Search on Constraint Satisfaction Problems with Spae Secondary Structure

Susan L Epsteirf? and Xingjian Li?

1 Hunter College anfiThe Graduate Center of The City University of Neark¥
Department of Computer Science
New York, NY 10065 USA
susan.epstein@hunter.cuny.edu, xlil@gc.cuny.edu

Abstract

This paper considers a variety of ways to deteletively
isolated, highly restricted subproblems and theplaix
them to guide search for a solution. It introduee$ocal
search method that, prior to search, estimates evhech
subproblems lie within constraint satisfaction peofs.
These subproblems are assembled into a secondaciuse
used with dynamic variable-ordering heuristics toidg
search, while learning protects against the ocoatimade-
quacies of local search. On some classes of diffsttuc-
tured benchmark problems, this approach solvesticons
satisfaction problems an order of magnitude faster.

1 Introduction

During search for a solution to a constraint satisén
problem CSB, the fail first principle dictates that one
should consider first those variables for whicis idlifficult
to find values that lead to a solution (Smith andar,
1998). That has long been the justification for yn&madi-
tional variable-ordering heuristics that choose wvagable
at a time during search. The thesis of this worthi fail
first extends as well to certain subproblems, sétsari-
ables distinguished by extensive and highly retbigcmu-
tual constraints. The search envisioned here iethe a
hybrid — local, resource-bounded search detects sub-
problems, and then a complete search for a solwicn
ploits thesecondary structuréhat describes those subprob-
lems and the relationships among them. The priadipt
sults of this paper include how to detect a spaes®ndary

structure quickly prior to search, and how to eipibto
achieve as much as an order of magnitude speedapren
tain benchmark problems.

Problems like that in Figure 1 provide insightoiritow
search-ordering heuristics can be misled if thegrimok
secondary structure. This problem presents a ceradite
challenge to traditional CSP search-ordering h#osis
Section 2 recounts how one failed to solve it imdfutes,
and two learning heuristics solved it after 127 88dsec-
onds. That is because, as explained there, they ‘dy
Figure 1(a), the problem’s primary structure. Fegl(b) is
a (manual) redrawing of the way the problem gewerat
built the problem, as a set of five subproblemsneated
to one another only through a much larger subpmble
There is more to this problem than connectivitywbaoer.
Figure 1(c) darkens the more restrictive constsaiatl of
which are found in the smaller subproblems. Givegguie
1(c) in advance, it would still not be obvious hdkat
foreknowledge should be used during search. Furtbies,
because it is known only to the problem generanaor rzot
to the solver, that knowledge must ultimately bigiteld
from the problem by a heuristic, not assumed. Qur a
proach used local search to identify the subproblém
Figure 1(d), built the secondary structure in Fegdy(e),
and then solved the problem in 3.56 seconds.

After background and related work in Section X;toa
3 investigates ways to apply foreknowledge like uirég
1(c) to search. Section 4 describawetell, a local search
mechanism to detect heavily constrained, highlgranttive

(@)

(b) (€)

d) ((€)

Figure 1. (a) An opaque representation of a composed CSPR Wvisatellites of size 20 and a central componénsize 100.
(b) Redrawing clarifies some relationships. (c) Kearedges represent tighter constraints. (d) Ro®earch for a solution, 9 clusters
(circled for clarity) reach some portion of eveggedlite and avoid the central component. () Rasukparse secondary structure.

subproblems like those in Figure 1(d). Section &suthe
results of Section 3 to hypothesize variable-ordgtieu-
ristics that exploit sparse secondary structure kkgure
1(e) based on those subproblems, and Section Gthesn
on several classes of problems, including somedatan
benchmarks of varying sizes and some challengiadr re
world problems. The final section discusses theltesnd
the tradeoff between exploration and exploitation.

2 Background and related work

A CSP is a set of variables, each with an assatiddenain
of values, and a set abnstraints each of which restricts
how some subset of variables (§sopé can be bound si-
multaneously. (Henceforward, CSPs are assumed bi-be
nary, that is, all constraints have scope size no niuae
two.) Thedensityof a CSP is the fraction of the possible
pairs of variables that are represented as conttralhe
tightnessof a constraint is the percentage of value tujles
excludes from the Cartesian product of the domafniss
variables. Aconstraint graph such as Figure 1(a), repre-
sents each variable as a vertex and each constmiah
edge between its pair of variabl@gljacentvariables have
a common constraint and are calleglghbors.The (static)
degreeof a variable is the number of its neighbors.

A partial instantiationis a set of value assignments to
some of a CSP’s variables from their respective alom
A future variable is one unbound in the current partial in-
stantiation. Afull instantiation assigns a value to every
variable. A full instantiation that satisfies dlktconstraints
is a solution The solution paradigm used heregisbal
search complete search that finds a solution or prohes t
none exists. (In either case, the problem is labele
“solved.”). (Local search on problems with some -nhon
random structure, like those addressed here, careffec-
tive (Gent et al., 1999).) In global search, ongalde at a
time is selected and assigned some value fronoitsach.

After each value assignmeptopagationremoves from
the domains of the future variables all valueshitvgs in-
consistent with the current partial instantiatipnoducing
dynamic domainsDuring search, a variabletyynamicde-
gree is the number of its neighbors that are future-var
ables. A simple propagation methofihyrward checking
(FC), removes from the dynamic domains of the neighbor
of a just-bound variable any values inconsisterth viis
own value. MAC-3, which maintairarc consistencyAC),
does more work than FC: it enqueues the edged theal
unvalued neighbors of the just-bound variable, cimeicks
each element of the queue for domain reductionitSaid
Freuder, 1997). Whenever a variable's domain isiced,
MAC-3 enqueues every constraint between that vigriab
and its unvalued neighbors. If a domain becomestye(ap
wipeou} search backtracksetracting previously assigned
values.

The experiments described here initialized prolslem
with AC, and used chronological backtracking and GAA
3, but are in no way restricted to them. They eat@CSP
search by time (in CPU seconds) and numbenaxfes

(partial instantiations) explored. Any differencitied here
was statistically significant at the 95% confiderlegel
under a one-tatttest.

The falil first principle underlies many traditioneri-
able-ordering heuristics intended to speed glolearch
(Bessiere, Chmeiss and Sais, 2001; Gent et al.6;199
Smith, 1999)MinDom seeks to minimize the branch factor
of the search tree; it prefers variables with srdgthamic
domains.MaxDeg focuses on variables with many con-
straints; it prefers variables with high dynamicgoe.
MinDomDeg a traditional favorite, combinégdinDom and
MaxDeg It prefers variables that minimize the ratio of
their dynamic domain size to their dynamic degree.

Some CSP heuristics learn during search (Boussexhar
al., 2004; Refalo, 2004). Such learning summariéfs
culties that arise as a result of assignments naderi-
ables at the top of the search tree. In contrastwiork re-
ported here seeks to predict which variables shbalds-
signed first, and learns weights for constrainta asipport
rather than a central focus. As in (Boussemart. e2@04),
it initializes the weight of every constraint to\Whenever
propagation along a constraint induces a wipeoo, t
weight of that constraint is incremented by 1. Vhdable-
ordering heuristicMaxWdegmaximizes theweighted de-
greeof a variable, the sum of the weights of the caists
between it and its future-variable neighbors. Altdively,
MinDomWdegnminimizes the ratio of dynamic domain size
to weighted degreeMinDomDeg, MaxWdegand Min-
DomWdegwere the three heuristics timed for the problem
in Figure 1.

Other variable-ordering heuristics respond to ctme
detected in the constraint graph. A CSP whose giaph
arc-consistent tree can be solved without backingck
(Freuder, 1982; Freuder, 1994). SAT problems geéedra
with unsatisfiable large cyclic cores have stumpaghy
proficient SAT solvers (Hemery et al., 2006). Tduee a
cyclic CSP to a tree, a solver could first identfiyd then
address some heuristic approximation of the (NREBhar
minimal cycle cutset (Dechter, 1990). Cycle-riddeob-
lems like those addressed here, however, have cytiets
far too large to provide effective guidance. Moskated
work on elaborate structural features that mighilifate
search ignores the tightness of individual constsaand is
primarily theoretical or incurs considerable congpiainal
overhead unjustifiable on easy problems (e.g., €dcdnd
Green, 2006; Freuder, 1985; Gompert and Choue®52
Gottlob, Leone and Scarcello, 1999; Gyssens, Jeaand
Cohen, 1994; Pearson and Jeavons, 1997; Samerzaird S
der, 2006; Weigel and Faltings, 1999; Zheng and
Choueiry, 2005)).

The heavily constrained, highly interactive sulippeons
our algorithms identify and exploit in a CSP ardlech
clusters.“Cluster” has been used elsewhere to describe ag-
gregations of data, portions of a solution spac®¢KSab-
harwal and Selman, 2008; Mézard, Parisi and Zeachin
2002), or relatively isolated, dense areas in lyrevan
Dongen, 2000). Other work on clusters as subprablasa
sumed an acyclic metastructure and addressed tgsed

of artificial problems, half the size of those sad here,
and offered no structural description or explamatio
(Razgon and O'Sullivan, 2006).

With respect to a given search algorithm, many £SP
have a relatively smabbackdoor a set of variables whose
correct assignment makes the rest of the searativiedly
trivial (Williams, Gomes and Selman, 2003). Cectition
of a backdoor requires examination of the probleemsre
search tree, however. Clusters are intended toiqtred
enough of the backdoor to give global search guidgd
traditional heuristics a considerable advantage, tanex-
plain search failure. Unlike (Hemery et al., 200@nker,
2004), cluster-based explanations are availablethener
not a problem has a solution.

Many of the experiments here are on composed prob-

lems. AcomposedCSP partitions its variables intot+ 1
connected subsetssatellitesof uniform size and eentral
componentEvery constraint in a composed problem is ei-
ther alink (between a satellite variable and a central-
component variable) or joins two variables in tteme
subset. There are no edges between satellitesinLled,t

be a class of CSPs each of which hagariables, maxi-
mum domain sizek, density d, and tightnesg. Then
<n,k,d,t s<n’k’d’t> d” t” specifies a class of composed

problems, each of which has a central component de-

scribed by «,k,d,t, s satellites in #',k’,d’;t>, and links
with densityd“and tightness”.

Composed problems were inspired by the hard pnable
in (Bayardo and Schrag, 1996), and have appeartditoo
solver competitions and as benchmarks (Lecoutré9R0
They can be randomly generated so that satelliepar-
ticularly dense and tight, the central componert Bmks
are relatively sparse and loose, and central-cosmon
variables have generally higher degrees than gateri-
ables. Figure 1 is from the class of composed CS#Psp:

<100, 10, 0.15, 0.05> 5 <20, 10, 0.25, 0.50> 00125
where all variables have domain size 10. Only spnob-
lems in Comp have a solutionComgs parameters were
chosen so that the individual satellites are farenttifficult
to solve than the central component, but the degoé¢he
central-component variables are higher, and thezefore
attractive to traditional variable-ordering hetdst Other
classes of problems are investigated in Section\Gedl.

3 How to exploit structural foreknowledge

This section explores the power of foreknowledgeutb
difficult subproblems to guide search. The appreach
tests are not ultimately allowable as variable-ardgheu-
ristics. Rather they gauge how well knowledge alstnutc-
ture supports search, and how best to use that ledge.
Results appear in Table 1.

Standard variable ordering heuristics did poorly on
Comp. MinDomDegvas immediately drawn to the central
component and solved only 2 of 50 problems witthia t
time limit. Because links irCompare so few and loose,
wipeouts began fairly deep in the search treer aftéeast
36 variables had been bound. Retraction only N&d-

DomDegto repair its partial instantiation of the central
component, while the true difficulties lay elsewdein the
satellites. BothMaxWdegand MinDomWdeginitially suf-
fered from the same attraction to the central camept
After enough experience within the satellites, teegntu-
ally recovered and solved all the problems. Leayhatks
the foresight clusters are intended to provide.

Now, consider how heuristics might exploit forekritow
edge about the problem. Assume one was given the- st
ture shown in Figure 1(c), and believed that thelk&s
contained the backdoor. In that case, preferencedtel-
lite variables should speed search. Rather tharadistra-
ditional variable-ordering heuristics, however, lkeaap-
proach investigated here makes satellites a pyiaitd
then breaks ties wittMinDomDeg. Each approach was
given 30 minutes to solve each problem.

The next experiments seek to exploit perfect stimadt
foreknowledge. The variable-ordering heuristatellite
examines whether mere presence in a satellitefiicient
to warrant prioritization. This approach binds H0 satel-
lite variables first, in a random order, and theseaMin-
DomDegon the central component. On a single satel-
lite never solved any problem within 30 minutes. (Giitsn
lack of promise, this is the only randomized hdigithat
was tested only once. All other non-deterministipei-
ments here report on an average of 10 runs.)

The variable-ordering heuriststayaddresses entire sat-
ellites first, one at a time in a random order,dbefit se-
lects any variable from the central compon&tayselects
a satellite at random, binds all its variables, &reh pro-
ceeds to another randomly chosen satellite. Wihgatel-
lite and within the central componestaybreaks ties with
MinDomDeg Guided by the satellitestaywith MinDom-
Deg yields dramatically improved results over the trad
tional heuristics; it averages less than 3 secandsa 96%
smaller search tree thifinDomWdeg

Given that noteworthy improvement, and the fact tha
the satellites may only estimate the backdoor @omp
problem, the next approach binds only some of te- v
ables in each satellite. If MAC-3 is in use, forample,
there would appear to be little point in “finishing satel-
lite once it is reduced to only a pair of variab(esth at
most a single edge between themtil-2 selects a differ-

Table 1. On 50Comg problems, mean and standard deviatior
nodes andCPU seconds, including time to find clusters. Searc
heuristics appear above the line. Search methotts parfect
knowledge (below the line) are not legitimate hstics because
they apply foreknowledge available only to the peai genera-
tor, not the search engindntil-11 is therefore only a target.

Heuristic Time Nodes
MinDomDeg 1728.157 (355.877)|285751.970(61368.701)
MaxWdeg 123.000 (128.580) 20817.640 (22954.165)
MinDomWdeg 83.580 (38.964) 12519.360 (5811.370)
satellite No problems solved — —
stay 2.848 (3.584) 511.922 (416.345)
until -11 1.612 (1.866) 398.776 (244.112)

ent satellite at that point. The generalizationtlué ap-
proach, until-i, instantiates variables within a randomly
chosen satellite until all butvariables are bound, and then
moves on to another randomly chosen satelliay(is
equivalent tountil-0.) Within a selected satellite and later,
within the central component and any “leftover” ediie
variablesuntil-i also usedinDomDeg.We tested a range
of valuesi = 2,3,..., 15.

Surprisingly, search need not stay long in a gisatel-
lite. ForComp,where the satellites are of size 20, the clear
winner wasuntil-11, that is, search can address as few as
40% of the variables in a satellite before safetyimg on
to the next one. In contrast, the variable-ordehrgristic
satellite-i, which randomly chooses satellite variables that
are not among the lastfuture variables in their satellite,
performed poorly. (Data omitted.) Asncreasessatellite-i
becomes more likeMinDomDeg alone. Clearly, known
satellites speed the solution &@omp problems when
search addresses them one at a time. The nexbrset=i
scribes how knowledge about such dense, tight sudbst
tures can be detected automatically, prior to $earc

4 Foretell finds secondary structure

Intuitively, Foretell, the cluster finder described here, as-
sembles sets of tightly related variables whosealosnare
likely to reduce during searchoretell was inspired by the
state-of-the-art work for both speed and accuratythe
DIMACS maximum clique problems (Hansen, Mladenovic
and Urosevic, 2004). Alique is a maximally dense graph,
that is, one with all possible edges between itsalbtes.
Let a near-cliquebe a clique with a few missing edges.
Foretell searches for subproblems that are tight near
cligues, where the tightness of a subproblem iptbeuct
of the tightness of the constraints that it inckidsote, for
example, the missing edges in the clusters of Eidd).
Foretell is based on Variable Neighborhood Search
(VNS. (The *“variable” in VNS refers to changing
neighborhoods, not to CSP variables.) VNS is alloca
search meta-heuristic that succeeds on a wide rafge
combinatorial and optimization problems (Hansen and

1 best-yet initial-solution

2 index « 1

3 neighborhood ~ neighborhood(index)

4 until stopping condition or index = k

5 unless index =1, best-yet — shake(best-yet, index)
6 local-optimum local-search(best-yet, neighborhood)
7 If score(local-optimum) > score(best-yet)

8 then best-yet — local-optimum

9 index 1

10 else index — index +1

11 neighborhood — neighborhood(index)

Figure 2. A high-level description of VNS meta-heuristic sgar
throughk neighborhoods. The initial solution, tiseore metric,
and the local search routine vary with the applcat

Mladenovic, 2003). VNS works outward from an irisa-
lution (Figure 2, line 1) in a relatively small gaborhood
in a graph throughk pre-specified,increasingly large
neighborhoods (lines 2-3). Each neighborhood wtsttihe
current options; as VNS iterates, each new neididumdt
provides a larger search space. Within a neighlmatho
Variable Neighborhood DescentND) is a local search
that tries to improve the current solutidrest-yet accord-
ing to a metricscore.A better local optimum resetsest-
yet and returns to the first neighborhood (lines 6-cfi-
erwise search proceeds to the next neighborhooeis(iL0—
11). Shaking (line 5) shifts search within the current
neighborhood and randomizes the curreest-yetto ex-
plore different portions of the search space.ifdex in-
creases, the neighborhoods become larger so thkat th
shaken version diest-yetbecomes less similar tzest-yet
itself. The user-specified stopping condition (line 4kis
ther elapsed time or movement through some number o
increasingly larger neighborhoods without improveatne

VND greedily extendsbest-yet from neighborhood
Once its greedy steps are exhausted, VND repeatedly
terchanges one element of its current solutiorviar ele-
ments in neighborhood In the search for a maximum
clique, for exampleVND swaps out some variablein
best-yeffor two adjacent variables that are not neighlobrs
v and were not ifbbest-yetbut are neighbors of all the other
variables inbest-yet Ties are broken greedily, that is, to
maximize the variable’s degree. An alternative piczt!
by VND replacedest-yebnly if it outscores it.

Foretell adapts VNS to detect multiple subgraphs that
are clusters. It relies on th@ressureon a variablev, the
probability that, given all the constraints upgnwhen one
of v's neighbors is assigned a value, at least onesvaill
be excluded fromv’s domain. Precise calculation of the se-
ries that defines pressure is computationally esjpen In-
stead, we devised an algorithm to quickly approxintae
first term in that series, corrected to avoid hiagavor of
variables with high degrees or large domains. Foiable
V; with domain sizeD;, neighborsN; and constraint with
tightnessty betweenv; andV, [0 N;, the approximate pres-
sure onv,, given the constraints on it, is

Y il
— 1 1~ 1,)D; (D,
p(vi)_degre@/i)vg‘q‘ [(D,)EDk J

1-1,)D, [D,

A cluster’sscoreis the ratio of the product of its number of
variables and density to its average edge tightnsiss
cluster is returned unless it has at least 3 veasab

To find multiple clusters in a problerioretell finds a
first cluster, removes those variables, and theratiés to
find the next cluster among the remaining varialdes
their constraints. Clusters are typically (but alwways) de-
tected in decreasing size order. Because thic# kearch,
some variation is expected from one pass to thé fddre
maximum neighborhood index was taken from the pabi
work on maximum cliques: the minimum of 10 and the

current cluster size (Hansen, Mladenovic and Urgsev
2004).

For our purposes, treecondary structuref a CSP is it-
self a graph (e.g., Figure 1(e)), where each alusteepre-
sented as a node and each set of constraints betwase
ables in two clusters as a single edgesparsesecondary
structure is one with few edges in it. Next we depéheu-
ristics for CSPs with sparse secondary structure.

5 Exploiting sparse secondary structure

This section seeks to exploit clusters detectedraati-
cally by Foretell, much the way foreknown satellites were
used in Section F-oretell never found a cluster larger than
6 variables in a&Compproblem; instead it found multiple
(disjoint) clusters in individual satellites, clas$ that cov-
ered satellites only partially. The primary questibus be-
comes how best to exploit clusters. Is it, for eglembet-
ter to shift from one cluster to another duringrekaor to
solve them one at a time? And if one at a timeylat or-
der should the clusters be considered? Perhapsvoulel
address the cluster that at the moment is theetighfThe
true dynamic tightness of a clustex the ratio of the num-
ber of tuples that satisfy its unbound variablegdarnthe
current partial instantiation to the product ofithdynamic
domain sizes. That is too expensive to calculgteatedly,
as is a dynamic version of pressure in (1). Insteadus-
ter's dynamic tightness is estimated here as ttie o the
product of the current domain sizes of those vigmlo
the product of their original domain sizes.

The variable-ordering heuristiight selects a variable
from the (estimated) dynamically tightest clustS8earch
guided bytight, however, could shift from one cluster to
another, and therefore from one satellite to amoihe
Comp the way the poorly-performingatellite did. The
improvement produced bgtay in Table 1 therefore in-
spired heuristics that treat one cluster at a ti@@ncen-
trate chooses a cluster at random, selects variables itro

Table 2. Cluster-guided search speeds traditional heurisiits
Compby more than an order of magnitude. Average aaaddstrd
deviation are shown for nodes and time in CPU sgsoimclud-
ing time for cluster detection. Data above the liserepeated
from Table 1. Except foMinDomDeg every method solved
every problemFocusis statistically significantly better (in bold)
than all the heuristics testedntil-11 is a target, not a legitimate
heuristic; it applies foreknowledge about structavailable only
to the problem generator, not to the search engine.

Heuristic Time Nodes
MinDomDeg 1728.157 (355.877)] 285751.970 (61368.701)
MaxWdeg 123.000 (128.580)| 20817.640 (22954.165)
MinDomWdeg 83.580 (38.964) | 12519.360 (5811.370)
until-11 1.612 (1.866) 398.776 (244.112)
tight 4,705 (6.252) 505.296 (718.029)
concentrate 5.461 (5.628) 836.434 (876.539)
focus 4311 (2.411) 497.964 (324.327)
focue1 5.267 (3.215) 516.406 (425.739)
focus-2 8.713 (22.442) 1371.338

until all of them are bound, and then selects #wt oluster

at random. In contrastpcus selects the (estimated) dy-
namically tightest cluster, selects variables fiibnmntil all

of them are bound, and then uses estimated dynaghie
ness to select the next clust€nncentrate-andfocus-iare
analogous tauntil-i; they instantiate within a cluster until
all buti of its variables have been bound. In all these heu
ristics, if clusters have the same maximum tiglanéigs
are broken by maximum dynamic cluster size.

Given the vagaries of local search, one cannoeexp
VNS to produce an adequate set of clusters evemng.ti
Rather than allot substantial time to VNS (whicbudhd ul-
timately find adequate clusters that walj)inDomWdeg
supports cluster-guided search as a tiebreakas. Very
slightly slower tharMinDomDegbut it provides backuff
Foretell's local search is simply “unlucky.” Leangi is
there to help, although it is rarely necessary.

6 Results

In the following experiments, each heuristic had r3id-
utes to solve each problem. Data for all non-dei@stic
algorithms, including those involving clusters,réported
as an average across 10 runs. For the heuristitsute
cluster detection, time is allocated to VNS per cluster.
Thus a problem in which clusters were detected could re-
quire up tosetime. The total VNS time required to find
clusters is included in all timing data.

On Compproblems,Foretell finds clusters that form a
secondary structure remarkably like foreknowledife.
found between 6 and 19 clusters per problem, adizes 3
to 6. Itfound at least one cluster in every satellite iargv
problem on every run. A typical result appears iguFe
1(d). Withe = 0.2 seconds per cluster, VNS search time
averaged 2.111 seconds per problem, 45% of thktitoi

Clusters guide search @ompeffectively, as shown be-
low the line in Table 2Concentratés weaker performance
clearly indicates that the order in which clustars ad-
dressed is important. Unliketay, however,focusappears
to need to finish a cluster to produce its besfquarance.
Essentially, byi = 3, bothconcentrate-iand focus-i dete-

100.00% S — - % - - -
90.00%
80.00%
70.00%

60.00% -
—e—focus
—a—focus-1
—-%--concentrate
---e--- tight
—o—focus-2

—X%— concentrate-2
—&— MinDomWdeg
MaxWdeg

50.00%
40.00%
30.00% -
20.00%
10.00% -

.00% T T T T T T
Tim795(secogr9ds) 105 120 135 150 More
Figure. 3. Cumulative percentage of 8Domp problems solved.

Solvers were allocated 30 minutes per problem. Bgeit solved

0 15 30 45 60

(2765.681) only 2 of the problemdylinDomDegwas omitted.

riorate to MinDomWdeg.(Data omitted.) A full graphic search time. A heuristic that prioritized variablas den-
comparison appears in Figure 3. sity (with VNS-based near-clique detection) consdme
The strongest cluster-based search heurifstays with about a third of the time. When combined in aniealer-
MinDomWdeg was also tested on all the composed prob- sjon of Foretell, however, density and tightness did an or-
lems on the benchmark website (Lecoutre, 2009),revhe der of magnitude better, and produced nearly backir
there are 10 problems per class. The upper poofidiable free search trees (Epstein and Wallace, 2006). oailer
3 reports those resultslinDomDegcould solve _onIy 9 of composed problems there with one or two satellttss-
these problems. That and the search tree S'Ze‘*"'f_“’* ters didnot harm performance, and they sometimes im-
DomWdegsuggest that these benchmarks are easier thanproved it.
Comp On six classedpcusonce again provided an order Methods to detect tight, dense subproblems must no
of magnitude speedup. Note that, for a fixed cémian- only be incisive, they muét also scale. Every reaild
ponent sizefocusscales about linearly with_problem size. problem that wé tested (i.e., all the RLFAP andvefri
: Composed problems offer an opportunity to expth_Ee problems) contained clusters thibretell found fairly
impact and management of difficult subproblems. iThe quickly. On Comp,0.2 seconds per call to find a cluster

uniformity, however, is unlike real-world problemgere sufficed. For RLFAP scene 11, which has roughljngs
tightness and density vary broadly. This raisesstioes as many variables as @omp p,roblem, 0.6 seconds per

about the presence and usefulness of sparse,rehasied o, ster Sufficed. This suggests thatretell scales linearly.
secondary structure in other difficult problems. Weted Composed problems are built to confound traditiona
RLFAP problems (data for radio broadcasting (Cabon et . istics in a particular way, while real-worldoptems
al., 1999)) and driver-log pr_oblems from (Lecou809). are merely difficult. Not surprisingly, the perfoamce im-
Most were easy enough flvh_nDomDeg RLFAP scene 11 provements on real-world problems (below the liméla-
and driverlogw-08cc and driverlogw-08c provided eof ble 3) are noteworthy, but less dramatic. The insigro-
a challenge Foretell detected sparse secondary structure \iqqq by the secondary structure, however, coulaver
on a.II. three, and Table 3 shows tHatuswas statlst!cally meaningful to a user. For example, people who know
S|gn|f|canyly.fast.er on th,em. Observe that, desgtene Scene 11 well may be interestedForetell's identifica-
small variation inForetells output from one run to the tion, on every run, of the same clusters (size3 33, and
next on scene 11, the search tree size was allwaysame. 16), only two of which are linked in the constragnaph.
Although the experiments described here are oarpin
CSPs, in principle there is nothing koretell that would
restrict it to binary problems. As long as theresdse es-
) timate of the tightness of a constraint, it is [loissto esti-
7.1 Detecting clusters mate the pressure on a variable and to detecbéetsitu-
Density and tightness are synergistic. Earlier wstein ally constrained, variables by local search. Thapwand
and Wallace, 2006) tested them separately on caske score functions would require only some modificatio
smaller, considerably easier composed problemss thva
evenMinDomDegcould solve. A heuristic that prioritized 7.2 Why focusworks

variables by tightness roughly halvekfinDomDegs Variable-ordering heuristics usually do not consioersis-

7 Discussion

Table 3.Preference for variables in clusters improves $eadamerical identifiers are benchmark problemsnfig.ecoutre, 2009). For
example, 25-1-80 is <25, 10, 0.67, 0.15> 10 <8,0109, 0.50> 0.01, 0.05 here. Data Faretell includesnumber of clusters, average
cluster size, and maximum cluster size, averagedt #0 runs. Mean and standard deviation over 18 isirprovided forfocus. All
improvements oveMinDomWdegare statisticallgignificant; order of magnitude improvements aréaid.

MinDomWdeg Foretell's clusters Focus Time FaelNodes

Problem d| t d’ Time Nodes | Count Size Ma u c M o
25-1-2 0.667 0.65 | 0.010 1.007 553.00 1.01 5.770 5[7/7 0.019 0.003| 41.40 1.363
25-1-25 0.667 0.65 | 0.125 0.913 465.70 2.30 5.597 5.80 0.042 0.021 41.60 1.287
25-1-40 0.667 0.65 | 0.200 1.097 473.80 5.00 5.372 6.40 0.073 0.016 41.50 1.210
25-1-80 0.667 0.65 | 0.010 0.951 308.00 5.60 5.281 6.08 0.262 0]24804.50 71.805
25-10-20 0.66Y 0.50 | 0.010 2.485 670.10 10.17 5.197 558 0.882 .4660, 192.07 149.883
75-1-2 0.216 0.65 | 0.003 3.330 1171.70 1.00 5.690 5/69 0.044 0.005 91.60 1.504
75-1-25 0.216 0.65 | 0.042 3.289 1084.4Dp 5.40 5.242 646 0.146 0.121| 91.40 1.287
75-1-40 0.216 0.65 | 0.067 2972 960.90 4.60 5.292 580 0.153 0.142| 91.30 1.275
75-1-80 0.216 0.65| 0.133 2317 59520 9.09 4.864 5.90 0.365 0/16181.40 21.687
Comp 0.150 0.50| 0.120| 83.580 12519.40 11.0(4.309 5.15| 4.311 2.411| 497.96 324.327
RLFAP scene 11 — — — 58.034 2777.00] 38.10 7.912 16.0051.133 1.285| 1557.00 0.000
Driverlogw 08cc — — — 134.281 4200.00 3.00 34.333 45.0087.842 3.712| 2983.70 14.100
Driverlogw 08c — — — 149.449 4136.00 3.00 34.333 45.0083.622 3.406 | 2815.30 3.900

tence in a “geographic area” of a problem. Nonetel
that was clearlygatelliteés mistake —even with foreknowl-
edge aboutComp it satellite hoppedthat is, it failed to
address enough variables in the same satelliteecans
tively. Stayforbade satellite hopping and resulted in a con-
siderable improvement. Analogouslgluster hoppingoc-
curs when a heuristic fails to address enough bkasain
the same cluster consecutively. Because constraittien

a cluster are selected for above average tightoess, any
variable in a cluster has been bound, propagasidikely
to reduce the domains of the other variables ih¢hester.
As a result, variables in a partially-instantiatgdster are
more likely to have smaller domain sizes and mddesr t
cluster even more attractive to cluster-guideddearight
was permitted to cluster hop, whilecusandconcentrate
both explicitly forbade itFocusdoes better, however, be-
cause it uses knowledge about clusters to select on

Happily, remaining in a cluster @ompis likely to en-
courage remaining in any additional clusters witkie
same satellite. In problems that are not composed,
other region with sufficiently dense and/or tigltnoec-
tions to a cluster should also have the domainssofari-
ables reduced when those of the related clustenstanti-
ated. In this way, cluster-guided search results ise-
guence of decisions that persist in a particulartn-
strained region of the graph.

Reducing a subproblem to an arc-consistent trégcfw
always has at least one solution) would make & saton-
tinue on to another subproblem. Bindingvariables in a
subproblem of size with densityd, leaves a tree only if

S—w) 2
d 9 <s-w-1,thatisw= s—a

(Of course, this only makes a tree possible, notate)
For Compsatellites s= 20 andd = 0.25, so that there is no
possibility of a tree unless > 12, that is, we have bound
12 variables and 8 remainrttil-8). Our empirical results,
however, show thauntil-11 minimizes both time and
nodes (using a one-tattest at the 95% confidence level).
This ability to leave behind a (necessarily) cyslibbgraph
is probably attributable to propagation. The oawaai re-
traction back to a “finished” satellite proved lessstly
than binding a few more variables in the currenélite
before moving on to the next one. Because clusters
Compaverages = 4.309, howeveny > 0,309, that is, only
focus-0 is safe, which is exactly what our results iatic

7.3 Clusters and search

The performance of perfect foreknowledge Gomp as
embodied byntil-11, is the gold standardlintil-11 knows
a superset of the backdoor and exploits it. Inspednhdi-
cates that the backdoor is probably no more tharna3b
ables for aCompproblem. The last retraction onGomp
problem underfocuswas at a node where an average of
15.588 variables had been bound, with a maximu@fof
The two driverlog problems differ in the tuplegyhal-
low, but they have the same primary structure Aedsame

tightness on their constraints. On every raoretell found
the identical sparse secondary structure in the pived-
lems, that is, exactly the same clusters among®8evari-
ables: 3 nodes with 2 edges. Tfatusimproves search on
them both confirms its ability to manage secondsryc-
ture dynamically.

Clusters explain why a problem is difficult to w®lor

has no solution at all. The variables in a clustertually
constrain one another in an intense, highly restgovay.
A user confronted with an unsolvable real-world tpeon
could use clusters to reconsider its specificaticors at
least to understand why it is unsolvable. For eXamm-
til-11 searched within at most 3 satellites before ibriul
the insolvability of Figure 1. To demonstrate thedlva-
bility of the Compproblem in Figure 1focusbound only
12 variables drawn from 3 clusters found Bgretell.
Those 3 clusters, two of size 5 and one of sizar@yide a
concise and meaningful explanation.

We have also investigated the tradeoff betweetoexp
tion (here, local search to detect secondary stregtand
exploitation (use of that structure for variabledening).
Too much time devoted tBoretell before search wastes
CPU cycles; too little may not explore the problsuffi-
ciently. For an extensive secondary structure a&imlg
should be so large th&bretell averages less time search-
ing for clusters than the total allotted to it, tti& it should
leave the loop in the algorithm in Figure 2 becaoféhe
index. To solve a CSP, however, we have found ahar
smallere (0.2 — 0.6 seconds) suffices.

Several enhancements are currently under develupme
Not every problem need%oretell. The “right” clusters are
not necessarily many, but incisive, Boretell could parti-
tion less than the entire problem. Other problerageh
more dense secondary structures and may thereésre r
spond better to other cluster-based orderingslijrfacus
might attend more closely to learned weights beédir¢he
cluster variables have been bound.

All the experiments reported here ran witi€E, the
Adaptive Constraint Engine (Epstein, Freuder andlate,
2005). ACE is a highly modular and flexible reséataol
that collects substantial data; it is not honed dpeed.
Nonetheless, the concomitant reductions in checld a
nodes searched suggest that clusters will acceletatr,
more agile solvers as well. For an easy problem¢laos-
ters are necessary, and any reasonable amounmef ti
spent on cluster detection will have no notewoithpact.
For more challenging problems, however, clustededi
search substantially accelerated search with effstielf
heuristics on problems with sparse secondary strect
Given their acuity and explanatory ability, clustare a
worthwhile preprocessing step.

Acknowledgments. ACE is a joint project with Eugene
Freuder and Richard Wallace of the Cork Constr@mtn-
putation Centre. Thanks go to Pierre Hansen fopfhkl
discussions on VNS. This work was supported in pgrt
the National Science Foundation under awards IIS-
0811437 and 11S-0739122.

References

Bayardo, R. J. J. and R. Schrag 1996. Using CSK-Loo
Back Techniques to Solve Exceptionally Hard SAT In
stances. InProceedingsof CP-1996 46-60. Cambridge,
Springer Verlag.

Bessiére, C., A. Chmeiss and L. Sais 2001. Neididwmt-
based Variable Ordering Heuristics for the Constr&iat-
isfaction Problem. InProceedingsof CP2001 565-569.
Berlin, Springer Verlag.

Boussemart, F., F. Hemery, C. Lecoutre and L. 3a@!.
Boosting systematic search by weighting constraitrts
Proceeding®f ECAI-2004 146-149. 10S Press.

Cabon, R., S. De Givry, L. Lobjois, T. Schiex andPJ
Warners 1999. Radio Link Frequency Assignme®dn-
straints4: 79-89.

Cohen, D. A. and M. J. Green 2006. Typed Guarded De
compositions for Constraint Satisfaction.Rroceeding®of
CP2006 122-136. Nantes, Springer Verlag.

Dechter, R. 1990. Enhancement schemes for coristrain
processing: backjumping, learning and cutset decsimp
tion. Artificial Intelligence41: 273-312.

Epstein, S. L., E. C. Freuder and R. J. Wallace5200
Learning to Support Constraint ProgrammeZamputa-
tional Intelligence21(4): 337-371.

Epstein, S. L. and R. J. Wallace 2006. Finding @luc
Subproblems to Focus Global Search.Piroceedingsof
ICTAI-2006 151-159. Washington, D.C., IEEE.

Freuder, E. C. 1982. A Sufficient Condition for Baack-
Free SearchlACM29(1): 24-32.

Freuder, E. C. 1985. A Sufficient Condition For Baack-
Bounded SearcHACM 32(4): 755-761.

Freuder, E. C. 1994. Exploiting Structure in Conisir Sat-
isfaction Problems. InProceedingsof Constraint Pro-
gramming: NATO AS$Sb4-79. Parnu, Estonia, Springer.
Gent, I., E. Macintyre, P. Prosser, B. Smith andVRlsh
1996. An empirical study of dynamic variable orderi
heuristics for the constraint satisfaction probldmPro-
ceedingsof CP'99 179-193. Cambridge, MA, Springer
Verlag.

Gent, I. P., H. H. Hoos, P. Prosser and T. Wals8919
Morphing: Combining Structure and Randomnesrio-
ceedingf AAAI-1999 654-660. Orlando, AAAI.

Gompert, J. and B. Y. Choueiry 2005. A Decompositio

Hansen, P., N. Mladenovic and D. Urosevic 2004 jalde
neighborhood search for the maximum cliqidscrete
Applied Mathematic445: 117-125.

Hemery, F., C. Lecoutre, L. Sais and F. Bousse2R206.
Extracting MUCs from Constraint Networks. Rroceed-
ingsof ECAI-2006 113-117. Riva del Garda.

Junker, U. 2004. QuickXplain: Preferred explanaiamd
relaxations for over-constrained problems.Piroceedings
of AAAI-04 167-172.

Kroc, I., A. Sabharwal and B. Selman 2008. Countitg
lution Clusters in Graph Coloring Problems Usingdi&e
Propagation IfProceedingof NIPS-08 873-880. Vancou-
ver.

Lecoutre, C. 2009. "Benchmarks in XCSP 2.1 — XML
representation of CSP/WCSP/QCSP instances." from
http://www.cril.univatois.fr/~lecoutre/research/lbbmarks
/benchmarks.html.

Mézard, M., G. Parisi and R. Zecchina 2002. Anelgind
Algorithmic Solution of Random Satisfiability Pravhs.
Science297(5582): 812 - 815.

Pearson, J. and P. G. Jeavons 1997. A Survey cofdlria
Constraint Satisfaction Problems. London, Royallétol
way University of London.

Razgon, I. and B. O'Sullivan 2006. Efficient Recitign
of Acyclic Clustered Constraint Satisfaction Prabte In
Proceedingsof 11th Annual ERCIM International Work-
shop on Constraint Solving and Constraint Logic Pro
gramming at CSCLP 2006

Refalo, P. 2004. Impact-based search strategiesdos
straint programming. IRroceedingof CP 2004 557-571.
Toronto.

Sabin, D. and E. C. Freuder 1997. Understandingland
proving the MAC Algorithm.Principles and Practice of
Constraint Programming Berlin, Springer Verlag 167-
181.

Samer, M. and S. Szeider 2006. Constraint Satiefact
with Bounded Treewidth Revisited. IRroceedingsof
CP2006 499-513. Nantes, Springer Verlag.

Smith, B. A. and S. A. Grant 1998. Trying HarderRail
First. InProceeding®f ECAI 1998 249-253.

Smith, B. M. 1999. The Brélaz Heuristic and Optimal
Static Orderings. IProceedingof CP'99 405-418. Alex-
andria, Virginia, Springer Verlag.

van Dongen, S. 2000. Graph Clustering by Flow Samul

Techniques For CSPs Using Maximal Independent Sets tion, University of Utrecht.

And Its Integration With Local Search. Proceedingsof
FLAIRS-05167-174. Clearwater Beach, FL, AAAI Press.
Gottlob, G., N. Leone and F. Scarcello 1999. A Cariap
son of Structural CSP Decomposition MethoAsificial
Intelligencel24(2): 243-282.

Gyssens, M., P. G. Jeavons and D. A. Cohen 1994. De
composing constraint satisfaction problems usingluEse
techniquesArtificial Intelligence66(1): 57-89.

Hansen, P. and N. Mladenovic 2003. Variable Neighbo
hood SearchHandbook of Metaheuristic$lover, F. W.
and G. A. Kochenberger. Berlin, Spring&a5-184.

Weigel, R. and B. Faltings 1999. Compiling Constrai
Satisfaction Probleméirtificial Intelligencel115; 257-287.
Williams, R., C. Gomes and B. Selman 2003. On tba-C
nections between Heavy-tails, Backdoors, and Rsstar
Combinatorial search. IRroceedingsof SAT 2003 222-
230.

Zheng, Y. and B. Y. Choueiry 2005. Applying Decorsipo
tion Methods to Crossword Puzzle ProblemsPtoceed-
ingsof CP 2005 874. Sitges, Spain, Springer Verlag.

