

From Unsolvable to Solvable: An Exploration of Simple Changes

Susan L. Epstein1, 2 and Xi Yun1

Department of Computer Science
1The Graduate Center and 2Hunter College of The City University of New York

New York, NY 10065 USA
susan.epstein@hunter.cuny.edu, xyun@gc.cuny.edu,

Abstract
This paper investigates how readily an unsolvable constraint
satisfaction problem can be reformulated so that it becomes
solvable. We investigate small changes in the definitions of
the problem’s constraints, changes that alter neither the
structure of its constraint graph nor the tightness of its con-
straints. Our results show that structured and unstructured
problems respond differently to such changes, as do easy
and difficult problems taken from the same problem class.
Several plausible explanations for this behavior are dis-
cussed.

Introduction
Constraint satisfaction problems (CSPs) that model real-
world challenges are often unsolvable. The thesis of this
work is that it is possible to reformulate such a problem
relatively easily so that it becomes solvable. This paper in-
vestigates the impact on a CSP’s solvability of small
changes in its constraints. Its principal result is that rela-
tively few such changes can make a hitherto unsolvable
problem solvable, and that structured problems and more
difficult problems are actually more likely to become solv-
able under such changes.
 A dynamic CSP (DCSP) subjects an original CSP P0 to a
sequence of perturbations, producing a sequence of new
problems P1, P2,…, Pn, where a perturbation is any change
to P0. The solutions to Pi may well be different from those
to Pi-1. Prior work has suggested how search for solution to
Pi may benefit from solutions to Pi-1 (Verfaillie and
Jussien, 2005) or how search performance changes when
new constraints are introduced and old ones dropped
(Wallace, Grimes and Freuder, 2009). The focus here is on
a more fundamental change: whether or not, for some
i > 1, Pi is solvable, although Pi-1 was not. For real-world
problems, which are often unsolvable in their original for-
mulation, simple perturbations that make them solvable
should be of considerable interest.
 We focus here on perturbations that preserve both the
domains and the structure of the problem, that is, ones for

which the constraint graph remains unchanged. Our pertur-
bations instead change the tuples that constraints declare
acceptable. There are several ways to do this, two of which
are explored carefully here. Because our concern is with
realistic problems, we investigate such perturbations on
both random (i.e., unstructured) problems and on small
world problems, which have the kind of structure detected
in many real-world domains (Walsh, 1999).
 We show here that certain perturbations readily make
some problems solvable. The next section provides defini-
tions and describes the perturbations studied. Subsequent
sections describe the experiments, report and discuss their
results, and outline current work.

CSPs and Value Perturbation
A CSP <X, D, C> is defined by a set of variables X, a set of
domains D, and a set of constraints C. Each variable Xi ∈ X
has a domain Di of possible values. A constraint restricts
how the variables in its scope S ⊆ X may be assigned val-
ues together. Here, CSPs are binary, that is, all constraints
have scope size at most two. Thus a constraint Cij ∈ C de-
clares each tuple (a, b) where a ∈ Di, b ∈ Dj to be either
acceptable (a compatible) or unacceptable (a nogood). A
constraint can be expressed extensionally, as a set of
nogoods or a set of compatibles, or intensionally, as a func-
tion that maps Dx × Dy into {compatible, nogood}. The
tightness of a constraint is the fraction of tuples in Dx × Dy
that it specifies as nogoods.
 A solution to a CSP assigns to each variable a value
from its domain so that all the constraints are satisfied. A
CSP with at least one solution is solvable; otherwise it is
unsolvable. To solve a CSP, global search repeatedly se-
lects a variable and assigns it a value. At any point in
search, the existing assignments form a partial instantia-
tion of the problem, and a variable that does not yet have
an assigned value is called a future variable. After each as-
signment, propagation identifies and temporarily removes
values incompatible with that assignment from the do-

mains of the future variables. If any domain becomes
empty (wipeout), search backtracks, removing assignments
and restoring dynamic domains until there is an alternative
to explore. If a problem has no solution, global search will
demonstrate that by retracting every value in the domain of
some variable at the beginning of the search.
 Let a swap be a perturbation with respect to a pair of tu-
ples. An internal swap for a single constraint Cij takes a
compatible tuple (a1, b1) and a nogood tuple (a2, b2) and re-
labels them, so that (a1, b1) becomes a nogood and (a2, b2)
becomes a compatible. An external swap with respect to a
pair of constraints C1 and C2 exchanges a pair of nogoods,
(a1, b1) from C1 and (a2, b2) from C2. After an external
swap, C1 considers (a1, b1) a compatible but (a2, b2) a no-
good, and C2 considers (a2, b2) a compatible but (a1, b1) a
nogood. The DCSPs investigated here perform a sequence
of internal or external swaps on Pi-1 to produce Pi.
 As defined here, both kinds of swap retain the domains,
the scope, and the tightness of every constraint in P. In
contrast, relaxation of a constraint can change its tightness.
Swapping may also offer a realistic adaptation. In a sched-
uling problem, for example, an external swap of a nogood
that forbids a pair of job-sharing workers from simultane-
ous assignments at night could shift that restriction to day-
time hours. An internal swap on the same nogood could
substitute a similar restriction on their spouses. Thus, al-
though an external swap is syntactically equivalent to some
pair of internal swaps, together the two kinds provide a
more flexible perturbation semantics.

 Experimental Design
The problems studied here are drawn from two classes:
random and structured. The random problems are model B
problems (MacIntyre et al., 1998). The structured prob-
lems are small world problems produced under the Watts-
Strogatz model (Watts and Strogatz, 1998). All problems
have 50 variables, each with the same domain of 10 values,
density 0.204, and tightness 0.35. (Because we chose to
make all problems the same density, our structured prob-

lems are somewhat denser than the typical small world
problems inspired by social networks.) Their parameters
place both problem classes at the phase transition, that is,
they are particularly difficult for their size (50 variables, 10
values). 58.9% of the random problems and 96.0% of the
structured problems are solvable.
 We generated 1000 random problems and solved them
with MinDomDeg, a heuristic that prefers variables with
the smallest ratio of dynamic domain size to dynamic de-
gree. (A variable's degree is the number of constraints in
which it participates.) During search, propagation main-
tained arc consistency with MAC-3 (Sabin and Freuder,
1997); value selection and tie breaking were lexical. Al-
though problems in the same class are putatively similar,
classes at the phase transition exhibit a heavy tail (Pareto-
Normal distribution) of difficulty (Gomes et al., 2000). We
therefore ranked the 1000 problems by the number of
nodes in their search trees to find a first solution (for solv-
able problems) or to prove that none existed (for unsolv-
able ones). Figure 1 bins the random problems by the num-
ber of nodes in their search trees, where each bar shows the
proportion of solvable and unsolvable problems. The same
process was repeated separately for 1000 structured
problems; Figure 2 shows the result.
 In each class we then identified EU, the 10 easiest un-
solvable problems (that is, those with the smallest search
trees, from the leftmost bins) and HU, the 10 hardest un-
solvable problems (those with the largest search trees, from
the rightmost bins). Out of 1000, the 10 easiest unsolvable
random problems EUR lay in the third through fifth bins
from the left in Figure 1. They were ranked between 186
and 287 among all random problems, with search trees of
sizes 1420 – 2454. The 10 hardest unsolvable random
problems HUR were ranked 900 to 999, with search trees of
25927 – 38012. The 10 easiest unsolvable structured prob-
lems EUS were ranked between 572 and 915 with search
trees of 1169 – 5003; the 10 hardest HUS between 990 and
1000 with search trees of sizes 12913 – 24610.
 To perturb problem P by an internal swap, we randomly
selected a constraint, randomly selected one nogood and

Figure 1: Random problems at the phase transition, binned
by search tree size. Each bar represents the number of prob-
lems in a size range, where red denotes unsolvable and blue
denotes solvable.

Figure 2: Structured problems at the phase transition, bin-
ned by search tree size. Each bar represents the number of
problems in a size range, where red denotes unsolvable and
blue denotes solvable. Note the change of scale on the verti-
cal axis.

one compatible tuple from it, and interchanged their labels,
so that the nogood became a compatible, and the compati-
ble became a nogood. Perturbations were tested on u dis-
tinct constraints, each subjected to v internal swaps, where
u = 1, 5, 25 internal swaps per tuple and v = 1, 5, 25 pairs
of tuples.
 To perturb problem P by an external swap, we randomly
selected two distinct constraints, randomly selected one
nogood from each of them (that was a compatible in the
other constraint), and interchanged them, so that each con-
straint had a single nogood replaced by a nogood from the
other constraint. Perturbations were tested for 1, 5, 10, 15,
20, and 25 external swaps. Note that both kinds of swaps
retain P’s structure and the tightness of all its constraints.
 To gauge the impact of swaps on a given problem, we
began with P and perturbed it with s swaps. Because
swapping is non-deterministic, results were averaged over
100 trials, each time beginning with the same P. Results
are reported here for EUR, HUR, EUS, and HUS under both
internal and external swaps.

Results
Our intent is to observe when and how readily a problem
flips, that is, changes from unsolvable to solvable under
perturbations that change only nogoods and compatibles.

Internal swaps
Figure 3 reports the number of times, out of 100, that an
unsolvable random CSP became solvable after u randomly-
chosen constraints were each perturbed by v internal
swaps. Each cell in the table represents 1000 trials (10 EUR
or HUR problems each perturbed 100 times). Although
(u,v) = (1,1), which is a single internal swap on a single

constraint, rarely had any effect, the responsiveness of the
hardest 10 problems to internal swaps is particularly note-
worthy. Both (u,v) = (25, 5) and (u,v) = (5, 25) (25 internal
swaps on 5 constraints, and 5 internal swaps on 25 con-
straints, respectively) flipped more than half of HUR, that
is, made more than half the hardest unsolvable random
problems solvable.
 Similarly, Figure 4 reports the number of times, out of
100, that an unsolvable structured CSP flipped after u con-
straints were each perturbed by v internal swaps. Again,
each entry represents 1000 trials, and the hardest problems
are easier to flip.

External swaps
As shown in Table 1, individual unsolvable random prob-
lems respond differently to swapping. In 100 attempts with
25 swaps in the perturbation, the first (very easiest) EUR
problem never became solvable. In contrast, on at least one
occasion a single external swap made each of the hardest
problems solvable. (“At least” because in the interest of
time there was no intermediate examination of the problem
after each swap. For perturbations involving more than one
swap, first P was perturbed and then it was solved.) Table
2 reports how often in 100 trials the easiest and the hardest
individual unsolvable structured problems became solvable
under external swaps.
 Because EUR and EUS were clearly more difficult to flip
than the harder problems, we also tested them under 30,
35, 40, and 45 swaps in an attempt to increase the percent-
age of flips. The results, in Figure 5, indicate that easy un-
solvable problems are remarkably reluctant to flip. Even at
150 swaps (not plotted), the easiest random problems
flipped only 8.4 % of the time.

 Easiest: EUR Hardest: HUR

u v =1 v = 5 v = 25 v = 1 v = 5 v = 25
1 0.1 0.5 4.1 0.9 6.2 26.2
5 0.8 3.3 13.0 6.7 23.0 57.8

25 5.3 10.9 24.9 24.5 51.9 68.2

Figure 3: How often, in 100 trials, a DCSP among the
10 easiest and 10 hardest unsolvable random problems
flipped due to internal swaps.

 Easiest: EUS Hardest: HUS

u v =1 v = 5 v = 25 v = 1 v = 5 v = 25
1 1.2 5.4 23.9 3.8 19.3 57.8
5 5.1 22.3 57.8 18.7 54.5 86.9

25 23.7 58.8 83.1 53.2 86.7 92.5

Figure 4: How often, in 100 trials, a DCSP among the
10 easiest and 10 hardest structured random problems
flipped due to internal swaps.

Discussion
As Figure 5 clearly indicates, unsolvable problems can be-
come solvable with swapping. Harder unsolvable problems
flip more readily than easier ones, and structured unsolv-
able problems flip more readily than random ones. How
few changes were necessary to create a flip in these prob-
lems is noteworthy. Each of them has 250 constraints.
Since all domains are of size 10 and all constraints have
tightness 0.35, each constraint specifies its acceptance or
rejection of 100 tuples with 35 nogoods. Thus a problem’s
full constraint description references 8750 nogoods, and 25
swaps represents only about 0.57% of them.
 To confirm that lexical ordering did not bias the identifi-
cation of EUR, EUS, HUR, and HUS, each of those 40 prob-
lems was solved 10 additional times with MinDomDeg and
random tie breaking. Using the Mann-Whitney-Wilcoxon
test (Hollander and Wolfe, 1999), the average search tree
sizes for HUR problems were compared to those for EUR,
and those for HUS to EUS. In both cases the search trees for
HU were significantly larger than those for the correspond-
ing EU (p < 0.001).
 To investigate the impact MinDomDeg had on the selec-
tion of the easiest and hardest problems, we re-ranked both
original sets of 1000 problems with a different, and some-
what more powerful heuristic, MinDomWdeg (Boussemart
et al., 2004). This heuristic learns weights on constraints as
it searches. All weights begin at 1, and whenever propaga-
tion on a constraint produces a wipeout, the constraint’s
weight is incremented by 1. The weighted degree of a vari-
able is then the sum of the weights of the constraints in
whose scope it lies. MinDomWdeg prefers variables with a
minimum ratio of dynamic domain size to weighted de-
gree. The Pearson product moment coefficient (0.84) indi-
cated little difference in the two rankings of the random
problems produced this way, but somewhat more for the
structured problems (0.61). When the experiment was re-

peated with MinDomWdeg instead of MinDomDeg, how-
ever, it produced results similar to those in Figure 5.
 One must take care in this context to distinguish be-
tween individual problem difficulty and problem class dif-
ficulty. These experiments began with two classes of prob-
lems (one random, the other structured) that are already
termed “difficult” because their value of κ (a predictor for
phase transition) is very close to 1 (Gent et al., 1999).
Among 1000 such problems of each type, however, there
was a range of difficulty, as measured by nodes searched to
solution in Figures 1 and 2. With EUR and HUR (and again
with EUS and HUS) we extracted very small (size 10) sub-
sets of those classes, and then generated 1000 more exam-

Table 2: How often, in 100 trials, individual DCSPs based
on unsolvable structured problems became solvable. Per-
turbation was by 1, 5, or 25 external swaps.

 Easiest: EUR Hardest: HUR
 Swaps

Problem
1 5 25 1 5 25

1 2 7 34 3 19 55
2 2 6 21 7 18 49
3 0 5 31 11 30 84
4 2 8 33 8 29 79
5 2 5 30 2 25 62
6 1 14 47 4 19 79
7 0 3 18 10 56 89
8 6 27 64 7 32 68
9 1 12 36 19 56 89

10 3 20 51 14 40 81
average 1.90 10.70 36.50 8.50 32.40 73.50

σ 1.73 7.69 13.95 5.23 14.18 25.84

Figure 5: Flips under external swaps. Each data point rep-
resents 100 attempts to flip each of 10 unsolvable problems
(1000 samples in all). EUS and EUR were tested on more
swaps in an attempt to flip them more often.

Table 1: How often, in 100 trials, individual DCSPs based
on unsolvable random problems became solvable. Pertur-
bation was by 1, 5, or 25 external swaps.

 Easiest: EUR Hardest: HUR
 Swaps

Problem
1 5 25 1 5 25

1 0 0 0 2 10 30
2 0 1 2 1 13 26
3 0 1 3 2 10 37
4 3 9 18 3 1 25
5 0 6 12 4 15 51
6 0 1 8 1 5 21
7 0 1 4 3 11 55
8 0 1 5 8 18 54
9 0 0 3 1 5 30

10 0 1 4 1 15 45
average 0.30 2.10 5.90 2.60 10.30 37.40

σ 0.95 2.96 5.40 2.17 5.31 12.87

ples by perturbation. Within each of these four larger sets,
the structure of the problem and the tightness on its con-
straints were identical; only the labels on a (relatively) few
tuples differed. Thus our results are about how readily
swaps flip problems from a difficult (for their size) class.
 The reader may wonder whether solvable problems flop,
that is, become unsolvable under swapping. Because flop-
ping seemed a less desirable property, we have thus far de-
voted less attention to it. Nonetheless, we can report that,
in preliminary testing, harder solvable problems also flop
more readily than easier ones under swapping. This sug-
gests that harder problems are in general more susceptible
to a change in solvability in either direction. Further com-
putation is planned to confirm that.
 Another question is whether the difficulty of the prob-
lems, as measured by tree size, changes under swapping.
We emphasize again that the structure of these problems,
along with their size and tightness, does not change under
these perturbations. Nonetheless, the presence of a solution
makes the search trees somewhat smaller, as shown in Fig-
ure 6, where the problems most likely to flip have the most
noticeable reduction in search tree size.

Microstructure
One way to think about flipping is with the notion of mi-
crostructure (Jégou, 2003). The microstructure m(P) of a
CSP is a graph in which each possible variable-value as-
signment is a vertex, that is, for P = <X, D, C>,

m(P) = <V, E> where V = {(Xi, di) | Xi ∈ X, di ∈ Di}
In addition, an edge in the microstructure between Xi = a
and Xj = b means that the pair (a, b) is compatible with the
constraint between Xi and Xj. If there is no constraint be-
tween variables Xi and Xj in P, then in the microstructure
every vertex that represents an assignment to Xi has an
edge to every vertex that represents an assignment to Xj. A
solution to P is represented in m(P) by a complete graph (a
clique) on n vertices, where the values in those vertices

constitute a solution to P.
 When a problem of size n is unsolvable, there is no cli-
que of size n in the microstructure. (Of course, no clique
larger than n can be present in the microstructure, by defi-
nition.) If a single swap makes an unsolvable problem
solvable, then there must have been a subgraph on n verti-
ces in the microstructure that was one edge shy of a clique
on n vertices. In Figure 7, for example, there is no 3-clique,
so the problem is unsolvable. An internal swap of the com-
patible (X1 = 2, X2 = 3) with the nogood (X1 = 2, X2 = 1)
would produce a 3-clique, and therefore a solution. The ex-
ternal swap of the nogoods (X1 = 1, X2 = 1) with (X2 = 1,
X3 = 3) will also produce a clique and a solution. This led
us to believe that good swaps might be predictable from in-
spection of the maximum clique in a graph.
 We searched some microstructures for a maximum cli-
que, using Variable Neighborhood Search (VNS), a state-
of-the-art local search algorithm that finds maximum cli-
ques in a graph (Hansen, Mladenovic and Urosevic, 2004).
In the microstructure of the five hardest solvable random
problems HSR, on 100 attempts per problem VNS found
maximum cliques only of size 45 – 47. We also compared
all solutions to each problem to the largest clique found in
its microstructure. There was little similarity. Let the
similarity between a clique in m(P) and a solution to P be
the number of assignments they share. The closest a largest
identified clique ever came to any solution to its problem
was 25, that is, half its assignments matched some solution
and the other half did not. Indeed, the typical clique was
similar in only 10-20 of its assignments.
 By design, VNS is heavily attracted to vertices of high
degree. Degree in the microstructure, however, indicates
compatibility with many other values. Recall that if a con-
straint is not present between two variables in P, all possi-
ble edges between the vertices associated with them appear
in m(P). Thus variables with low degree in the graph of P
are likely to be associated with vertices of very high degree
in m(P), and therefore attract VNS indiscriminately. The
nature of the solution space provides better information.

The shape of the solution space
Let the distance between two solutions be the number of
value assignments by which they differ, and let two solu-

Figure 6: Search tree size for problems after perturbation
by external swaps. Each data point represents 100 attempts
to flip each of 10 problems (1000 samples in all), with 0 on
the horizontal axis indicating no swaps. The easiest prob-
lems were tested on more swaps in an attempt to flip them
more often.

Figure 7: The microstructure of a simple unsolvable prob-
lem on 3 variables with 3 values, where a swap would pro-
duce a flip.

tions be adjacent if the distance between them is 1. In easy
solvable SAT problems, most solutions are adjacent to one
another, forming a dominant cluster (Krzakala et al., 2007).
As the problems become more constrained, however, the
solution space separates into exponentially many clusters
that are smaller and more distant from one another
(Achlioptas and Ricci-Tersenghi, 2006). Moreover, inside
each cluster most variables assume only a single value.
Eventually, as the problem moves through the range of the
phase transition (Gent et al., 1999), the number of clusters
decreases until there are no solutions at all.
 The effectiveness of local search is heavily dependent on
the shape of the solution space, and it is possible that a lo-
cal search algorithm is effective because it exploits idio-
syncrasies in that shape. (See, for example, (Feldman,
Provan and van Gemund, 2008).) If a local search meta-
heuristic like VNS fails on the microstructure of a solvable
problem drawn from classes at the phase transition, it is
probably because the solution clusters are isolated and dis-
tant from one another. The relationship among sets of par-
tial instantiations and the solution space also influences
how readily a problem will flip. For instance, the hardest
unsolvable problems are likely laden with isolated, nearly-
complete instantiations; a few fortuitous swaps could turn
one into a solvable problem, and our results suggest that
that is relatively easy to do.

Conclusions and Current Work
This paper is the beginning of an extensive study on value
perturbation. It is being extended to larger and smaller
problems, and to problems with larger and smaller do-
mains. To address additional facets of real-world problems,
we also expect to explore structures other than small world
problems, to work with problems that do not have uniform
tightness, and to consider ways to extend the study to in-
tensional constraints and to one-of-a-kind real-world prob-
lems as well.
 There are, of course, many other ways to perturb values
with or without structural changes to P. This work will
move gradually from the low-level disruption of value
swaps described here toward more extensive perturbation,
eventually reaching the kinds of structural disruption stud-
ied in (Wallace, Grimes and Freuder, 2009).
 A class of constraint satisfaction problems is character-
ized by some set of shared features. The two classes ex-
plored here have problems that are the same size (number
of variables and domain size), and have the same number
of edges and the same tightness on those edges. These ex-
periments make clear that characterization along such di-
mensions does not address the inherent nature of a CSP —
as researchers have long suspected, structure makes a dif-
ference. But, beyond structure, some problems differ fun-
damentally in the geometry of their solution space, which
dictates how partial instantiations are permitted to become
solutions, and how solutions arise together.

Acknowledgements
This work was supported in part by NSF IIS-0811437. We
thank Gene Freuder and Rick Wallace for their thoughtful
comments.

References
Achlioptas, D. and F. Ricci-Tersenghi 2006. On the
solution-space geometry of random constraint satisfaction
problems. In Proceedings of STOC-06: 38th Annual ACM
Symposium on Theory of Computing, 130–139.
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In
Proceedings of ECAI-2004, 146-149. IOS Press.
Feldman, A., G. Provan and A. J. C. van Gemund 2008.
Computing minimal diagnoses by greedy stochastic search.
In Proceedings of AAAI-08, 911-918.
Gent, I. E., E. MacIntyre, P. Prosser and T. Walsh 1999.
The Constrainedness of Search. In Proceedings of
Thirteenth National Conference on Artificial Intelligence,
246-252.
Gomes, C. P., B. Selman, N. Crato and H. Kautz 2000.
Heavy-tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems. Journal of Automated Reasoning
24: 67-100.
Hansen, P., N. Mladenovic and D. Urosevic 2004. Variable
neighborhood search for the maximum clique. Discrete
Applied Mathematics 145: 117-125.
Hollander, M. and D. A. Wolfe 1999. Nonparametric
Statistical Methods, 2nd edition. New York, John Wiley.
Jégou, P. 2003. Decomposition of domains based on the
micro-structure of Finite Constraint-Satisfaction Problems.
In Proceedings of AAAI-93, 731-736.
Krzakala, F., A. Montanari, F. Ricci-Tersenghi, G.
Semerjian and L. Zdeborová 2007. Gibbs states and the set
of solutions of random constraint satisfaction problems,
Proc Natl Acad Sci 104(25): 10318-23.
MacIntyre, E., P. Prosser, B. Smith and T. Walsh 1998.
Random Constraint Satisfaction: theory meets practice. In
Proceedings of CP-98, 325-339. Springer Verlag.
Sabin, D. and E. C. Freuder 1997. Understanding and
Improving the MAC Algorithm. Proceedings of CP-97,
Berlin, Springer Verlag: 167-181.
Verfaillie, G. and N. Jussien 2005. Constraint solving in
uncertain and dynamic environments: A survey.
Constraints 10(3): 253-281.
Wallace, R. J., D. Grimes and E. C. Freuder 2009. Solving
Dynamic Constraint Satisfaction Problems by Identifying
Stable Features In Proceedings of IJCAI-09.
Walsh, T. 1999. Search in a Small World. In Proceedings
of IJCAI-99, 1172-1177. Stockholm, Morgan Kaufmann.
Watts, D. and S. Strogatz 1998. Collective dynamics of
small-world networks. Nature 393: 440.

