfaction and related work, we describe how mixtures
of preference heuristics are learned. Subsequent sections describe the benefits of learning
from subsets of a large set of heuristics, describe our experiments, and discuss the results.

2. Constraint satisfaction problems

A constraint satisfaction problem (CSP) is a set of variables, their associated domains,
and a set of constraints, expressed as relations over subsets of those variables. An
instantiation is an assignment of values to some subset of the variables. An instantiation
is consistent if and only if all constraints over the variables in it are satisfied. A solution
to a CSP is an instantiation of all its variables that satisfies all the constraints. A binary
CSP has constraints on at most two variables. Such a CSP can be represented as a
constraint graph, where vertices correspond to the variables (labeled by their domains),
and each edge represents a constraint between its respective variables.

Many real-world problems, such as planning and scheduling, graph-coloring,
frequency assignment problems, image processing, language analysis and natural
language understanding are modeled and solved as CSPs.1,2 A class here is a set of CSPs
with the same characterization. For example, binary CSPs in model B are characterized
by <n, m, d, t>, where n is the number of variables, m the maximum domain size, d the
density (fraction of edges out of n(n-1)/2 possible edges) and t the tightness (fraction of
possible value pairs that each constraint excludes).3 A class can also mandate some non-
random structure on its problems. For example, a composed problem consists of a
subgraph called its central component loosely joined to one or more subgraphs called
satellites.1

A global search algorithm extends a partial instantiation with an assignment to a
variable that is consistent with all previously assigned values. If an inconsistency arises,
another value from the domain of that variable is tried. If all values in the domain of the
variable are inconsistent, the current instantiation cannot be extended to a solution. In that
case, search returns to an earlier consistent instantiation. During global search, variable-
ordering heuristics select the next variable to be assigned a value and value-ordering
heuristics select the value to assign to that variable. Heuristics can be static (the order is
prespecified before search begins) or dynamic (the order depends upon the current state
during search). For example, a minimal static degree heuristic selects a variable with the
fewest constraints on it in the original problem, while a minimal dynamic degree heuristic
selects a variable that, in the current state, is constrained by the fewest uninstantiated
variables.

Random Subsets Support Learning a Mixture of Heuristics 3

3. Related work

The idea that a mixture of experts can outperform a single expert goes back at least to
Marquis de Condorcet (1745-1794). His Jury Theorem asserts that the judgment of a
committee of competent experts, each of whom is correct with probability greater than
0.5, is superior to the judgment of any individual expert. Dietterich gives several other
reasons for preferring a mixture of experts.4 On limited data, there may be different
hypotheses that appear equally accurate. In this case, although one could approximate the
unknown true hypothesis by the simplest one, averaging or mixing all of them together
can produce a better approximation. Moreover, even if the target function is not
representable by any individual hypothesis in the pool, their combination could produce
an acceptable representation.

In supervised, on-line learning, where the best expert is unknown, under the worst-
case assumption, mixture of experts algorithms have been proved asymptotically close to
the behavior of the best expert.5 In an off-line setting, there are many theoretical and
experimental confirmations of the superiority of mixtures of classifiers (particularly
decision trees and neural networks).6,7,8 Hansen and Salamon proved that ensemble of
accurate and diverse classifiers is more accurate than any of its individual classifiers.9 As
a result, methods that create an ensemble of classifiers that disagree in their predictions
are particularly successful. The most popular algorithm of this type, AdaBoost, seeks a
classifier that is better on examples for which the current ensemble's performance is
poor.10,11 Recent applications of mixture of experts include handwriting recognition and
protein structure prediction.12,13

Multi-TAC learns a mixture of CSP heuristics.14 Its heuristics are used one at a time
to solve problems. Then, the best heuristic is chosen, combined with each of the others in
turn so that the second serves only as a tie-breaker (rather than as part of the mixture, as
in the work reported here). The process creates several layers of tie-breakers, until no
further improvement is obtained.

The program described here faces challenges that do not arise when combining
classifiers. Without an instructor, ACE must solve a CSP problem itself, to obtain
training instances from which it can learn. On hard problems, only a reasonable mixture
of experts will be able to solve the first such problem. To the best of our knowledge, the
method described here, where only a random subset of available experts make decisions
and are judged accordingly, is novel.

Randomization has been used in other ways to support in CSP search. Randomly
selected points diversify local search to try to escape local minima.15 Global search
restarts with a degree of randomness to compensate for heavy tails in the search cost
distribution.16 Randomness can also be introduced to break ties in variable and value
selection, to decide whether to apply inference procedures after a value assignment, or to
select a backtrack point.17,18

Smiljana Petrovic and Susan L. Epstein4

4. Solving with a mixture of heuristics

ACE (the Adaptive Constraint Engine) learns to solve a class of CSPs. ACE is based on
FORR, an architecture for the development of expertise from multiple heuristics.19 ACE
customizes a weighted mixture of heuristics for each problem class.20 Heuristics are
implemented by procedures called Advisors.

The search algorithm (in Figure 1) alternately selects a variable and then selects a
value for it from its domain. The size of the resultant search tree depends upon the order
in which values and variables are selected. Each Advisor can comment upon any number
of choices (variables or values), and each comment has a strength that indicates its degree
of support for the choice. For example, if an Advisor is given choices {A, B, C} and
comments {(10, A), (9, C)}, it prefers A to C and does not recommend B. The Advisors
referenced in this paper are described in Appendix A.

After a value assignment, some form of inference detects values that are incompatible
with the current instantiation. Here we use the MAC-3 algorithm to maintain arc
consistency during search.21 MAC-3 temporarily removes currently unsupportable values
to calculate dynamic domains that are consistent with the current partial instantiation. If
every value in any variable’s domain is inconsistent, the current partial instantiation
cannot be extended to a solution, so some retraction method is applied. Here we use
chronological backtracking: the subtree rooted at an inconsistent node is pruned, and the
most recent value assignment(s) withdrawn.

ACE’s Advisors are organized into three tiers. Tier-1 Advisors are always correct. If
a tier-1 Advisor comments positively, the action is executed; if it comments negatively,
the action is eliminated from further consideration during that decision. Tier-1 Advisors
are consulted in a user-specified order. Tier-2 Advisors address subgoals, but they are
outside the scope of this paper. The decision-making described here focuses on the

Search (p, Avar , Aval)
Until problem p is solved or the allocated resources are exhausted

Select unvalued variable v

 Select value d for variable v from v’s domain Dv

Revise domains of all unvalued variables *inference*
Unless domains of all unvalued variables are non-empty

return to a previous alternative value *retraction*

Fig. 1. Search in ACE with a weighted mixture of variable Advisors from Avar , and value Advisors from Aval .
w(A) is the weight of Advisor A; s(A, c) is the support of Advisor A for choice c.

€

v = argmax
c∈V

w(A) ⋅ s(A,c)
A∈Avar

∑

€

d = argmax
c∈Dv

w(A) ⋅ s(A,c)
A∈Aval

∑

Random Subsets Support Learning a Mixture of Heuristics 5

heuristic Advisors in tier 3. When a decision is relegated to tier 3, all its Advisors are
consulted together, and a selection is made by voting: the action with the greatest sum of
weighted strengths over all the comments is executed.

Each tier-3 Advisor’s heuristic view is based on a descriptive metric. For each metric,
there is a dual pair of Advisors, one that favors smaller values for the metric and one that
favors larger values. Typically, one Advisor from each pair is reported as a good heuristic
in the CSP literature, but ACE implements both of them. Two benchmark Advisors, one
for value selection and one for variable selection, generate random comments. They
provide a lower bound on performance and are excluded from decision making.

5. Learning from search experience

ACE does a form of self-supervised reinforcement learning. The only information
available to it comes from its limited experience as it finds one solution to a problem.
This approach is problematic for several reasons. There is no guarantee that some other
solution could not be found much faster, if even a single decision were different.
Moreover, without supervision, we must declare what constitutes correct decisions.
Clearly, the value selection at the root of any digression is wrong. Although variable
selections are always correct (because with correct value assignments, any variable
ordering leads to a backtrack-free solution), a variable selection here is considered
incorrect if the value assignment to that variable subsequently failed. Finally, a particular
Advisor may be incorrect on some decisions that resulted in a large digression, and still
be correct on many other decisions in the same problem.

Given a class of problems, ACE's goal is to select Advisors and learn weights for
them so that the decisions supported by the largest weighted combination of strengths
lead to effective search. ACE uses a weight-learning algorithm to update its weight
profile, the set of weights for its tier-3 Advisors. As in Figure 2, the learner gleans
training instances from its own (likely imperfect) successful searches, and uses them to
refine its search algorithm before it continues to the next problem. Positive training
instances are those made along an error-free path extracted from a solution trace.
Negative training instances are value selections that lead to unsolvable subproblems
(digressions), as well as variable selections whose subsequent value assignment fails.
Decisions made within a digression are not considered.

Fig. 2. The extraction of positive and negative training instances from the trace of a successful CSP search.
Squares represent variable selections, and circles represent value selections.

Digression

Positive
training
instances

Negative
training
instances

Smiljana Petrovic and Susan L. Epstein6

The weight learning algorithm used here is a variation on RSWL (Relative Support
Weight Learning), developed for ACE.22 The relative support of an Advisor for a choice
is the normalized difference between the strength the Advisor assigned to that choice and
the average strength it assigned to all available choices. Under RSWL, an Advisor is
deemed to support an action if its relative support for that action is positive. RSWL
calculates credits and penalties based on relative support. RSWL also estimates the
constrainedness of the problem at the time of the training instance.23 To reduce
computational overhead here, we simply use the number of available choices. Our
rationale is that the penalty for making an incorrect decision from among only a few
choices should be larger than the penalty for selecting from among many choices.

6. The motivation for a large set of heuristics

The choice of appropriate heuristics from the many touted in the constraint literature is
non-trivial. Even well-trusted individual heuristics vary dramatically in their performance
on different classes. Consider, for example, the non-uniform performance in Table 1, as
measured by average steps (variable selections or value selections). Traditional, off-the-
shelf heuristics were used individually here on 50 problems from each of 3 challenging
classes. Max degree does about half as much work as Min domain on the first two
classes, but differs little on the third.

Table 1: Individual heuristic search performance on three classes of random problems.

Heuristic <30, 8, 0.26, 0.34> <20, 30, 0.444, 0.5> <50, 10, 0.38, 0.2>
min domain 563.98 10,411.04 51,346.74
max degree 206.50 5,266.66 46,347.42
max forward degree 220.38 10,150.10 43,890.40
min domain/degree 233.64 4,194.02 35,174.52
max weighted degree 223.44 5,897.48 30,956.36
min dom/dynamic degree 210.82 3,941.54 30,791.36
min dom/weighted degree 204.58 4,089.84 30,024.66

Some traditionally good heuristics actually perform quite poorly compared to their
duals (opposites) when the problems have non-random structure. Consider, for example,
the performance of 3 pairs of duals on 50 composed problems in Table 2. Here, Comp
problems have a central component in <22, 6, 0.6, 0.1>, one satellite in
<8, 6, 0.72, 0.45>, and links between them with density 0.115 and tightness 0.05. The
traditionally good heuristic Max degree fails to find any solution to 9 Comp problems
within 100,000 steps, while its dual solves all the problems successfully. In several real-
world problems a dual has also been shown superior to the traditional heuristic.24,25,26 To
achieve good performance, therefore, it is advisable to consider both the maximizing and
minimizing versions of a heuristic’s metric.

Random Subsets Support Learning a Mixture of Heuristics 7

Table 2: Performance of traditionally good heuristics (in italics) and their duals on 50 composed problems.

Heuristic Percentage solved Nodes

max degree 82% 19,901.76
min degree 100% 64.60
max forward degree 92% 10,590.64
min forward degree 100% 64.50
min domain/degree 86% 15,558.28
max domain/degree 92% 10,922.82

A good combination of heuristics can outperform even the best individual heuristic,
as Table 3 demonstrates. Indeed, a good pair of heuristics, one for variable selection and
the other for value selection can perform significantly better than an individual one. The
second line of Table 3 show that a good pair of heuristics, one for variable ordering and
the other for value ordering, can perform significantly better than an individual heuristic.
Nonetheless, the identification of such a pair is not trivial. For example, max product
domain value better complements min domain/dynamic degree than it does max weighted
degree. Finally, the last line of Table 3 demonstrates that combinations of more than two
heuristics can further improve performance.

Table 3: The search performance of several mixtures of heuristics on three classes of challenging problems.

Mixture <30, 8, 0.26, 0.34> <20, 30, 0.444, 0.5> <50, 10, 0.38, 0.2>

The best single heuristic
from Table 1 204.58 3,941.54 30,024.66

min dom/dynamic degree +
max product domain value 156.32 2,763.94 15,090.86

max weighted degree +
max product domain value 179.20 3,891.56 22,273.80

Mixture found by ACE 141.38 2,501.74 12,401.26

7. Learning with one subset of Advisors at a time

As illustrated above, it is difficult to predict which heuristics will perform best on a set of
problems. If one begins with a large initial list of heuristics, it probably contains many
that perform poorly on a particular class of problems (class-inappropriate heuristics) and
others that perform well (class-appropriate heuristics). On challenging problems,
learning with all these heuristics presents two difficulties for the self-supervised learner.
First, many class-inappropriate heuristics may combine to make bad choices, and thereby
make it difficult to solve the problem within a reasonable step limit. Because only solved
problems provide training instances for weight learning, no learning takes place until
some problem is solved. Second, class-inappropriate heuristics occasionally acquire high
weights when an initial problem is easy, and then control subsequent decisions, so that

Smiljana Petrovic and Susan L. Epstein8

either the problems go unsolved or the class-inappropriate heuristics receive additional
rewards. ACE is able to recover (correct weights) gradually from such a situation, but
recovery is faster under full restart, where ACE recognizes that its current learning
attempt is not promising, abandons the responsible training problems, and restarts the
entire learning process.27 In this paper, ACE has recourse to full restart, but rarely resorts
to it.

LearnFromRandomSubsets(C, Avar , Aval)
Initialize all weights to 0.05
Until termination of the learning phase

Identify learning problem p in C
Generate or accept x and y in [0,1]
Randomly select subset Svar of x variable Advisors from Avar

Randomly select subset Sval of y value Advisors from Aval

Search (p, Svar , Sval)
If p is solved

for each training instance t from p
for each Advisor A such that s(A, t) > 0

when t is a positive training instance
increase w(A) *reward*

when t is a negative training instance
decrease w(A) *penalize*

else when full restart criteria are satisfied
initialize all weights to 0.05

Fig. 3. Learning on a class C of problems with random subsets of variable Advisors from Avar and variable
Advisors from Aval. The Search algorithm is defined in Fig 1.

Learning with random subsets (in Figure 3) is a new approach that addresses both
these issues in self-supervised learning. For each problem, ACE randomly selects a new
subset of all the Advisors (here, a random subset), consults them, makes decisions based
on their comments, and updates only their weights. Since global search is complete,
under a large enough step limit, every problem used here will eventually be solved,
regardless of the mixture and weight profile. There are, however, many factors that
determine the number of steps required to find a solution. These include:
• The number and the degree of relevance of the participating heuristics.
• The problem difficultly, which may vary substantially within a given class for a

given search algorithm.28

• The frequency with which the heuristics comment, their discriminative power, and
their accuracy.29 For instance, even appropriate heuristics must comment frequently
if they are to direct decision making during search.

We address some of those factors further in Section 9. Meanwhile, to understand why
learning with random subsets is effective, our premise is that the ratio of class-
appropriate to class-inappropriate heuristics determines whether a problem is likely to be
solved.

Random Subsets Support Learning a Mixture of Heuristics 9

When class-inappropriate heuristics predominate in a random subset, the problem is
unlikely to be solved and no learning occurs. The repeated selection of a random subset
for each new problem, however, will eventually produce some subset S with a majority of
class-appropriate heuristics that solves its problem within a reasonable resource limit. As
a result, all participating Advisors in S will have their weights adjusted. On the next
problem, the new random subset S′ is likely to contain some low-weight Advisors outside
of S, and some reselected from S. Any previously-successful Advisors from S that are
selected for S′ will have larger positive weights than the other Advisors in S’, and will
therefore heavily influence search decisions. If S succeeded because it contained more
class-appropriate than class-inappropriate heuristics, S ∩ S′ is also likely to have more
class-appropriate heuristics and thereby solve the new problem, so again those that
participate in correct decisions will be rewarded. On the other hand, in the less likely case
that the majority of S∩S′ consists of reinforced, class-inappropriate heuristics, the
problem will likely go unsolved, and the class-inappropriate heuristics will not be
rewarded further. In the rare case of repeated failure, RSWL resorts to full restart for
recovery.

8. Experimental design

We tested learning with random subsets on three random CSP classes particularly
difficult for their size (n and m). (Indeed, some of them appeared in the First International
Constraint Solver Competition at CP-2005.) <50, 10, 0.38, 0.2> has many variables and
relatively small domains. <20, 30, 0.444, 0.5> has fewer variables but larger domains.
<30, 8, 0.31, 0.34> is hard for its size, but significantly easier than previous two.
(Because their number of variables and domain sizes uniquely identifies classes used
here, we refer to them henceforth simply by n-m.) We also tested on problems from
Comp, defined in Section 6.

For ACE, a learning phase is a sequence of problems that it attempts to solve and
from which it learns Advisors weights. A testing phase in ACE is a sequence of fresh
problems to be solved with learning turned off. A run in ACE is a learning phase
followed by a testing phase. During learning, failure on 8 of the last 10 tasks triggered a
full restart of that learning phase. At most one full restart was permitted on each run. The
counter for learning phase termination begins with the first solved problem, resets upon
full restart, and terminates the phase when it reaches 30. Problems were not reused during
learning, even with full restart. During the testing phase, ACE uses only those Advisors
whose weight exceeds that of their respective benchmarks. For each problem class, every
testing phase used the same 50 problems. (The same problems were also used in Tables 1
through 3.) The step limits on individual problems during learning were 100,000 for
<50, 10, 0.38, 0.2>, 10,000 for <20, 30, 0.444, 0.5> and 1,000 for <30, 8, 0.31, 0.34> and
Comp . The step limits during testing were 100,000 for <50, 10, 0.38, 0.2> and
<20, 30, 0.444, 0.5>, 10.000 for <30, 8, 0.31, 0.34> and Comp. In all experiments, 3 tier-
1 Advisors and some tier-3 Advisors are consulted. The initial set (“All” in the tables

Smiljana Petrovic and Susan L. Epstein10

below) includes 42 tier-3 Advisors, described in Appendix A: 28 for variable ordering
and 14 for value ordering.

Three different ways to choose the heuristics applied to each problem were
implemented:
• Use all the Advisors on every problem.
• Choose a fixed percentage f of the variable-ordering Advisors and f of the value-

ordering Advisors, without replacement. We tested both f = 0.3 and f = 0.7.
• For each problem, select a random percentage r in [0.3, 0.7]. Choose r of the

variable-ordering Advisors and r of the value-ordering Advisors, without
replacement.
On harder problems, when all the Advisors were included on every learning

problem, many consecutive problems went unsolved before one was solved and the first
weights could be learned. We report here on the number of learning problems that went
unsolved, and the number unsolved before any weights had been learned (early failures).
We also report the average number of steps across all testing problems and the percentage
of problems solved during testing (out of 50). Unless otherwise noted, results are
averaged over 10 runs.

9. Results and discussion

Table 4 demonstrates the difficulties in learning on hard problems when an entire large
body of heuristics is consulted. Here, learning is on exactly 30 problems. In the first run,
the first 5 problems went unsolved, after which ACE learned weights and achieved good
testing performance. The second run produced high weights for class inappropriate
heuristics, triggered a full restart and then learned weights correctly, which again resulted
in good testing performance. In the third run, however, the first 21 problems went
unsolved. Early failures are not counted toward full restart — since the weights do not
change, there is no need to reinitialize them. When the first solved problem in Run 3
produced inadequate weights, there were too few of the 30 problems left to trigger restart
before the learning termination criterion was satisfied. As a result, testing performance
was poor. We addressed this issue by revising the experimental design to learn on 30
problems from the first solved one. This improved performance, but was not enough to
eliminate inadequate runs on harder classes.

Table 4: When all Advisors are consulted, learning on a fixed number of 20-30 problems may perform poorly.

Learning Testing

Run Problems Unsolved Early
failures Solved Steps

Run 1 30 5 5 100% 2,842.94
Run 2 42 12 3 100% 2,808.96
Run 3 30 29 21 26% 86,043.40

Random Subsets Support Learning a Mixture of Heuristics 11

Table 5 demonstrates the advantages of learning with random subsets. On 30-8
problems, early failures are rare, and with full restart ACE was able to learn appropriate
weights even when all the Advisors were consulted. Performance on Comp was similar.
This confirms that learning with random subsets does not harm performance on problem
classes where it is unnecessary. On the more difficult 20-30 problems, and particularly on
50-10 problems, performance improved dramatically: there were no inadequate runs, and
the percentage of unsolved problems and the percentage of early failures were reduced.

Table 5: Learning with different methods of selection for the participating Advisors subsets. (*) indicates that
only 9 runs were completed.

Learning Testing

Class Advisors in learning Problems Unsolved Early
failures Steps Solved

All 37.90 6.60 1.80 185.75 100.00%
Random 30% 31.50 2.40 1.50 186.47 100.00%
Random 70% 33.40 2.90 0.50 185.20 100.00%30

-8

Random 30%-70% 36.20 5.10 1.60 187.31 100.00%
All 30.00 2.40 0.00 773.48 94.00%
Random 30% 30.00 1.40 0.00 670.39 94.40%
Random 70% 30.10 1.80 1.00 602.62 95.60%C

om
p

Random 30%-70% 30.00 1.90 0.00 702.61 94.20%
All 42.80 14.80 11.00 6,195.68 98.60%
Random 30% 32.40 8.80 2.40 2,798.22 100.00%
Random 70% 32.30 4.00 2.30 2,769.37 100.00%20

-3
0

Random 30%-70% 32.30 6.90 2.30 2,743.33 100.00%
All (*) 88.67 77.22 51.44 73,174.59 30.67%
Random 30% 33.60 9.40 3.60 22,884.62 90.80%
Random 70% 37.00 9.20 4.20 23,263.39 89.40%50

-1
0

Random 30%-70% 33.70 6.10 3.70 23,855.27 87.60%

During learning, the time to select the next variable or a value for it is not necessarily
directly proportional to the number of selected Advisors. This is primarily because a pair
of Advisors that minimize and maximize the same metric share the same fundamental
computational cost: calculating their common metric. For example, the bulk of the work
for Min Product Domain Value lies in the one-step lookahead that calculates the products
of the domain sizes of the neighbors after each potential value assignment. Consulting
only Min Product Domain Value and not Max Product Domain Value will therefore not
significantly reduce computational time. Moreover, the metrics for some Advisors are
based upon metrics already calculated for others. For example, the two Advisors whose
metric is the ratio of dynamic domain size to weighted degree are relatively fast if those
metrics were calculated earlier by other Advisors for their own use. Table 6 shows that

Smiljana Petrovic and Susan L. Epstein12

removing 70% of the Advisors saved only 40% of time per step. Removing 30% saved
more than 20%, however, since more calculations could be reused. The reduction in total
computation time is even more significant, because it incorporates the number of learning
problems and steps per problem.

Table 6: Percentage of computation time during learning when random subsets are used, compared to
computation time with all Advisors on the 20-30 class.

Computation time
per step Learning time

All 100.00% 100.00%
Random 30% 60.29% 44.43%
Random 70% 78.75% 40.37%
Random 30%-70% 71.91% 45.73%

Figure 4 illustrates how the weights of several heuristics converged during learning
on 50-10 problems, when 70% of the Advisors are randomly selected for each problem.
Plateaus in weights correspond to problems where the particular heuristic was not
selected for the current random subset. Although the weights learned from the first solved
problem were not appropriate, during subsequent learning, the class-appropriate
heuristics had the opportunity to participate, acquired high weights, and led future
decisions. Gradually, ACE separated the class-appropriate heuristics from the class-
inappropriate ones. Observe that, as learning progressed, weights stabilized.

Fig. 4. Weights of selected Advisors during learning over 30 problems in a single run.

Table 7 demonstrates the robustness of learning with random subsets. In these
experiments ACE was tested with fewer Advisors. Based on weights from successful
runs in Table 4, the Advisors were first identified as class-appropriate or class-
inappropriate for 20-30. ACE was then provided with three different sets of variable
Advisors Avar in which class-inappropriate Advisors outnumbered class-appropriate ones.
Both Set-1 and Set-2 were generated by the removal of 3 class-appropriate Advisors from
9 dual pairs. To create Set-1, one of the removed Advisors was the “neutral” Max
backward degree, whose weight is typically low and not much higher than the weight of

Heuristics' weights

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learning problem number

W
ei

gh
ts

MIN-DOMAIN/DYNAMIC-DEGREE
MAX-FORWARD-DEGREE

MAX-VALUE-PAIRS
BENCHMARK-VARIABLE

MIN-VALUE-PAIRS
MIN-FORWARD-DEGREE

MAX-DOMAIN/DYNAMIC-DEGREE

Random Subsets Support Learning a Mixture of Heuristics 13

its dual. To create Set-2, we removed two Advisors that typically earn high weights and
lead decisions in a mixture (Min Domain/Dynamic Degree and Max Weighted Degree).
Set-3 was biased even further toward class-inappropriate Advisors: it contained only 4
class-appropriate and 9 class-inappropriate Advisors. (The full list of Advisors in each set
appears in Appendix B.)

Table 7: Learning when the pool of Advisors contains more class-inappropriate Advisors than class-appropriate.

Learning Testing

Advisors in learning Runs
completed Problems Unsolved Early

failures Steps Solved

All 4 180.50 178.50 141.50 94,352.49 8.00%
Random 30% 10 35.40 11.80 1.60 3,976.38 100.00%
Random 70% 10 43.00 15.50 12.10 3,898.47 100.00%Se

t 1

Random 30%-70% 10 35.70 10.20 4.80 3,874.91 100.00%
All 3 225.00 223.00 186.00 94,361.65 8.00%
Random 30% 10 44.30 23.20 5.80 3,847.50 100.00%
Random 70% 10 58.00 33.50 22.10 5,084.70 99.60%Se

t 2

Random 30%-70% 10 43.30 18.70 11.20 3,807.75 100.00%
All 3 225.00 223.00 186.00 95,431.87 6.67%
Random 30% 10 33.90 13.70 3.90 3,840.96 100.00%
Random 70% 10 44.80 19.50 10.40 12,979.44 91.00%Se

t 3

Random 30%-70% 10 34.90 12.40 3.60 12,835.01 91.00%

Clearly, when all provided Advisors were consulted, the predominance of class-
inappropriate Advisors effectively prevented the solution of most problems. On the rare
occasion that some (probably easy) problem was solved, the learned mixture was
inappropriate, and failure persisted. With such extensive failures, even our library of
1000 problems was exhausted, so only 3 or 4 runs were completed under the “All”
option. With random subsets, managing these sets of heuristics was possible: the class-
appropriate heuristics were identified and appropriate weights were learned. Inadequate
runs were rare, and only occurred when there were substantially fewer class-appropriate
than class-inappropriate Advisors (Set 3).

Learning with random subsets was more successful (i.e., it produced fewer early and
total failures) when Advisors were selected from Set 1 than from Set 2. This
demonstrates that candidate heuristics relevant to the targeted class make learning easier.
Nonetheless, even with a less powerful set of heuristics, learning with random subsets
produced good mixtures.

One issue in learning with random subsets is how to determine a good subset size.
Our experiments show that more early failures occur and more learning problems are
required when random subsets are relatively large (70% vs. 30%). Intuitively, if there are
few class-appropriate heuristics in A, the probability that they are selected as a majority
in a larger subset is small (0 if the subset size is more than twice the number of class-

Smiljana Petrovic and Susan L. Epstein14

appropriate Advisors). For example, given a class-appropriate Advisors, and b class-
inappropriate Advisors, the probability that the majority of r randomly-selected Advisors
is class-appropriate is

€

p =

a
k

b
r − k

a + b
r

 k=

r
2

+1

r

∑
[1]

and the expected number of trials until the subset has a majority of class-appropriate
Advisors is

€

i(1− p)i−1 p =
1
pi=1

∞

∑ [2]

When there are more class-inappropriate Advisors (a < b), a smaller set is more likely
to have a majority of class-appropriate Advisors. For example, if a = 6, b = 9, and r = 4,
[1] evaluates to 0.14 and [2] to 7. For a = 6, b = 9, and r = 10, however, the probability of
a randomly selected subset with a majority of class-appropriate heuristics is only 0.04 and
the expected number of trials until the subset has a majority of class-appropriate Advisors
is 23.8. As demonstrated in all three cases in Table 7, the number of early failures is
significantly lower when the subset size is 30%, resulting in overall better performance.

When there are roughly as many class-appropriate as class-inappropriate Advisors (as
in Table 5), the subset sizes are less important. In this case, the probability that any subset
has more class-appropriate Advisors is near 0.5, and the expected number of trials is 2. In
Table 5, ACE averaged fewer than 2 early failures on the 30-8 and Comp problems.
Problems in 30-8 are easier and can be solved even without an overwhelming majority of
class-appropriate Advisors. Due to the non-random structure of Comp problems, the
difficultly of problems within a class vary enormously for most traditional individual
CSP heuristics — some problems are extremely difficult while others are easy, so early
failures are not an issue. More than two early failures on harder problems for a given step
limit, however, suggest that a majority of class-appropriate Advisors is not enough; it
require the selection of Advisors that are particularly good for the class.

Another observation from Tables 5 and 7 is that with larger subsets, there are few
failures once the first problem is solved. When subsets are small, subsequent random
subsets are less likely to overlap with those that proceeded them, and therefore less likely
to include Advisors whose weights have been revised. As a result, failures occur even
after some class-appropriate heuristics receive high weights. Thus, weights converge
faster when subsets are larger. The data in Table 7 show that learning with random
subsets of 70% requires not many more training problems after the first problem is
solved.

Random selection of the subset size provides the benefits of both small and large
random subsets. When the subset size varies, a smaller size makes it more likely that a
subset with a more class-appropriate heuristics is selected early, while a larger size makes
overlap more likely, and thereby speeds learning. All these experiments were successful

Random Subsets Support Learning a Mixture of Heuristics 15

when the size of the random subset for each new learning problem was a random number
within [0.3, 0.7].

10. Conclusion and future work

We have demonstrated that learning with random subsets performs significantly better
than learning with a large set of Advisors. It manages a substantial set of heuristics, most
of which may be class-inappropriate and contradictory. Better performance is indicated
by fewer failures to solve a problem within the given step limit, faster decisions during
learning, and more problems solved with fewer steps during testing. Learning with
random subsets is also robust; it works well with different subset sizes, with different
proportions of class-appropriate to class-inappropriate heuristics, and even with Advisors
whose individual performance is relatively mediocre.

We are currently examining other parameters for learning with random subsets. These
include the learning step limit, the termination criteria for learning, full restart parameters
and the constrainedness of the problem class. We intend to use boosting to reuse
problems and enforce learning from harder problems.10 Particular attention will be paid to
the initial set of Advisors and to synergies among them, given the recent results from
factor analysis.30 Another approach would be to reduce the degree of randomness as
learning progresses.

Finally, learning with random subsets is demonstrated here on CSPs, but in principle
it could be extended to other domains and to other kinds of experts participating in
mixtures. Learning with random subsets relieves the user of the burden of providing
domain specific knowledge for a solver. That is an important step toward automated
problem solving.

Appendix A.

The following Advisors were used in these experiments.

Tier-1 Advisors:
• Victory. When only a single variable has no assigned value and has been selected,

Victory comments in favor of any value in the dynamic domain of that variable.
• Degree Zero. When a variable is to be selected next, Degree Zero vetoes any

variable whose dynamic degree is zero.
• Unique Value. When a variable is to be selected next, Unique Value forces the

selection of any variable whose dynamic domain contains exactly one value.

Tier-3 Advisors:
The concerns underlying ACE’s tier-3 Advisors are drawn from the CSP literature. (Ci-
tations are provided where possible.) Two vertices with an edge between them are neigh-
bors. A nearly neighbor is the neighbor of a neighbor in the constraint graph. The degree
of an edge is the sum of the degrees of the variables incident on it. The edge degree of a

Smiljana Petrovic and Susan L. Epstein16

variable is the sum of edge degrees of the edges on which it is incident. Advisors are
listed in dual pairs.

Variable selection Advisors:
• Min/Max Degree supports variables in increasing/decreasing order of their static (in

the original constraint graph) degree.
• Min/Max Domain supports variables in increasing/decreasing order of their dynamic

domain size after inference.
• Min/Max Domain/Degree supports variables in increasing/decreasing order of the

ratio of their dynamic domain size to their static degree.31

• Min/Max Backward Degree supports variables in increasing/decreasing order of the
number of their valued neighbors.

• Min/Max Forward Degree supports variables in increasing/decreasing order of their
dynamic degree (number of unvalued neighbors).

• Min/Max Value Pairs supports variables in increasing/decreasing order of the
number of pairs of values with their neighbors still supported by the current partial
assignment.32

• Min/Max Static Connected Edges orders the edges in the original constraint graph
descendingly, by the sum of the degrees of their vertices. They support variables in
increasing/decreasing order of their incidence on these edges, with preference for the
higher-degree vertex.

• Min/Max Static Less Connected Edges orders the edges in the original constraint
graph ascendingly, by the sum of the degrees of their vertices. They support
variables in increasing/decreasing order of their incidence on these edges, with
preference for the higher-degree vertex.

• Min/Max Dynamic Connected Edges orders the edges in the dynamic constraint
graph descendingly, by the sum of the degrees of their vertices. Supports variables in
increasing/decreasing order of their incidence on these edges, with preference for the
higher-degree vertex.

• Min/Max Dynamic Less Connected Edges orders the edges in the dynamic con-
straint graph ascendingly, by the sum of the degrees of their vertices. Supports
variables in increasing/decreasing order of their incidence on these edges, with
preference for the higher-degree vertex.

• Min/Max FF2 supports variables in increasing/decreasing order of their likelihood
of failure, computed by

€

1− 1− tightness(ij) domain(j)

i≠ j
∏

domain(i)

They estimate tightness(ij) as the average tightness over the neighbors in the original
constraint graph to the power of the original degree of the variable.33

• Min/Max Weighted Degree supports variables in increasing/decreasing order of the
sum of the weights of the edges on which they are incident. Initially, edge weights
are set to 1. Thereafter, each time inference from one endpoint of an edge wipes out
the domain of the other endpoint, the weight of the edge is increased by 1.34

• Min/Max Domain/Weighted Degree supports variables in increasing/decreasing
order of the ratio of their dynamic domain size to their weighted degree.34

Random Subsets Support Learning a Mixture of Heuristics 17

Value selection Advisors:
• Min/Max Static Conflicts Value minimizes/maximizes based on the number of

values that would be supported in the static domains of the unvalued neighbors of the
variable.35

• Min/Max Small Domain Value minimizes/maximizes the domain size among the
neighbors of the variable after this assignment.35

• Min/Max Product Domain Value minimizes/maximizes the product of the domain
sizes of the neighbors of the variable after this assignment

• Min/Max Domain Score Value minimizes/maximizes the largest domain size of the
neighbors of the variable after this assignment. It takes the number of unvalued
variables with domains of that size as an exponent.

• Min/Max Weighted Domain Score Value minimizes/maximizes domain sizes of the
neighbors of the variable after this assignment. It weights the number of future
variables with domains of each size, a variant on an idea in.35

• Min/Max Secondary Pairs Value minimizes/maximizes the number of value pairs
supported by this assignment from neighbors of the variable to nearly neighbors of
the variable.

• Min/Max Secondary Value minimizes/maximizes the number of values supported
by this assignment among nearly neighbors of the variable.

Appendix B.

Table 8: Advisors used for the experiments in Table 7.

Class-appropriate Advisors Class-inappropriate Advisors

Max-Degree Min-Degree
Min-Domain Max-Domain
Min-Domain/Dynamic-Degree Max-Domain/Dynamic-Degree
Max-Weighted-Degree Min-Weighted-Degree
Min-Dynamic-Domain/Weighted-Degree Max-Dynamic-Domain/Weighted-Degree
Min-Static-Less-Connected-Edges Min-Static-Connected-Edges
 Min-Backward-Degree
 Min-Forward-Degree

Se
t-1

 Max-Domain/Degree
Max-Degree Min-Degree
Min-Domain Max-Domain
Max-Backward-Degree Min-Backward-Degree
Max-Forward-Degree Min-Forward-Degree
Min-Dynamic-Domain/Weighted-Degree Max-Dynamic-Domain/Weighted-Degree
Min-Static-Less-Connected-Edges Min-Static-Connected-Edges
 Max-Domain/Degree
 Max-Domain/Dynamic-Degree

Se
t-2

 Min-Weighted-Degree
Max-Degree Min-Degree
Min-Domain Max-Domain
Min-Dynamic-Domain/Weighted-Degree Max-Dynamic-Domain/Weighted-Degree
Min-Static-Less-Connected-Edges Min-Static-Connected-Edges
 Min-Backward-Degree
 Min-Forward-Degree
 Max-Domain/Degree
 Max-Domain/Dynamic-Degree

Se
t-3

 Min-Weighted-Degree

Smiljana Petrovic and Susan L. Epstein18

References

 1. Aardal, K. I., S. P. M. v. Hoesel, A. M. C. A. Koster, C. Mannino and A. Sassano (2003).
Models and solution techniques for frequency assignment problems. 4OR: A Quarterly
Journal of Operations Research 1(4): 261-317.

 2. Getoor, L., G. Ottosson, M. Fromherz and B. Carlson (1997). Effective redundant constraint
for online scheduling. Fourteenth National Conference on Artificial Intelligence, pp. 302-307,
Providence, Rhode Island.

 3. Gomes, C., C. Fernandez, B. Selman and C. Bessière (2004). Statistical Regimes Across
Constrainedness Regions. 10th Conf. on Principles and Practice of Constraint Programming
(CP-04) (M. Wallace, Ed.), pp. 32-46, Springer, Toronto, Canada.

 4. Dietterich, T. G. (2000). Ensemble methods in machine learning. First International
Workshop on Multiple Classifier Systems, pp. 1-15, Cagliari, Italy.

 5. Kivinen, J. and M. K. Warmuth (1999). Averaging expert predictions. Computational
Learning Theory: 4th European Conference (EuroCOLT '99), pp. 153--167, Springer, Berlin.

 6. Valentini, G. and F. Masulli (2002). Ensembles of learning machines. Neural Nets WIRN
Vietri-02 (M. M. a. R. Tagliaferri, Ed.), Springer-Verlag, Heidelberg, Italy.

 7. Opitz, D. and J. Shavlik (1996). Generating accurate and diverse members of a neural-network
ensemble. Advances in Neural Information Processing Systems 8: 535-541.

 8. Ali, K. and M. Pazzani (1996). Error reduction through learning multiple descriptions.
Machine Learning 24: 173-202.

 9. Hansen, L. and P. Salamon (1990). Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12: 993-1001.

 10. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5(2): 197--227.
 11. Freund, Y. and R. Schapire (1996). Experiments with a new boosting algorithm. Thirteenth
International Conference on Machine Learning, pp. 148-156.

 12. Alimoglu, F. and E. Alpaydin (1997). Combining multiple representations and classifiers for
pen-based handwritten digit recognition. Fourth International Conference on Document
Analysis and Recognition, pp. 637-640, Ulm, Germany.

 13. Zhang X, Mesirov J.P. and W. D.L. (1992). Hybrid system for protein secondary structure
prediction. Journal of Molecular Biology 225: 1049-1063.

 14. Minton, S., J. A. Allen, S. Wolfe and A. Philpot (1995). An Overview of Learning in the
Multi-TAC System. First International Joint Workshop on Artificial Intelligence and
Operations Research, Timberline, Oregon, USA.

 15. Selman, B., H. Kautz and B. Cohen (1996). Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26: 521--532.

 16. Gomes, C. P., B. Selman, N. Crato and H. Kautz (2000). Heavy-Tailed Phenomena in
Satisfiability and Constraint Satisfaction Problems. Journal of Automated Reasoning: 67–100.

 17. Gomes, C. (2003). Complete Randomized Backtrack Search (survey). Constraint and Integer
Programming: Toward a Unified Methodology, pp. 233-283, Kluwer, Milano.

 18. Lynce, I., L. Baptista and J. Marques-Silva (2001). Stochastic systematic search algorithms for
satisfiability. LICS Workshop on Theory and Applications of Satisfiability Testing (LICS-SAT).

 19. Epstein, S. L. (1994). For the Right Reasons: The FORR Architecture for Learning in a Skill
Domain. Cognitive Science 18: 479-511.

 20. Epstein, S. L., E. C. Freuder and R. Wallace (2005). Learning to Support Constraint
Programmers. Computational Intelligence 21(4): 337-371.

 21. Sabin, D. and E. C. Freuder (1997). Understanding and Improving the MAC Algorithm.
Principles and Practice of Constraint Programming: 167-181.

 22. Petrovic, S. and S. L. Epstein (2006). Relative Support Weight Learning for Constraint
Solving. AAAI Workshop on Learning for Search, pp. 115-122, Boston.

Random Subsets Support Learning a Mixture of Heuristics 19

 23. Gent, I. P., P. Prosser and T. Walsh (1999). The Constrainedness of Search. AAAI/IAAI 1:
246-252.

 24. Petrie, K. E. and B. M. Smith (2003). Symmetry breaking in graceful graphs. Principles and
Practice of Constraint Programming CP-2005, pp. 930--934, LNCS 2833.

 25. Otten, L., M. Grönkvist and D. P. Dubhashi (2006). Randomization in Constraint
Programming for Airline Planning. Principles and Practice of Constraint Programming CP-
2006, pp. 406-420, Nantes, France.

 26. Lecoutre, C., F. Boussemart and F. Hemery (2004). Backjump-based techniques versus
conflict directed heuristics. ICTAI,: 549–557.

 27. Petrovic, S. and S. L. Epstein (2006). Full Restart Speeds Learning. Proceedings of the 19th
International FLAIRS Conference (FLAIRS-06), Melbourne Beach, Florida.

 28. Hulubei, T. and B. O'Sullivan (2005). Search Heuristics and Heavy-Tailed Behavior.
Principles and Practice of Constraint Programming - CP 2005 (P. V. Beek, Ed.), pp. 328-342,
Berlin: Springer-Verlag.

 29. Epstein, S. L. (2004). Metaknowledge for Autonomous Systems. Proceedings of AAAI Spring
Symposium on Knowledge Representation and Ontology for Autonomous Systems. AAAI, pp.
61-68.

 30. Wallace, R. J. (2006). Analysis of heuristic synergies. In Joint ERCIM/CologNet International
Workshop on Constraint Solving and Constraint Logic Programming.

 31. Bessière, C. and J.-C. Régin (1996). MAC and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In "Principles and Practice of Constraint Programming -
CP96, LNCS 1118" (E. C. Freuder, Ed.), pp. 61-75, Springer-Verlag.

 32. Kiziltan, Z., P. Flener and B. Hnich (2001). Towards Inferring Labelling Heuristics for CSP
Application Domains. KI'01, Springer-Verlag.

 33. Smith, B. and S. Grant (1998). Trying Harder to Fail First. European Conference on Artificial
Intelligence, pp. 249-253.

 34. Boussemart, F., F. Hemery, C. Lecoutre and L. Sais (2004). Boosting systematic search by
weighting constraints. Sixteenth European Conference on Artificial Intelligence-ECAI’04, pp.
146–150.

 35. Frost, D. and R. Dechter (1995). Look-ahead Value Ordering for Constraint Satisfaction
Problems. IJCAI-95, pp. 572-278.

