
Search on Constraint Satisfaction Problems with Sparse Secondary Structure

Susan L Epstein1,2 and Xingjian Li 2

1 Hunter College and 2The Graduate Center of The City University of New York

Department of Computer Science
New York, NY 10065 USA

susan.epstein@hunter.cuny.edu, xli1@gc.cuny.edu

Abstract
This paper considers a variety of ways to detect relatively
isolated, highly restricted subproblems and then exploit
them to guide search for a solution. It introduces a local
search method that, prior to search, estimates where such
subproblems lie within constraint satisfaction problems.
These subproblems are assembled into a secondary structure
used with dynamic variable-ordering heuristics to guide
search, while learning protects against the occasional inade-
quacies of local search. On some classes of difficult struc-
tured benchmark problems, this approach solves constraint
satisfaction problems an order of magnitude faster.

1 Introduction

During search for a solution to a constraint satisfaction
problem (CSP), the fail first principle dictates that one
should consider first those variables for which it is difficult
to find values that lead to a solution (Smith and Grant,
1998). That has long been the justification for many tradi-
tional variable-ordering heuristics that choose one variable
at a time during search. The thesis of this work is that fail
first extends as well to certain subproblems, sets of vari-
ables distinguished by extensive and highly restrictive mu-
tual constraints. The search envisioned here is therefore a
hybrid — local, resource-bounded search detects such sub-
problems, and then a complete search for a solution ex-
ploits the secondary structure that describes those subprob-
lems and the relationships among them. The principle re-
sults of this paper include how to detect a sparse secondary

structure quickly prior to search, and how to exploit it to
achieve as much as an order of magnitude speedup on cer-
tain benchmark problems.
 Problems like that in Figure 1 provide insight into how
search-ordering heuristics can be misled if they overlook
secondary structure. This problem presents a considerable
challenge to traditional CSP search-ordering heuristics.
Section 2 recounts how one failed to solve it in 30 minutes,
and two learning heuristics solved it after 127 and 88 sec-
onds. That is because, as explained there, they “see” only
Figure 1(a), the problem’s primary structure. Figure 1(b) is
a (manual) redrawing of the way the problem generator
built the problem, as a set of five subproblems connected
to one another only through a much larger subproblem.
There is more to this problem than connectivity, however.
Figure 1(c) darkens the more restrictive constraints, all of
which are found in the smaller subproblems. Given Figure
1(c) in advance, it would still not be obvious how that
foreknowledge should be used during search. Furthermore,
because it is known only to the problem generator and not
to the solver, that knowledge must ultimately be elicited
from the problem by a heuristic, not assumed. Our ap-
proach used local search to identify the subproblems in
Figure 1(d), built the secondary structure in Figure 1(e),
and then solved the problem in 3.56 seconds.
 After background and related work in Section 2, Section
3 investigates ways to apply foreknowledge like Figure
1(c) to search. Section 4 describes Foretell, a local search
mechanism to detect heavily constrained, highly interactive

 (a) (b) (c) (d) (e)

Figure 1: (a) An opaque representation of a composed CSP with 5 satellites of size 20 and a central component of size 100.
(b) Redrawing clarifies some relationships. (c) Darker edges represent tighter constraints. (d) Prior to search for a solution, 9 clusters
(circled for clarity) reach some portion of every satellite and avoid the central component. (e) Resultant sparse secondary structure.

subproblems like those in Figure 1(d). Section 5 uses the
results of Section 3 to hypothesize variable-ordering heu-
ristics that exploit sparse secondary structure like Figure
1(e) based on those subproblems, and Section 6 tests them
on several classes of problems, including some standard
benchmarks of varying sizes and some challenging real-
world problems. The final section discusses the results and
the tradeoff between exploration and exploitation.

2 Background and related work

A CSP is a set of variables, each with an associated domain
of values, and a set of constraints, each of which restricts
how some subset of variables (its scope) can be bound si-
multaneously. (Henceforward, CSPs are assumed to be bi-
nary, that is, all constraints have scope size no more than
two.) The density of a CSP is the fraction of the possible
pairs of variables that are represented as constraints. The
tightness of a constraint is the percentage of value tuples it
excludes from the Cartesian product of the domains of its
variables. A constraint graph, such as Figure 1(a), repre-
sents each variable as a vertex and each constraint as an
edge between its pair of variables. Adjacent variables have
a common constraint and are called neighbors. The (static)
degree of a variable is the number of its neighbors.
 A partial instantiation is a set of value assignments to
some of a CSP’s variables from their respective domains.
A future variable is one unbound in the current partial in-
stantiation. A full instantiation assigns a value to every
variable. A full instantiation that satisfies all the constraints
is a solution. The solution paradigm used here is global
search, complete search that finds a solution or proves that
none exists. (In either case, the problem is labeled
“solved.”). (Local search on problems with some non-
random structure, like those addressed here, can be ineffec-
tive (Gent et al., 1999).) In global search, one variable at a
time is selected and assigned some value from its domain.
 After each value assignment, propagation removes from
the domains of the future variables all values it shows in-
consistent with the current partial instantiation, producing
dynamic domains. During search, a variable’s dynamic de-
gree is the number of its neighbors that are future vari-
ables. A simple propagation method, forward checking
(FC), removes from the dynamic domains of the neighbors
of a just-bound variable any values inconsistent with its
own value. MAC-3, which maintains arc consistency (AC),
does more work than FC: it enqueues the edges to all the
unvalued neighbors of the just-bound variable, and checks
each element of the queue for domain reduction (Sabin and
Freuder, 1997). Whenever a variable’s domain is reduced,
MAC-3 enqueues every constraint between that variable
and its unvalued neighbors. If a domain becomes empty (a
wipeout) search backtracks, retracting previously assigned
values.
 The experiments described here initialized problems
with AC, and used chronological backtracking and MAC-
3, but are in no way restricted to them. They evaluate CSP
search by time (in CPU seconds) and number of nodes,

(partial instantiations) explored. Any difference cited here
was statistically significant at the 95% confidence level
under a one-tail t-test.

The fail first principle underlies many traditional vari-
able-ordering heuristics intended to speed global search
(Bessière, Chmeiss and Saîs, 2001; Gent et al., 1996;
Smith, 1999). MinDom seeks to minimize the branch factor
of the search tree; it prefers variables with small dynamic
domains. MaxDeg focuses on variables with many con-
straints; it prefers variables with high dynamic degree.
MinDomDeg, a traditional favorite, combines MinDom and
MaxDeg. It prefers variables that minimize the ratio of
their dynamic domain size to their dynamic degree.
 Some CSP heuristics learn during search (Boussemart et
al., 2004; Refalo, 2004). Such learning summarizes diffi-
culties that arise as a result of assignments made to vari-
ables at the top of the search tree. In contrast, the work re-
ported here seeks to predict which variables should be as-
signed first, and learns weights for constraints as a support
rather than a central focus. As in (Boussemart et al., 2004),
it initializes the weight of every constraint to 1. Whenever
propagation along a constraint induces a wipeout, the
weight of that constraint is incremented by 1. The variable-
ordering heuristic MaxWdeg maximizes the weighted de-
gree of a variable, the sum of the weights of the constraints
between it and its future-variable neighbors. Alternatively,
MinDomWdeg minimizes the ratio of dynamic domain size
to weighted degree. MinDomDeg, MaxWdeg, and Min-
DomWdeg were the three heuristics timed for the problem
in Figure 1.
 Other variable-ordering heuristics respond to structure
detected in the constraint graph. A CSP whose graph is an
arc-consistent tree can be solved without backtracking
(Freuder, 1982; Freuder, 1994). SAT problems generated
with unsatisfiable large cyclic cores have stumped many
proficient SAT solvers (Hemery et al., 2006). To reduce a
cyclic CSP to a tree, a solver could first identify and then
address some heuristic approximation of the (NP-hard)
minimal cycle cutset (Dechter, 1990). Cycle-ridden prob-
lems like those addressed here, however, have cycle cutsets
far too large to provide effective guidance. Most related
work on elaborate structural features that might facilitate
search ignores the tightness of individual constraints and is
primarily theoretical or incurs considerable computational
overhead unjustifiable on easy problems (e.g., (Cohen and
Green, 2006; Freuder, 1985; Gompert and Choueiry, 2005;
Gottlob, Leone and Scarcello, 1999; Gyssens, Jeavons and
Cohen, 1994; Pearson and Jeavons, 1997; Samer and Szei-
der, 2006; Weigel and Faltings, 1999; Zheng and
Choueiry, 2005)).
 The heavily constrained, highly interactive subproblems
our algorithms identify and exploit in a CSP are called
clusters. “Cluster” has been used elsewhere to describe ag-
gregations of data, portions of a solution space (Kroc, Sab-
harwal and Selman, 2008; Mézard, Parisi and Zecchina,
2002), or relatively isolated, dense areas in a graph (van
Dongen, 2000). Other work on clusters as subproblems as-
sumed an acyclic metastructure and addressed two classes

of artificial problems, half the size of those studied here,
and offered no structural description or explanation
(Razgon and O'Sullivan, 2006).
 With respect to a given search algorithm, many CSPs
have a relatively small backdoor, a set of variables whose
correct assignment makes the rest of the search relatively
trivial (Williams, Gomes and Selman, 2003). Certification
of a backdoor requires examination of the problem’s entire
search tree, however. Clusters are intended to predict
enough of the backdoor to give global search guided by
traditional heuristics a considerable advantage, and to ex-
plain search failure. Unlike (Hemery et al., 2006; Junker,
2004), cluster-based explanations are available whether or
not a problem has a solution.
 Many of the experiments here are on composed prob-
lems. A composed CSP partitions its variables into s + 1
connected subsets: s satellites of uniform size and a central
component. Every constraint in a composed problem is ei-
ther a link (between a satellite variable and a central-
component variable) or joins two variables in the same
subset. There are no edges between satellites. Let <n,k,d,t>
be a class of CSPs each of which has n variables, maxi-
mum domain size k, density d, and tightness t. Then
<n,k,d,t> s <n′,k′,d′,t′> d′′ t′′ specifies a class of composed
problems, each of which has a central component de-
scribed by <n,k,d,t>, s satellites in <n′,k′,d′,t′>, and links
with density d′′ and tightness t′′.
 Composed problems were inspired by the hard problems
in (Bayardo and Schrag, 1996), and have appeared both in
solver competitions and as benchmarks (Lecoutre, 2009).
They can be randomly generated so that satellites are par-
ticularly dense and tight, the central component and links
are relatively sparse and loose, and central-component
variables have generally higher degrees than satellite vari-
ables. Figure 1 is from the class of composed CSPs Comp:

<100, 10, 0.15, 0.05> 5 <20, 10, 0.25, 0.50> 0.12, 0.05
where all variables have domain size 10. Only some prob-
lems in Comp have a solution. Comp’s parameters were
chosen so that the individual satellites are far more difficult
to solve than the central component, but the degrees of the
central-component variables are higher, and therefore more
attractive to traditional variable-ordering heuristics. Other
classes of problems are investigated in Section 6 as well.

3 How to exploit structural foreknowledge

This section explores the power of foreknowledge about
difficult subproblems to guide search. The approaches it
tests are not ultimately allowable as variable-ordering heu-
ristics. Rather they gauge how well knowledge about struc-
ture supports search, and how best to use that knowledge.
Results appear in Table 1.
 Standard variable ordering heuristics did poorly on
Comp. MinDomDeg was immediately drawn to the central
component and solved only 2 of 50 problems within the
time limit. Because links in Comp are so few and loose,
wipeouts began fairly deep in the search tree, after at least
36 variables had been bound. Retraction only led Min-

DomDeg to repair its partial instantiation of the central
component, while the true difficulties lay elsewhere, in the
satellites. Both MaxWdeg and MinDomWdeg initially suf-
fered from the same attraction to the central component.
After enough experience within the satellites, they eventu-
ally recovered and solved all the problems. Learning lacks
the foresight clusters are intended to provide.

Now, consider how heuristics might exploit foreknowl-
edge about the problem. Assume one was given the struc-
ture shown in Figure 1(c), and believed that the satellites
contained the backdoor. In that case, preference for satel-
lite variables should speed search. Rather than discard tra-
ditional variable-ordering heuristics, however, each ap-
proach investigated here makes satellites a priority and
then breaks ties with MinDomDeg. Each approach was
given 30 minutes to solve each problem.

The next experiments seek to exploit perfect structural
foreknowledge. The variable-ordering heuristic satellite
examines whether mere presence in a satellite is sufficient
to warrant prioritization. This approach binds all 100 satel-
lite variables first, in a random order, and then uses Min-
DomDeg on the central component. On a single run, satel-
lite never solved any problem within 30 minutes. (Given its
lack of promise, this is the only randomized heuristic that
was tested only once. All other non-deterministic experi-
ments here report on an average of 10 runs.)

The variable-ordering heuristic stay addresses entire sat-
ellites first, one at a time in a random order, before it se-
lects any variable from the central component. Stay selects
a satellite at random, binds all its variables, and then pro-
ceeds to another randomly chosen satellite. Within a satel-
lite and within the central component, stay breaks ties with
MinDomDeg. Guided by the satellites, stay with MinDom-
Deg yields dramatically improved results over the tradi-
tional heuristics; it averages less than 3 seconds and a 96%
smaller search tree than MinDomWdeg.

Given that noteworthy improvement, and the fact that
the satellites may only estimate the backdoor of a Comp
problem, the next approach binds only some of the vari-
ables in each satellite. If MAC-3 is in use, for example,
there would appear to be little point in “finishing” a satel-
lite once it is reduced to only a pair of variables (with at
most a single edge between them); until-2 selects a differ-

Table 1. On 50 Comp problems, mean and standard deviation for
nodes and CPU seconds, including time to find clusters. Search
heuristics appear above the line. Search methods with perfect
knowledge (below the line) are not legitimate heuristics because
they apply foreknowledge available only to the problem genera-
tor, not the search engine. Until-11 is therefore only a target.

Heuristic Time Nodes

MinDomDeg 1728.157 (355.877) 285751.970 (61368.701)
MaxWdeg 123.000 (128.580) 20817.640 (22954.165)
MinDomWdeg 83.580 (38.964) 12519.360 (5811.370)
satellite No problems solved — —
stay 2.848 (3.584) 511.922 (416.345)
until -11 1.612 (1.866) 398.776 (244.112)

ent satellite at that point. The generalization of this ap-
proach, until-i, instantiates variables within a randomly
chosen satellite until all but i variables are bound, and then
moves on to another randomly chosen satellite. (Stay is
equivalent to until-0.) Within a selected satellite and later,
within the central component and any “leftover” satellite
variables, until-i also uses MinDomDeg. We tested a range
of values: i = 2,3,…, 15.

Surprisingly, search need not stay long in a given satel-
lite. For Comp, where the satellites are of size 20, the clear
winner was until-11, that is, search can address as few as
40% of the variables in a satellite before safely moving on
to the next one. In contrast, the variable-ordering heuristic
satellite-i, which randomly chooses satellite variables that
are not among the last i future variables in their satellite,
performed poorly. (Data omitted.) As i increases, satellite-i
becomes more like MinDomDeg alone. Clearly, known
satellites speed the solution of Comp problems when
search addresses them one at a time. The next section de-
scribes how knowledge about such dense, tight substruc-
tures can be detected automatically, prior to search.

4 Foretell finds secondary structure

Intuitively, Foretell, the cluster finder described here, as-
sembles sets of tightly related variables whose domains are
likely to reduce during search. Foretell was inspired by the
state-of-the-art work for both speed and accuracy on the
DIMACS maximum clique problems (Hansen, Mladenovic
and Urosevic, 2004). A clique is a maximally dense graph,
that is, one with all possible edges between its variables.
Let a near-clique be a clique with a few missing edges.
Foretell searches for subproblems that are tight near
cliques, where the tightness of a subproblem is the product
of the tightness of the constraints that it includes. Note, for
example, the missing edges in the clusters of Figure 1(d).
 Foretell is based on Variable Neighborhood Search
(VNS). (The “variable” in VNS refers to changing
neighborhoods, not to CSP variables.) VNS is a local
search meta-heuristic that succeeds on a wide range of
combinatorial and optimization problems (Hansen and

Mladenovic, 2003). VNS works outward from an initial so-
lution (Figure 2, line 1) in a relatively small neighborhood
in a graph through k pre-specified, increasingly large
neighborhoods (lines 2–3). Each neighborhood restricts the
current options; as VNS iterates, each new neighborhood
provides a larger search space. Within a neighborhood,
Variable Neighborhood Descent (VND) is a local search
that tries to improve the current solution (best-yet) accord-
ing to a metric, score. A better local optimum resets best-
yet and returns to the first neighborhood (lines 6–9); oth-
erwise search proceeds to the next neighborhood (lines 10–
11). Shaking (line 5) shifts search within the current
neighborhood and randomizes the current best-yet to ex-
plore different portions of the search space. As index in-
creases, the neighborhoods become larger so that the
shaken version of best-yet becomes less similar to best-yet
itself. The user-specified stopping condition (line 4) is ei-
ther elapsed time or movement through some number of
increasingly larger neighborhoods without improvement.
 VND greedily extends best-yet from neighborhood.
Once its greedy steps are exhausted, VND repeatedly in-
terchanges one element of its current solution for two ele-
ments in neighborhood. In the search for a maximum
clique, for example, VND swaps out some variable v in
best-yet for two adjacent variables that are not neighbors of
v and were not in best-yet, but are neighbors of all the other
variables in best-yet. Ties are broken greedily, that is, to
maximize the variable’s degree. An alternative produced
by VND replaces best-yet only if it outscores it.

Foretell adapts VNS to detect multiple subgraphs that
are clusters. It relies on the pressure on a variable v, the
probability that, given all the constraints upon it, when one
of v’s neighbors is assigned a value, at least one value will
be excluded from v’s domain. Precise calculation of the se-
ries that defines pressure is computationally expensive. In-
stead, we devised an algorithm to quickly approximate the
first term in that series, corrected to avoid bias in favor of
variables with high degrees or large domains. For variable
Vi with domain size Di, neighbors Ni and constraint with
tightness tik between Vi and Vk ∈ Ni, the approximate pres-
sure on Vi, given the constraints on it, is

p Vi()= 1

degreeVi()

Di −1()⋅ Dk

1− t ik()Di ⋅ Dk











Di ⋅ Dk

1− t ik()Di ⋅ Dk









 Vk ∈Ni

∑
 [1]

A cluster’s score is the ratio of the product of its number of
variables and density to its average edge tightness. No
cluster is returned unless it has at least 3 variables.
 To find multiple clusters in a problem, Foretell finds a
first cluster, removes those variables, and then iterates to
find the next cluster among the remaining variables and
their constraints. Clusters are typically (but not always) de-
tected in decreasing size order. Because this is local search,
some variation is expected from one pass to the next. The
maximum neighborhood index was taken from the original
work on maximum cliques: the minimum of 10 and the

1 best-yet ← initial-solution
2 index ← 1
3 neighborhood ← neighborhood(index)
4 until stopping condition or index = k
5 unless index = 1, best-yet ← shake(best-yet, index)
6 local-optimum ← local-search(best-yet, neighborhood)
7 If score(local-optimum) > score(best-yet)
8 then best-yet ← local-optimum
9 index ← 1
10 else index ← index + 1
11 neighborhood ← neighborhood(index)

Figure 2. A high-level description of VNS meta-heuristic search
through k neighborhoods. The initial solution, the score metric,
and the local search routine vary with the application.

current cluster size (Hansen, Mladenovic and Urosevic,
2004).
 For our purposes, the secondary structure of a CSP is it-
self a graph (e.g., Figure 1(e)), where each cluster is repre-
sented as a node and each set of constraints between vari-
ables in two clusters as a single edge. A sparse secondary
structure is one with few edges in it. Next we develop heu-
ristics for CSPs with sparse secondary structure.

5 Exploiting sparse secondary structure

This section seeks to exploit clusters detected automati-
cally by Foretell, much the way foreknown satellites were
used in Section 3. Foretell never found a cluster larger than
6 variables in a Comp problem; instead it found multiple
(disjoint) clusters in individual satellites, clusters that cov-
ered satellites only partially. The primary question thus be-
comes how best to exploit clusters. Is it, for example, bet-
ter to shift from one cluster to another during search, or to
solve them one at a time? And if one at a time, in what or-
der should the clusters be considered? Perhaps one would
address the cluster that at the moment is the tightest. The
true dynamic tightness of a cluster is the ratio of the num-
ber of tuples that satisfy its unbound variables under the
current partial instantiation to the product of their dynamic
domain sizes. That is too expensive to calculate repeatedly,
as is a dynamic version of pressure in (1). Instead, a clus-
ter’s dynamic tightness is estimated here as the ratio of the
product of the current domain sizes of those variables to
the product of their original domain sizes.
 The variable-ordering heuristic tight selects a variable
from the (estimated) dynamically tightest cluster. Search
guided by tight, however, could shift from one cluster to
another, and therefore from one satellite to another in
Comp, the way the poorly-performing satellite did. The
improvement produced by stay in Table 1 therefore in-
spired heuristics that treat one cluster at a time. Concen-
trate chooses a cluster at random, selects variables from it

until all of them are bound, and then selects the next cluster
at random. In contrast, focus selects the (estimated) dy-
namically tightest cluster, selects variables from it until all
of them are bound, and then uses estimated dynamic tight-
ness to select the next cluster. Concentrate-i and focus-i are
analogous to until-i; they instantiate within a cluster until
all but i of its variables have been bound. In all these heu-
ristics, if clusters have the same maximum tightness, ties
are broken by maximum dynamic cluster size.
 Given the vagaries of local search, one cannot expect
VNS to produce an adequate set of clusters every time.
Rather than allot substantial time to VNS (which should ul-
timately find adequate clusters that way), MinDomWdeg
supports cluster-guided search as a tiebreaker. It is very
slightly slower than MinDomDeg but it provides backup if
Foretell’s local search is simply “unlucky.” Learning is
there to help, although it is rarely necessary.

6 Results

In the following experiments, each heuristic had 30 min-
utes to solve each problem. Data for all non-deterministic
algorithms, including those involving clusters, is reported
as an average across 10 runs. For the heuristics that use
cluster detection, time e is allocated to VNS per cluster.
Thus a problem in which s clusters were detected could re-
quire up to se time. The total VNS time required to find
clusters is included in all timing data.
 On Comp problems, Foretell finds clusters that form a
secondary structure remarkably like foreknowledge. It
found between 6 and 19 clusters per problem, all of sizes 3
to 6. It found at least one cluster in every satellite in every
problem on every run. A typical result appears in Figure
1(d). With e = 0.2 seconds per cluster, VNS search time
averaged 2.111 seconds per problem, 45% of the total time.
 Clusters guide search in Comp effectively, as shown be-
low the line in Table 2. Concentrate’s weaker performance
clearly indicates that the order in which clusters are ad-
dressed is important. Unlike stay, however, focus appears
to need to finish a cluster to produce its best performance.
Essentially, by i = 3, both concentrate-i and focus-i dete-

Table 2. Cluster-guided search speeds traditional heuristics on
Comp by more than an order of magnitude. Average and standard
deviation are shown for nodes and time in CPU seconds, includ-
ing time for cluster detection. Data above the line is repeated
from Table 1. Except for MinDomDeg, every method solved
every problem. Focus is statistically significantly better (in bold)
than all the heuristics tested. Until-11 is a target, not a legitimate
heuristic; it applies foreknowledge about structure available only
to the problem generator, not to the search engine.

Heuristic Time Nodes
MinDomDeg 1728.157 (355.877) 285751.970 (61368.701)
MaxWdeg 123.000 (128.580) 20817.640 (22954.165)
MinDomWdeg 83.580 (38.964) 12519.360 (5811.370)
until-11 1.612 (1.866) 398.776 (244.112)
tight 4.705 (6.252) 505.296 (718.029)
concentrate 5.461 (5.628) 836.434 (876.539)
focus 4.311 (2.411) 497.964 (324.327)
focus-1 5.267 (3.215) 516.406 (425.739)
focus -2 8.713 (22.442) 1371.338 (2765.681)

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 15 30 45 60 75 90 105 120 135 150 More
Time (seconds)

focus
focus-1
concentrate
tight
focus-2
concentrate-2
MinDomWdeg
MaxWdeg

Figure. 3. Cumulative percentage of 50 Comp problems solved.
Solvers were allocated 30 minutes per problem. Because it solved
only 2 of the problems, MinDomDeg was omitted.

riorate to MinDomWdeg. (Data omitted.) A full graphic
comparison appears in Figure 3.
 The strongest cluster-based search heuristic, focus with
MinDomWdeg, was also tested on all the composed prob-
lems on the benchmark website (Lecoutre, 2009), where
there are 10 problems per class. The upper portion of Table
3 reports those results. MinDomDeg could solve only 9 of
these problems. That and the search tree sizes for Min-
DomWdeg suggest that these benchmarks are easier than
Comp. On six classes, focus once again provided an order
of magnitude speedup. Note that, for a fixed central com-
ponent size, focus scales about linearly with problem size.
 Composed problems offer an opportunity to explore the
impact and management of difficult subproblems. Their
uniformity, however, is unlike real-world problems where
tightness and density vary broadly. This raises questions
about the presence and usefulness of sparse, cluster-based
secondary structure in other difficult problems. We tested
RLFAP problems (data for radio broadcasting (Cabon et
al., 1999)) and driver-log problems from (Lecoutre, 2009).
Most were easy enough for MinDomDeg; RLFAP scene 11
and driverlogw-08cc and driverlogw-08c provided more of
a challenge. Foretell detected sparse secondary structure
on all three, and Table 3 shows that, focus was statistically
significantly faster on them. Observe that, despite some
small variation in Foretell’s output from one run to the
next on scene 11, the search tree size was always the same.

7 Discussion

7.1 Detecting clusters
Density and tightness are synergistic. Earlier work (Epstein
and Wallace, 2006) tested them separately on classes of
smaller, considerably easier composed problems, ones that
even MinDomDeg could solve. A heuristic that prioritized
variables by tightness roughly halved MinDomDeg’s

search time. A heuristic that prioritized variables by den-
sity (with VNS-based near-clique detection) consumed
about a third of the time. When combined in an earlier ver-
sion of Foretell, however, density and tightness did an or-
der of magnitude better, and produced nearly backtrack-
free search trees (Epstein and Wallace, 2006). On smaller
composed problems there with one or two satellites, clus-
ters did not harm performance, and they sometimes im-
proved it.
 Methods to detect tight, dense subproblems must not
only be incisive, they must also scale. Every real-world
problem that we tested (i.e., all the RLFAP and driver
problems) contained clusters that Foretell found fairly
quickly. On Comp, 0.2 seconds per call to find a cluster
sufficed. For RLFAP scene 11, which has roughly 3 times
as many variables as a Comp problem, 0.6 seconds per
cluster sufficed. This suggests that Foretell scales linearly.
 Composed problems are built to confound traditional
heuristics in a particular way, while real-world problems
are merely difficult. Not surprisingly, the performance im-
provements on real-world problems (below the line in Ta-
ble 3) are noteworthy, but less dramatic. The insights pro-
vided by the secondary structure, however, could prove
meaningful to a user. For example, people who know
Scene 11 well may be interested in Foretell’s identifica-
tion, on every run, of the same clusters (sizes 5, 6, 13, and
16), only two of which are linked in the constraint graph.
 Although the experiments described here are on binary
CSPs, in principle there is nothing in Foretell that would
restrict it to binary problems. As long as there is some es-
timate of the tightness of a constraint, it is possible to esti-
mate the pressure on a variable and to detect sets of mutu-
ally constrained, variables by local search. The swap and
score functions would require only some modification.

7.2 Why focus works
Variable-ordering heuristics usually do not consider persis-

Table 3. Preference for variables in clusters improves search. Numerical identifiers are benchmark problems from (Lecoutre, 2009). For
example, 25-1-80 is <25, 10, 0.67, 0.15> 10 <8, 10, 0.79, 0.50> 0.01, 0.05 here. Data for Foretell includes number of clusters, average
cluster size, and maximum cluster size, averaged over 10 runs. Mean and standard deviation over 10 runs is provided for focus. All
improvements over MinDomWdeg are statistically significant; order of magnitude improvements are in bold.

 MinDomWdeg Foretell’s clusters Focus Time Focus Nodes
Problem d t′ d′′ Time Nodes Count Size Max µ σ µ σ

25-1-2 0.667 0.65 0.010 1.007 553.00 1.01 5.770 5.77 0.019 0.003 41.40 1.363
25-1-25 0.667 0.65 0.125 0.913 465.70 2.30 5.597 5.90 0.042 0.021 41.60 1.287
25-1-40 0.667 0.65 0.200 1.097 473.80 5.00 5.372 6.40 0.073 0.016 41.50 1.210
25-1-80 0.667 0.65 0.010 0.951 308.00 5.60 5.281 6.08 0.262 0.246 94.50 71.805
25-10-20 0.667 0.50 0.010 2.485 670.10 10.17 5.197 5.58 0.882 0.466 192.07 149.883
75-1-2 0.216 0.65 0.003 3.330 1171.70 1.00 5.690 5.69 0.044 0.005 91.60 1.504
75-1-25 0.216 0.65 0.042 3.289 1084.40 5.40 5.242 6.46 0.146 0.121 91.40 1.287
75-1-40 0.216 0.65 0.067 2.972 960.90 4.60 5.292 5.80 0.153 0.142 91.30 1.275
75-1-80 0.216 0.65 0.133 2.317 595.20 9.09 4.864 5.90 0.365 0.167 181.40 21.687
Comp 0.150 0.50 0.120 83.580 12519.40 11.00 4.309 5.15 4.311 2.411 497.96 324.327
RLFAP scene 11 — — — 58.034 2777.00 38.10 7.912 16.00 51.133 1.285 1557.00 0.000
Driverlogw 08cc — — — 134.281 4200.00 3.00 34.333 45.00 87.842 3.712 2983.70 14.100
Driverlogw 08c — — — 149.449 4136.00 3.00 34.333 45.00 83.622 3.406 2815.30 3.900

tence in a “geographic area” of a problem. Nonetheless,
that was clearly satellite’s mistake —even with foreknowl-
edge about Comp, it satellite hopped, that is, it failed to
address enough variables in the same satellite consecu-
tively. Stay forbade satellite hopping and resulted in a con-
siderable improvement. Analogously, cluster hopping oc-
curs when a heuristic fails to address enough variables in
the same cluster consecutively. Because constraints within
a cluster are selected for above average tightness, once any
variable in a cluster has been bound, propagation is likely
to reduce the domains of the other variables in that cluster.
As a result, variables in a partially-instantiated cluster are
more likely to have smaller domain sizes and make their
cluster even more attractive to cluster-guided search. Tight
was permitted to cluster hop, while focus and concentrate
both explicitly forbade it. Focus does better, however, be-
cause it uses knowledge about clusters to select one.
 Happily, remaining in a cluster in Comp is likely to en-
courage remaining in any additional clusters within the
same satellite. In problems that are not composed, any
other region with sufficiently dense and/or tight connec-
tions to a cluster should also have the domains of its vari-
ables reduced when those of the related cluster are instanti-
ated. In this way, cluster-guided search results in a se-
quence of decisions that persist in a particularly con-
strained region of the graph.
 Reducing a subproblem to an arc-consistent tree (which
always has at least one solution) would make it safe to con-
tinue on to another subproblem. Binding w variables in a
subproblem of size s with density d, leaves a tree only if

d
s− w

2









 ≤ s− w −1 ,that is, w ≥ s− 2

d

(Of course, this only makes a tree possible, not certain.)
For Comp satellites, s = 20 and d = 0.25, so that there is no
possibility of a tree unless w ≥ 12, that is, we have bound
12 variables and 8 remain (until-8). Our empirical results,
however, show that until-11 minimizes both time and
nodes (using a one-tail t-test at the 95% confidence level).
This ability to leave behind a (necessarily) cyclic subgraph
is probably attributable to propagation. The occasional re-
traction back to a “finished” satellite proved less costly
than binding a few more variables in the current satellite
before moving on to the next one. Because clusters in
Comp average s = 4.309, however, w ≥ 0,309, that is, only
focus–0 is safe, which is exactly what our results indicate.

7.3 Clusters and search
The performance of perfect foreknowledge on Comp, as
embodied by until-11, is the gold standard. Until-11 knows
a superset of the backdoor and exploits it. Inspection indi-
cates that the backdoor is probably no more than 35 vari-
ables for a Comp problem. The last retraction on a Comp
problem under focus was at a node where an average of
15.588 variables had been bound, with a maximum of 62.
 The two driverlog problems differ in the tuples they al-
low, but they have the same primary structure and the same

tightness on their constraints. On every run, Foretell found
the identical sparse secondary structure in the two prob-
lems, that is, exactly the same clusters among the 408 vari-
ables: 3 nodes with 2 edges. That focus improves search on
them both confirms its ability to manage secondary struc-
ture dynamically.
 Clusters explain why a problem is difficult to solve or
has no solution at all. The variables in a cluster mutually
constrain one another in an intense, highly restrictive way.
A user confronted with an unsolvable real-world problem
could use clusters to reconsider its specifications, or at
least to understand why it is unsolvable. For example, un-
til-11 searched within at most 3 satellites before it reported
the insolvability of Figure 1. To demonstrate the insolva-
bility of the Comp problem in Figure 1, focus bound only
12 variables drawn from 3 clusters found by Foretell.
Those 3 clusters, two of size 5 and one of size 4, provide a
concise and meaningful explanation.
 We have also investigated the tradeoff between explora-
tion (here, local search to detect secondary structure) and
exploitation (use of that structure for variable ordering).
Too much time devoted to Foretell before search wastes
CPU cycles; too little may not explore the problem suffi-
ciently. For an extensive secondary structure analysis, e
should be so large that Foretell averages less time search-
ing for clusters than the total allotted to it, that is, it should
leave the loop in the algorithm in Figure 2 because of the
index. To solve a CSP, however, we have found that a far
smaller e (0.2 – 0.6 seconds) suffices.
 Several enhancements are currently under development.
Not every problem needs Foretell. The “right” clusters are
not necessarily many, but incisive, so Foretell could parti-
tion less than the entire problem. Other problems have
more dense secondary structures and may therefore re-
spond better to other cluster-based orderings. Finally, focus
might attend more closely to learned weights before all the
cluster variables have been bound.
 All the experiments reported here ran within ACE, the
Adaptive Constraint Engine (Epstein, Freuder and Wallace,
2005). ACE is a highly modular and flexible research tool
that collects substantial data; it is not honed for speed.
Nonetheless, the concomitant reductions in checks and
nodes searched suggest that clusters will accelerate other,
more agile solvers as well. For an easy problem, no clus-
ters are necessary, and any reasonable amount of time
spent on cluster detection will have no noteworthy impact.
For more challenging problems, however, cluster-guided
search substantially accelerated search with off-the-shelf
heuristics on problems with sparse secondary structure.
Given their acuity and explanatory ability, clusters are a
worthwhile preprocessing step.

Acknowledgments. ACE is a joint project with Eugene
Freuder and Richard Wallace of the Cork Constraint Com-
putation Centre. Thanks go to Pierre Hansen for helpful
discussions on VNS. This work was supported in part by
the National Science Foundation under awards IIS-
0811437 and IIS-0739122.

References

Bayardo, R. J. J. and R. Schrag 1996. Using CSP Look-
Back Techniques to Solve Exceptionally Hard SAT In-
stances. In Proceedings of CP-1996, 46-60. Cambridge,
Springer Verlag.
Bessière, C., A. Chmeiss and L. Saîs 2001. Neighborhood-
based Variable Ordering Heuristics for the Constraint Sat-
isfaction Problem. In Proceedings of CP2001, 565-569.
Berlin, Springer Verlag.
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of ECAI-2004, 146-149. IOS Press.
Cabon, R., S. De Givry, L. Lobjois, T. Schiex and J. P.
Warners 1999. Radio Link Frequency Assignment. Con-
straints 4: 79-89.
Cohen, D. A. and M. J. Green 2006. Typed Guarded De-
compositions for Constraint Satisfaction. In Proceedings of
CP2006, 122-136. Nantes, Springer Verlag.
Dechter, R. 1990. Enhancement schemes for constraint
processing: backjumping, learning and cutset decomposi-
tion. Artificial Intelligence 41: 273-312.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.
Epstein, S. L. and R. J. Wallace 2006. Finding Crucial
Subproblems to Focus Global Search. In Proceedings of
ICTAI-2006, 151-159. Washington, D.C., IEEE.
Freuder, E. C. 1982. A Sufficient Condition for Backtrack-
Free Search. JACM 29(1): 24-32.
Freuder, E. C. 1985. A Sufficient Condition For Backtrack-
Bounded Search. JACM 32(4): 755-761.
Freuder, E. C. 1994. Exploiting Structure in Constraint Sat-
isfaction Problems. In Proceedings of Constraint Pro-
gramming: NATO ASI, 54-79. Parnu, Estonia, Springer.
Gent, I., E. MacIntyre, P. Prosser, B. Smith and T. Walsh
1996. An empirical study of dynamic variable ordering
heuristics for the constraint satisfaction problem. In Pro-
ceedings of CP'99, 179-193. Cambridge, MA, Springer
Verlag.
Gent, I. P., H. H. Hoos, P. Prosser and T. Walsh 1999.
Morphing: Combining Structure and Randomness. In Pro-
ceedings of AAAI-1999, 654-660. Orlando, AAAI.
Gompert, J. and B. Y. Choueiry 2005. A Decomposition
Techniques For CSPs Using Maximal Independent Sets
And Its Integration With Local Search. In Proceedings of
FLAIRS-05, 167-174. Clearwater Beach, FL, AAAI Press.
Gottlob, G., N. Leone and F. Scarcello 1999. A Compari-
son of Structural CSP Decomposition Methods. Artificial
Intelligence 124(2): 243-282.
Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. De-
composing constraint satisfaction problems using database
techniques. Artificial Intelligence 66(1): 57-89.
Hansen, P. and N. Mladenovic 2003. Variable Neighbor-
hood Search. Handbook of Metaheuristics. Glover, F. W.
and G. A. Kochenberger. Berlin, Springer: 145-184.

Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable
neighborhood search for the maximum clique. Discrete
Applied Mathematics 145: 117-125.
Hemery, F., C. Lecoutre, L. Sais and F. Boussemart 2006.
Extracting MUCs from Constraint Networks. In Proceed-
ings of ECAI-2006, 113-117. Riva del Garda.
Junker, U. 2004. QuickXplain: Preferred explanations and
relaxations for over-constrained problems. In Proceedings
of AAAI-04, 167-172.
Kroc, l., A. Sabharwal and B. Selman 2008. Counting So-
lution Clusters in Graph Coloring Problems Using Belief
Propagation In Proceedings of NIPS-08, 873-880. Vancou-
ver.
Lecoutre, C. 2009. "Benchmarks in XCSP 2.1 — XML
representation of CSP/WCSP/QCSP instances." from
http://www.cril.univatois.fr/~lecoutre/research/benchmarks
/benchmarks.html.
Mézard, M., G. Parisi and R. Zecchina 2002. Analytic and
Algorithmic Solution of Random Satisfiability Problems.
Science 297(5582): 812 - 815.
Pearson, J. and P. G. Jeavons 1997. A Survey of Tractable
Constraint Satisfaction Problems. London, Royal Hollo-
way University of London.
Razgon, I. and B. O'Sullivan 2006. Efficient Recognition
of Acyclic Clustered Constraint Satisfaction Problems. In
Proceedings of 11th Annual ERCIM International Work-
shop on Constraint Solving and Constraint Logic Pro-
gramming at CSCLP 2006.
Refalo, P. 2004. Impact-based search strategies for con-
straint programming. In Proceedings of CP 2004, 557-571.
Toronto.
Sabin, D. and E. C. Freuder 1997. Understanding and Im-
proving the MAC Algorithm. Principles and Practice of
Constraint Programming. Berlin, Springer Verlag: 167-
181.
Samer, M. and S. Szeider 2006. Constraint Satisfaction
with Bounded Treewidth Revisited. In Proceedings of
CP2006, 499-513. Nantes, Springer Verlag.
Smith, B. A. and S. A. Grant 1998. Trying Harder to Fail
First. In Proceedings of ECAI 1998, 249-253.
Smith, B. M. 1999. The Brélaz Heuristic and Optimal
Static Orderings. In Proceedings of CP'99, 405-418. Alex-
andria, Virginia, Springer Verlag.
van Dongen, S. 2000. Graph Clustering by Flow Simula-
tion, University of Utrecht.
Weigel, R. and B. Faltings 1999. Compiling Constraint
Satisfaction Problems. Artificial Intelligence 115: 257-287.
Williams, R., C. Gomes and B. Selman 2003. On the Con-
nections between Heavy-tails, Backdoors, and Restarts in
Combinatorial search. In Proceedings of SAT 2003, 222-
230.
Zheng, Y. and B. Y. Choueiry 2005. Applying Decomposi-
tion Methods to Crossword Puzzle Problems. In Proceed-
ings of CP 2005, 874. Sitges, Spain, Springer Verlag.

