
In Support of Pragmatic Computation

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of The City University of New York
susan.epstein@hunter.cuny.edu

Abstract

This paper argues that human cognition is structured to sup-
port solving in unmanageably large problem spaces. Ma-
chines face similar challenges, and can therefore benefit
from the same kinds of approaches. Pragmatic human cog-
nitive mechanisms already appear in AI artifacts, and more
should be considered. Examples are drawn from human and
programmed approaches to game playing, constraint satis-
faction, and protein sequence alignment.

People and artificially intelligent machines both solve
problems. From a machine’s perspective, however, the
ability of people to function not only adequately but ex-
pertly is nothing short of miraculous. Human memories are
clearly limited and often inaccurate, human algorithms are
mysterious, and human heuristics are naïve. Although en-
dowed with good sensory mechanisms, people often
choose to ignore relevant data. Although they invented
logic, they rarely represent their reasoning that way. The
issue is whether an artificial intelligence should capitalize
on what is known about human reasoning.
 It is the thesis of this paper that cognitive science has
been, and must continue to be, relevant to the way AI pro-
grams solve problems. This is not because people are an
exemplar of cognition, but because human cognitive
mechanisms were developed to cope with problems that
are beyond our computational capacity. People do prag-
matic computation, that is, they arrive at and explain ade-
quate decisions efficiently. Here, an adequate decision is
one that supports the multiple goals of the decision maker,
and efficiency is measured by the consumption of cogni-
tive resources. Efficient explanation entails a concise de-
scription of the process, possibly for the benefit of other
agents. When people ignore information or modify a pro-
cedure in a way that compromises its correctness because
they can do so with impunity, they are computing prag-
matically. When an artificial intelligence is pressed beyond
its capacity, it should compute pragmatically too.
 Real-world decisions are always subject to a myriad of
potential but unlikely catastrophes that lurk in a dynamic
environment. Factoring each of them into a decision (e.g.,
crossing the street) would consume additional computing
resources, but likely produce the same decision. Because,
in the real world there are always additional goals to ad-
dress, an intelligence, real or artificial, would do better to
compute pragmatically and move on to the next problem.
 This paper describes some pragmatic human cognitive
mechanisms, and shows how many programs (even “brute
force” ones) already incorporate them. After some basic
definitions, it explores how people and programs use

knowledge, representation, and meta-heuristics in problem
solving. It considers the role of visual cognition and self-
awareness, and poses some challenging issues for research.
 Throughout, examples are drawn from game playing,
constraint satisfaction, and protein sequence alignment. A
constraint satisfaction problem <X,D,C> is a set of vari-
ables X, a set of domains D for those variables, and a set of
constraints C, restrictions on the way values from the do-
mains may be assigned to the variables. Constraint solving
seeks an assignment of a value to each variable from its
domain so that all the constraints are satisfied. Graph col-
oring and scheduling are both constraint satisfaction prob-
lems. Protein sequence alignment seeks to arrange com-
plex physical objects in a way that emphasizes their three-
dimensional and/or evolutionary similarities. Given a
string on a 20-letter alphabet (the residues), there is usually
a single way the protein it represents will arrange itself in
space. A good alignment of two such strings, for example,
 S K — T T W T
 T K S S T W S
pairs identical, biophysically or evolutionarily similar resi-
dues with each other. Each gap insertion (here the symbol
—) incurs a penalty, part of which is proportional to its
length. Programs for constraint satisfaction and protein se-
quence alignment are powerful but still inadequate for
many tasks; both problems are NP-complete.

Problem Solving and Search

First, some basic definitions. A world state is a set of data
that describes some limited perspective at a moment in
time, such as pieces on a chess board or assignments of
values to constrained variables. An operator is a function
that transforms one world state into another. A goal test is
a boolean function on world states, and a goal state is one
that passes the goal test. A problem consists of a set of
world states (the problem’s state space), a set of operators
defined on them, and a goal test. Problem solving is the
search for some world state that passes the goal test. The
global search paradigm searches state space from a desig-
nated world state (the initial state), applying one operator
at a time until some world state passes the goal test. A so-
lution to a problem is either a goal state (e.g., constraint
satisfaction or protein sequence alignment) or the search
path to it (e.g., chess).
 In a state space of challenging size, intelligence requires
more than fast global search — it also requires knowledge.
For example, a machine cannot play chess by exhaustive
lookahead because the chess state space is unmanageably

large. Although Deep Blue played chess on special-
purpose hardware that examined millions of states per sec-
ond, it still lost its first match against Gary Kasparov in
1996. As computers’ speed and memory increase, the goals
set for AI programs become more ambitious. Thus there
will always be problems (e.g., Go, scheduling, protein se-
quence alignment) on which uninformed search is inade-
quate.

The Role of Knowledge

Expert knowledge focuses, directs, and resolves search. At
the beginning of search, a problem solver’s initial deci-
sions (its opening) prune away large portions of the space.
An opening is a knowledge-based heuristic; its function is
to make the state space more manageable without dramati-
cally reducing the likelihood that a solution can be found.
In constraint solving, for example, openings are crucial;
there is recent evidence that one need only get the first few
variables’ values correct to solve certain kinds of very
large problems (Gomes, Selman et al. 2000). A game open-
ing is simply a sequence of moves known to lead to suc-
cessful play in the hands of an expert. Although carefully
chronicled and studies, game openings are heuristics that
may be revised or even discredited.
 Even in large state spaces, it may be possible to search
exhaustively for a path to a goal state beginning from what
we call solvable states. Solvable states arise relatively deep
in search, and may not form part of the eventual solution.
As protein alignment decisions are made, for example,
short sequences arise that must be aligned; as values are
assigned in constraint solving, small subproblems arise.
Both can be solved by exhaustive search. Unlike openings,
knowledge about solvable states is guaranteed correct be-
cause it is based on goal tests for all the states in some por-
tion of the space. If solvable states recur, either in the do-
main (as they do in chess) or repeatedly in a single prob-
lem (as they do in constraint solving), storing their results
can speed search. Traditionally, solvable state libraries for
games (endgame knowledge) have been developed by hand
and shared among human experts.
 Although a human expert can get a reasonable head start
from an opening, and search flawlessly from solvable
states, in between she must still make search decisions. A
heuristic evaluation function estimates the likelihood that
search progressing through a state will lead to a solution.
An evaluation function is based on features (state descrip-
tions) that predict that likelihood. Chess players think
about pawn structure and control of the center, biophysi-
cists about hydrophobicity and beta-sheets, and constraint
solvers about promise and fail-firstness. A human expert
may use tens (or even hundreds) of such features.
 Many AI artifacts use knowledge the way people do.
One can engineer a problem solver for a particular domain
by providing a search engine with openings, a solvable
state library, and a good evaluation function. Openings are
provided by programmers. Computers have verified
knowledge about solvable states and, with their accuracy

and speed, extended it (Hsu 2002; Schaeffer, Bjornsson et
al. 2003). A programmer usually provides an AI artifact
with the features for its evaluation function, although the
program is generally called upon to find a method to com-
bine them.
 When Deep Blue won its rematch against Kasparov in
1997, the most significant improvement in the program had
been an infusion of grandmaster-level knowledge. At the
time, there was much discussion about the fact that the
program was not playing the way people do: it did not plan
or learn, it just did fast, deep search. What the press over-
looked, however, was that Deep Blue had inherited from
its human creators the same knowledge-based coping
mechanisms people use when confronted with a problem of
unmanageable size. The winning version of Deep Blue in-
cluded an enlarged database of openings curated by three
grandmasters plus an extensive, computer-generated end-
game database. Most importantly, the winning version had
an elaborate evaluation function carefully tuned under the
supervision of a fourth grandmaster.
 Other game-playing champions continue in this tradi-
tion. Chinook’s creators persist in their drive to solve
checkers, through a combination of intensive state-space
exploration and the management of an enormous endgame
database (Schaeffer, Bjornsson et al. 2005). TD-gammon
the backgammon player (Tesauro 1994) emphasized learn-
ing to combine the features in its evaluation function. Lo-
gistello, the Othello program that defeated the human
world champion in 1997, uses on a combination of pattern-
based, learned features for its evaluation function (Buro
1999). All of these programs rely on extensive opening
databases and have had considerable human guidance on
the features for their respective evaluation functions. (End-
game databases are constructed from all possible positions.
Because the number of pieces on its board increases as
play progresses, Logistello has no endgame database.)
 Despite a plethora of domain-specific heuristics, very
strong constraint solvers and protein sequence aligners
have yet to emerge. There is little opening knowledge for
those domains, only the certainty that openings are dispro-
portionately important. When knowledge is unavailable,
other methods, discussed below, may be brought to bear.
 In summary, many state-of-the-art game-playing pro-
grams are built the way people play because it is a prag-
matic way to address an unmanageably-large state space.
These programs carry things further than people do: more
openings, larger and more accurate endgame databases,
faster and deeper search, more feature combinations tested
to select a good balance. Nonetheless, their evaluation
function features and their openings come from people,
and are therefore based on human experience. Of greater
concern is the programs’ inability to reason about the state
space itself.

Search Meta-heuristics

Search meta-heuristics offer search control at a higher
level than an evaluation function. A search meta-heuristic

represents information about the state space to facilitate
decisions. For example, rotational symmetry plus the rules
make all corners of the tic-tac-toe board equivalent. Simi-
larly, any color may be chosen for the first vertex during
graph coloring.
 One search meta-heuristic to manage a large, repetitive
state space is to augment search with guidelines. “Open in
the center” or “align the W residues” prunes search dra-
matically. A strategy is a set of guidelines that summarizes
how to make decisions. For example, lose tic-tac-toe is a
game identical to tic-tac-toe except that the goal test is ne-
gated, so that the objective is avoid three in a row, column,
or diagonal. Expert lose tic-tac-toe play requires different
strategies for each competitor.
 On a larger scale, there are thousands of proverbs for the
game of Go, such as “beware of going back to patch up” or
“don’t go fishing while your house is on fire.” These prov-
erbs are descriptions of how centuries of expert-level play
has proceeded. Like openings, proverbs are heuristic; they
serve as a synopsis of the way search has worked for many
experts. A correct strategy or proverb is a synopsis of the
way the state space is constructed.
 One way to describe parts of a state space is with a role,
a model one agent has of the beliefs, behavior, and experi-
ence of another. People model each other as part of their
social interactions because it permits them to anticipate the
portions of the state space in which they are likely to find
themselves. This is often a response to the large branching
factor inherent with imperfect information (e.g., Scrabble
or poker), where competitors must weigh knowledge and
assess risk. Game-playing programs have capitalized on
this cognitive approach too. MAVEN, a strong Scrabble
playing program, anticipates the moves of its opponent
(Sheppard 2002). Roles are particularly important in games
like poker, where deliberate misinformation is often part of
the world state. (Billings, Burch et al. 2003).
 It may not be clear how to implement a search meta-
heuristic, even when one can argue for its importance.
Consider, for example, a problem solver to color a large
graph. As each node is colored, all edges to its neighbors
are removed and the possible colors of its neighbors are re-
duced. A typical search heuristic, (e.g., “color the node of
maximum degree”) hops about the graph, coloring nodes
and removing edges. After enough nodes have been col-
ored, an additional feature becomes important: connected-
ness. Clearly, search should be restricted to one connected
component at a time until that component is known to be
solvable. Less clear, however, is which newly-
disconnected component should be searched first.
 Rather than search rigidly, people can reason about the
structure and content of a state space to curtail unnecessary
search. For example, it is possible to postpone coloring any
tree that arises until all the cyclic components have been
colored. (There is a test linear in the number of tree nodes
for solvability.) That way, if an earlier color assignment
was wrong, the work that would have been done in the tree
need not be undone. People often use this “as good as
solved” approach to temporarily abandon a subgoal.

Search and Representation

Both AI researchers and cognitive scientists have con-
firmed the significance of representation during problem
solving. When re-represented, problems become far more
manageable and even prove to be special cases of more
challenging problems (Amarel 1968; Anzai and Simon
1979). Take, for example, the mutilated checkerboard
problem, where a checkerboard has had its upper left and
lower right corner squares removed, so that only 62
squares remain. The task is to cover the checkerboard with
31 dominoes, each of which can be placed vertically or
horizontally to cover two adjacent squares. Ostensibly this
problem has a very large state space. The clever solver,
however, will note that both the squares removed from the
checkerboard were the same color, that a domino by its na-
ture covers one red and one black square, and that there-
fore there can be no solution.
 A good problem representation may reduce the size of
the state space. The mutilated checkerboard problem is in-
teresting because the “obvious” visual representation of the
world states (as if one were placing dominoes) is the wrong
one — what is needed is an abstraction that represents only
the number of uncovered red and black squares. In this
much smaller space, search is quick and clear.
 Indeed, under a good representation, reasoning about the
state space can completely eliminate the need for search.
For the mutilated checkerboard, a person is likely to de-
clare the problem unsolvable without any search at all: the
initial state is (32, 30), the only operator reduces the state
(x, y) to (x-1, y-1), |x – y| remains invariant, and (0,0) is un-
reachable.
 Multiple representations may be dictated by solution cri-
teria or by search heuristics. Multiple solution criteria may
require different representations of the problem state. For
example, protein sequence alignment is judged based on
the pairing of individual residues, as well as on the align-
ment of the proteins’ secondary and tertiary structures.
Each representation should therefore be considered as the
alignment is constructed. A solver for such a problem must
work with all relevant representations during search. None-
theless, the integration of multiple representations requires
thoughtful implementation.
 Significantly, multiplicity is a hallmark of human cogni-
tion. People are equipped with a variety of sensors that
provide many kinds of information, carried in a variety of
formats. Human memories are redundant, with multiple
paths to access the same information. People entertain and
use multiple representations and decision-making heuris-
tics simultaneously (Biswas, Goldman et al. 1995). In a
program, it is possible to replicate this diversity and man-
age it effectively and efficiently. The FORR architecture,
for example, has supported domain-specific applications
for game playing (Epstein 2001), simulated path finding
(Epstein 1998), and constraint solving (Epstein, Freuder et
al. 2005). These programs learn to balance many domain-
specific, decision-making heuristics, each of which refer-
ences some subset of the available representations. No uni-
formity is imposed on the heuristics; representations are

shared and computed only on demand. Each program
learns to balance its heuristics and learns to achieve expert
performance in a wide variety of problem classes.

Visual Cognition

Many real-world tasks have a strong visual component.
When great mathematicians look back on their discoveries,
they often describe the moment of recognition in visual
terms, complete with colors or flashing lights (Hadamard
1945; Pascal 1964; Poincaré 1970). Reading such mem-
oirs, one becomes convinced that logic is the language of
argumentation, rather than the language of discovery.
 If a task does not have a strong visual component, peo-
ple often add one to facilitate their decisions. Consider, for
example, the following constraint problem. “A tennis court
is available from 9 AM and 4 PM. Alice, Bob, Cindy and
Doug all want to play. Alice can only play in the morning,
Bob can only play in the afternoon, and Cindy can only
play between 10 AM and 2 PM. Doug is always available.
Everyone wants to play singles for 1 hour. Bob will play
only with Cindy or Doug. Doug wants to play after Cindy.
Cindy wants to play with Alice and after Bob.” Figure 1
represents the relationships in this problem with a diagram
called a constraint graph. Most variable-selection and
value-selection heuristics in the constraints literature use
properties of some diagram like this, even though the prob-

lem itself is abstract and has no visual features at all. Such
a representation removes extraneous detail (e.g., the sport,
the names, the times of day). It also summarizes the re-
maining information concisely, and makes interrelation-
ships (and their absence) clear.
 Diagrams are often powerful adjuncts to human reason-
ing, but AI programs still require human guidance to ex-
ploit them. A geometry theorem prover developed search
openings by “looking” at an accompanying diagram for
each problem to find likely openings (Gelernter 1963). A
representation language for the relationships among objects
in space supported powerful reasoning about complex
molecules in three-dimensional space (Glasgow 1993).
 Indeed, a good diagram of the state space itself offers
considerable explanatory power. For example, Figure 2
diagrams the state space for a simple game (Epstein 2005).
A game is said to be strongly solved if, from every possible
state, an efficient algorithm is known that determines the
value of the position. Effectively, once a game is strongly
solved, every state is a solvable state. Although the game
in Figure 2(a) is simple, the state space diagram in Figure
2(b) produced by a cognitive science student generated a
set of guidelines that strongly solved the game. The
method has been extended to other games as well.
 Finally, cognitive scientists study the impact of cues on
human problem solving. The problems may be far simpler
but the issue is the same: how to focus attention on the sa-
lient features of the problem in a complex environment.
Move generation in game playing is a good example of
this. Human chess experts report considering about six or
seven possibilities from any position, even though there are
likely to be three times that many legal moves. Go masters,
according to measurements of their eye movements, con-
sider only three or four moves from among hundreds
(Yoshikawa and Saito 1997). Among the Go proverbs are
many visual cues, such as “when your opponent is thick,
you must also become thick” or “grab the fourth point of
the bamboo joint.” Like the other proverbs, they summa-
rize some aspect of the state space, but they offer visual
cues that focus attention as well. Visual cognition inter-
leaves with high-level reasoning in complex ways.

S T A R Tblack loses black loses

white loses white loses

 Classification of states

 connectivity 4

(irrelevant choice)

connectivity 2

(no choice)

connectivity 3

(crucial choice)

 Unfavorable moves

 move option

 bad for black

 move option

 bad for white

 (a) (b)
Figure 2: (a) A simple game and (b) a strategic explanation of its state space, where dark nodes are crucial decision-making
states. Black arrowheads are bad moves for black; white arrowheads are bad moves for white.

A {9, 10, 11}

C {10, 11, 12 ,13}

D {9, 10, 11, 12, 13, 14, 15}

B {12, 13, 14, 15}

B A

D > C

C = A

C > B

Figure 1: The underlying constraint graph for the tennis
problem in the text. Vertex labels are variables (initials of
first names) with 24-hour domain values as starting times;
edge labels are binary constraints.

Pong hau k’i

• Two-player game
• 5 locations
• First to move plays black
• Second to move plays white
• Move = slide to the next empty location
• Initially, the board is as shown
• Mover who cannot slide loses

Classification of states

White wins White wins

Irrelevant choice

No choice

Crucial choice

Unfavorable moves

Bad for black

Bad for white

Black wins Black wins

Ignoring Knowledge

Surprisingly often, people rely on a single heuristic to
make good enough decisions. Many psychologists study
such fast and frugal reasoning (Gigerenzer, Todd et al.
1999). Fast and frugal reasoning methods are believed to
rely on recognition, the favoring of familiar objects over
unfamiliar ones. A fast and frugal reasoner selects only
among recognized choices, and then applies a second stan-
dard, such as “try the last heuristic used.” Although at first
glance fast and frugal reasoning seems draconian, it works
surprisingly well on challenging constraint problems
(Epstein and Ligorio 2004).
 In many domains, it is possible to solve large problems
quickly through reasoning that deliberately overlooks rele-
vant features of the problem. Consider two algorithms for
solving a large constraint satisfaction problem. Algorithm
1 uses a single heuristic that focuses on variables with a
low value for a particular property and assigns values to
them at random. Algorithm 2 uses the heuristic of Algo-
rithm 1 but also has a reasonably accurate value selection
heuristic. One would expect that the number of mistakes
made by Algorithm 1 would be intolerable, but it is actu-
ally good enough to solve many problems quickly, even
though it is often wrong. Algorithm 2, although it makes
far fewer errors, is unacceptably slower on many problems.
If an expert is indeed one who solves problems faster and
better than the rest of us (D'Andrade 1990), then Algorithm
1 is (disturbingly) more expert. Its decision making is good
enough to find a solution as long as errors are relatively in-
expensive. Pragmatic computing, recall, makes good
enough decisions efficiently. By this standard, Algorithm 1
would be preferred to Algorithm 2. Similarly, highly-
accurate game-playing features for an evaluation function
are often costly to compute, so that a few of them (Berliner
and Ebeling 1989) may be the equivalent of many less in-
cisive ones (Berliner 1980).

Self-awareness

People attend to and evaluate their own problem solving
process. Their self-awareness critiques search and acts to
improve problem solving. For example, self-awareness
helps people decide to start over on a problem. There is a
substantial AI literature on restart. For example, on very
large problems, researchers have found a surprisingly sim-
ple and effective way to randomize global search on con-
straint satisfaction problems. It uses a simple heuristic to
select among variables, breaking ties at random, and it se-
lects values at random, but when some difficulty arises
(e.g., four value assignments retracted during search), it
begins search again (Gomes, Selman et al. 2000). Although
it may require many restarts, this process has proved re-
markably efficient on a variety of difficult problems.
 While solving a set of problems, a person may also rec-
ognize that the learning process itself is not going well and
begin again. Although it is more difficult for people than
for machines, it is possible to wipe clean the knowledge

derived from experience and take a fresh look at similar
problems. ACE is a constraint solving program that learns
to combine multiple heuristics to solve constraint satisfac-
tion problems. When problem difficulty is non-uniform,
particularly easy problems can mislead ACE, so that occa-
sional runs do not acquire a good mixture. We have suc-
cessfully adapted the program to monitor its own prowess
on a sequence of problems and begins a new sequence if its
skill is not satisfactory (Petrovic and Epstein 2006).
 At some point in many difficult problems, it is clear that
the hard decisions have been made, that is, that subsequent
incorrect decisions will have a trivial impact. At this point,
people generally shift to a less-computationally intensive
method. ACE has been able to learn that point for a class
of constraint satisfaction problems, and curtail computation
after it (Epstein, Freuder et al. 2005). The resultant
speedup is another example of pragmatic computing.

Research Challenges

Despite the successful incorporation of some human cogni-
tive processes into AI programs, many research challenges
remain. In particular, cognitive science still has much to
learn about focus of attention, addressing multiple goals,
and interleaving multiple representations.
 Vision can be a hindrance as well as a help. In one cog-
nitive science experiment, for example, people were asked
to play several games, all of which were well-disguised
isomorphs of tic-tac-toe (Zhang 1997). Although each
game had the same number of operators and the same
number of world states, some were far more difficult for
people than others. People applied some operators and ma-
nipulated some state representations far more slowly than
others, just the way machines do. All of the isomorphs rep-
resented the game pieces with more complex symbols than
X and O (e.g., colors or shapes) and represented their
alignment in a more complex, non-linear way (e.g., terri-
tory). Clearly the extraneous visual detail was a handicap.
 Although learning is an essential component of intelli-
gence, the biases it produces can be a hindrance. For ex-
ample, people find lose tic-tac-toe far more difficult than
tic-tac-toe. This is because they attempt to transfer their
experience with the ordinary version by doing exactly the
opposite in lose tic-tac-toe. A program with an ordinary
search engine seems a better alternative because, without
that initial bias, it would play both games the same way.
Nonetheless, people eventually develop strategies for these
games, arguably a more pragmatic computation.
 Multiple representations have their perils too. Little is
understood yet about how people successfully integrate
them, or how people develop efficient representations.
Multiple representations are often detected only after brain
injuries, where they provide tantalizing glimpses of alter-
native storage and retrieval mechanisms.
 People satisfice either because they cannot compute fast
enough to include everything they know in their computa-
tions or because there are other problems to be solved. Al-
though they extend human approaches beyond people’s

ability to calculate and remember, many of the programs of
which AI is most proud are still modeled on how people
address large problem spaces. These programs may not
emulate human thought at low levels, but they borrow
heavily, not only from human expert knowledge, but also
from human pragmatic knowledge about problem solving.
Their “good enough” solutions must be acceptable be-
cause, for some problems, computers will never be large
enough and fast enough to achieve any other kind. The is-
sues for cognitive science and AI researchers are clear:
• Given low-level sensory data, how do people (or solvers)
select information to represent world states?
• Given a host of choices, how do people (or solvers) focus
their attention?
• Given relevant features that describe choices, how do
people (or solvers) combine or choose among them?
• Given a problem solving situation, how do people (or
solvers) develop new heuristics?

Acknowledgements

This work was supported in part by NSF IIS-0328743.
Thanks to CUNY’s FORR study group and the Cork Con-
straint Computation Centre, led by Gene Freuder, for their
continued support of this work.

References

Amarel, S. (1968). On Representations of Problems of
Reasoning about Actions. Machine Intelligence 3. D. Mi-
chie. Edinburgh, Edinburgh University Press: 131-171.

Anzai, Y. and H. Simon (1979). The Theory of Learning
by Doing. Psychological Review 36(2): 124-140.

Berliner, H. and C. Ebeling (1989). Pattern knowledge and
search: The SUPREM architecture. AIJ 38(2): 161-198.

Berliner, H. J. (1980). Backgammon Computer Program
Beats World Champion. 14(2): 205-220.

Billings, D., N. Burch, A. Davidson, R. Holte, J. Schaeffer,
T. Schauenberg and D. Szafron (2003). Approximating
Game-Theoretic Optimal Strategies for Full-scale Poker.
IJCAI-2003, 899-905.

Biswas, G., S. Goldman, D. Fisher, B. Bhuva and G.
Glewwe (1995). Assessing Design Activity in Complex
CMOS Circuit Design. Cognitively Diagnostic Assess-

ment. P. Nichols, S. Chipman and R. Brennan. Hillsdale,
NJ, Lawrence Erlbaum: 167-188.

Buro, M. (1999). How Machines have Learned to Play
Othello. IEEE Intelligent Systems Journal 14(6): 12-14.

D'Andrade, R. G. (1990). Some Propositions about the Re-
lations between Culture and Human Cognition. Cultural

Psychology: Essays on Comparative Human Develop-

ment. J. W. Stigler, R. A. Shweder and G. Herdt. Cam-
bridge, Cambridge University Press: 65-129.

Epstein, S. L. (1998). Pragmatic Navigation: Reactivity,
Heuristics, and Search. AIJ 100(1-2): 275-322.

Epstein, S. L. (2001). Learning to Play Expertly: A Tuto-
rial on Hoyle. Machines That Learn to Play Games. J.
Fürnkranz and M. Kubat. Huntington, NY, Nova Science:

153-178.
Epstein, S. L. (2005). Thinking through Diagrams: Discov-
ery in Game Playing. Spatial Cognition IV, Springer-
Verlag, 260-283.

Epstein, S. L., E. C. Freuder and R. M. Wallace (2005).
Learning to Support Constraint Programmers. Computa-

tional Intelligence 21(4): 337-371.
Epstein, S. L. and T. Ligorio (2004). Fast and Frugal Rea-
soning Enhances a Solver for Really Hard Problems.
Cognitive Science 2004, Chicago, Lawrence Earlbaum,
To appear.

Gelernter, H. (1963). Realization of a Geometry-Theorem
Proving Machine. Computers and Thought. E. A. Feigen-
baum and J. Feldman. New York, McGraw-Hill: 134-152.

Gigerenzer, G., P. M. Todd and A. R. Group (1999). Sim-

ple Heuristics that Make Us Smart. New York, Oxford
University Press.

Glasgow, J. I. (1993). The Imagery Debate Revisited: A
Computational Perspective. Computational Intelligence
9(4): 309-333.

Gomes, C. P., B. Selman, N. Crato and H. Kautz (2000).
Heavy-tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems. Journal of Automated Reasoning
24: 67-100.

Hadamard, J. (1945). The Psychology of Invention in the
Mathematical Field. New York, Dover Publications.

Hsu, F.-h. (2002). Behind Deep Blue: Building the Com-
puter that Defeated the World Chess Champion. Prince-
ton, NJ, Princeton University Press.

Pascal, B. (1964). Pensées de Pascal. Paris, Éditions Gar-
nier Frères.

Petrovic, S. and S. L. Epstein (2006). Full Restart Speeds
Learning. FLAIRS-2006, In press.

Poincaré, H. (1970). La Valeur de la Sciènce. France,
Flammarion.

Schaeffer, J., Y. Bjornsson, N. Burch, A. Kishimoto, M.
Muller, R. Lake, P. Lu and S. Sutphen (2005). Solving
Checkers. IJCAI-05,

Schaeffer, J., Y. Bjornsson, N. Burch, R. Lake, P. Lu and
S. Sutphen (2003). Building the Checkers 10-Piece End-
game Databases. Advances in Computer Games X, Klu-
wer Academic Publishers: 193-210.

Sheppard, G. (2002). World-championship-caliber Scrab-
ble Artificial Intelligence 134(1-2): 241-275.

Tesauro, G. (1994). TD-Gammon, a self-teaching back-
gammon program, achieves master level play. Neural

Computation 6(2): 215-21.
Yoshikawa, A. and Y. Saito (1997). Hybrid Pattern
Knowledge: Go Players' Knowledge Representation for
Solving Tsume-Go Problems. South Korean International

Conference on Cognitive Science,
Zhang, J. (1997). The nature of external representations in
problem solving. Cognitive Science 21(2): 179-217.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1240
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1240
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1240
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

