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Abstract
This paper considers what is required of a sufficiently pow-
erful, and realistically human, game-playing program. It
summarizes relevant human performance data, and distin-
guishes fundamental properties of human and of expert hu-
man play. Learning, planning, and visual perception are
emphasized, as well as communication. The resultant pro-
grams should offer competition, instruction, and collegial
discussion.

Introduction
There are several reasons one might want to construct a
human-like agent to play board games. A person might
enjoy competition against a strong (human-like) player. A
person might learn to play better with a program that could
analyze and discuss contests. Finally, a person might enjoy
interaction with another aficionado. The concern here is
not believability, but skill and communication.

The construction of a good simulated agent (a worthy
opponent) for game playing, however, is a challenging
task. Many popular board games have time limits, so that
contestants must perform under time pressure. Moreover,
one player often competes against many others, so that the
agent’s environment is dynamic. Although one might ex-
pect that human experts would be the obvious models for a
worthy opponent, at the moment expert machine players
and expert human players are very different.

The expert machine game player is engineered. Such a
program typically relies on an extensive opening book
(moves early in contests), high-speed search through thou-
sands or millions of possibilities, and perhaps a vast
lookup table of endgame play (late contest states and the
correct moves there) (Schaeffer 1997). A machine player
may also rely on specialized hardware, as Deep Blue did
(Campbell 1999). If the program learns portions of its
evaluation function or its knowledge base, that learning is
usually done offline, in thousands or millions of contests
(Buro 1999; Campbell 1999).

 The expert human game player, in contrast, is a marvel
of economy. In the course of a year, a chess grandmaster,
for example, plays perhaps a dozen different openings in
perhaps a thousand contests (Holding 1985). The grand-
master considers only four or five possible next moves,
and rarely searches deeper than nine ply, typically with an

alternative or two at each step. The human expert knows
the value of certain endgame positions with a schema for
executing them, but does not often reach that far in search
during play. And the human expert learns that skill on-line.

Throughout this paper, game  denotes a set of rules, play-
ing pieces, and a board, while contest distinguishes a sin-
gle experience playing a game. A state is a situation in a
game, described completely by the location of the playing
pieces on the board and whose turn it is to move. For ex-
ample, tic-tac-toe is a game at which two people might
play a contest, beginning with a state that is an empty
board with X to move. The game tree for a game is the
space of all its possible states, connected by the moves that
lead from one state to another.

This paper describes some properties of human game
players, and addresses the sources of their power. It goes
on to consider what features machines need to simulate
human play and yet provide challenging competition. Em-
pirical results with one program are included.

Human Game Players
Consider first the behavior of ordinary game players. In
one study, 8 college students were recruited to play three
two-person, perfect information, finite-board games
against a computer (Ratterman and Epstein 1995). As
competition, three opponent programs were constructed;
each was a perfect player , that it is, each was designed to
make the best possible move in any state and, if there was
more than one such move, to select a top-quality move at
random. The games in this experiment were tic-tac-toe,
lose tic-tac-toe, and achi; they are described in Figure 1.
Each of them is a draw game, that is, with perfect play on
both sides, every contest would result in a draw.

The subjects were asked to “think out loud” while they
played, and their verbal protocols were tape recorded. Each
person encountered the three games in a randomized order.
A game was played until the subject drew 7 consecutive
contests or had played 25 contests. Based on their per-
formance, four of these subjects were rated as skilled game
players and the other four as unskilled game players, using
contrastive analysis (Chi, Bassok, Lewis, Reimann, and
Glaser 1989).



After playing all three games, the subjects were given a
list of 17 commonsense principles (generally applicable
rationales for move selection) that might be brought to bear
on play, and asked to rate their effectiveness, how often
they had used them, and in what order, for each of the
games. These principles are listed in Table 1. Answers
were compared with the transcribed protocols. The com-
monsense principles frequently appeared in the protocols
and were also confirmed by the subjects in their written
answers.

The more skilled game players in this experiment ver-
balized most of the Table 1 commonsense principles in
their protocols, and used them more often than the less
skilled players. The skilled players also valued the com-
monsense principles more highly in their decision making
than the unskilled players. More skilled players also used
two of the principles, Defense and Patsy, less often than
less skilled players. (The prevalence of a variety of com-
peting, possibly inconsistent, principles supporting exper-
tise is not uncommon; it has been detected in other do-
mains as well, e.g., (Biswas, Goldman, Fisher, Bhuva, and
Glewwe 1995), (Crowley and Siegler 1993).)

Expert Human Game Players
Expert human game players have been the focus of study
for more than 100 years (e.g., (Binet 1894)). Psychologists
have found in them no evidence of exceptional concentra-
tion, enormous memory, high IQ, extensive forward search
into the game tree, statistical measures of typicality, or
concrete visual images (Binet 1894; Charness 1981;
Djakow, Petrowski, and Rudik 1927; Holding 1985).
Nonetheless, human experts play faster and better than
novices.

Skilled human game players have better memories, but
only for meaningful patterns, that is, ones that could arise
during play (Chase and Simon 1973). Evidence suggests
that such a memory maybe organized around higher-level
concepts or around prototypes (Eisenstadt and Kareev

X X X X X

(a) (b)

Figure 1: The game boards for (a) tic-tac-toe and lose tic-
tac-toe, and (b) achi. Tic-tac-toe is the well-known game,
where a win is three pieces (either X’s or O’s) in a row
either vertically, horizontally, or diagonally. Lose tic-tac-
toe is a variant of tic-tac-toe played on the same board, in
which three pieces in a row lose the game. Achi is played
between black and white. Contestants at achi begin with 4
markers and alternately place them on the board at the
intersection of two or more lines. There are nine such po-
sitions, corresponding to the nine positions on the tic-tac-
toe grid. Once all eight markers have been placed on the
board, a turn at achi consists of moving one’s own piece
to the single empty position. A win at achi is three pieces
in a row. Play ends in a draw when the same state is cy-
cled through an agreed upon number of times (3 here).

Table 1: Commonsense principles and their definitions as
described to the subjects.
Principle Definition
Blinders Select a move to further a simple plan,

with no regard for your opponent’s
plans.

Defense Select a move to defend against your op-
ponent’s simple plans.

Don’t Lose Do not make a move that will result in a
loss.

Enough Rope If your opponent would have a losing
move on this board, avoid blocking it,
i.e., leave the opponent the opportunity
to “hang itself.”

Fork Chose a move giving you more than one
opportunity to win, while blocking
moves giving your opponent more than
one opportunity to win.

Greedy Make moves that advance more than one
winning configuration.

Lookahead “Look” two moves ahead, and based on
this choose your next move.

Panic If your opponent has a winning move on
this board, block it.

Resign If this is a certain loss, resign.
Victory If you can find a winning move, take it.
Again Repeat winning or drawing moves you

have made.
Not Again Do not repeat previously losing moves

you have made.
Copycat Mimic opponent’s winning or drawing

moves.
Leery Avoid moves that your intuition tells you

have led to a loss in the past.
Patsy Reproduce the visual pattern made by the

pieces of the winning or drawing player,
and avoid the visual patterns made by
the pieces of the losing player.

Start Repeat previously successful observed
opponent’s opening.

Win If you remember a certain win, make the
winning move.



1975; Goldin 1978) rather than perceived patterns. A long-
standing theory advocated chunks (unordered spatial pat-
terns) as the foundation of chess grandmasters’ skill. More
recent work, however, has focused on the far more difficult
game of Go, which has hundreds of pieces and a branching
factor roughly 10 times that of chess.

Go masters do not appear to have such chunks (Reitman
1976). Instead, protocols and eye movement studies on ex-
pert Go players (Burmeister, Saito, Yoshikawa, and Wiles
1997) indicate that perception is interleaved with cogni-
tion, as demonstrated in timed photographs of a chess
player’s brain (Nichelli, Grafman, Pietrini, Alway, Carton,
and Miletich 1994). The Go players, it appears, are able to
narrow their perceptual focus to only a small part of the
board, and actually look between the stones (playing
pieces) rather than at them, as if considering their options.
(A Go move is the placement of a stone on one of hun-
dreds of grid intersection points.) Master Go players’
searches are, on average, only 4-ply deep and no more than
3 moves wide. The patterns these players perceive are dy-
namic, and they readily annotate those patterns with plans.

Moreover, Go players’ memories appear to be cued to
sequences of visual perception (Yoshikawa, Kojima, and
Shingaki 1999). Stronger players remember professional
contests better than randomly played ones. Stronger play-
ers are also better able to replicate a position they have
watched emerge from a sequence of plays than one that has
been presented after the fact. Indeed, strong players always
attempted to replicated a state as if it had emerged from
competition, alternately placing a black stone and then a
white stone on the board, even when the state had been
generated randomly. In another trial that used auditory
cues (verbal descriptions of the location of pieces, with or
without some descriptive Go terminology) instead of vis-
ual cues, similarly strong players failed to recreate states
from expert play. Visual perception was essential to their
memories. Surprisingly, in Shogi (a chess-like game
played with 40 pieces on a 9 × 9 board) auditory cues were
as effective as visual ones.

Realistic Game-Playing
Some features of human play are by now traditional in
strong game-playing programs. A good human player will
remember previous significant experiences; many pro-
grams have knowledge bases to which they refer. A good
human player will not need to re-expand the same portion
of a game tree more than once in a contest; many programs
have transposition tables that serve the same purpose. A
good human player knows the importance of openings and
remembers and employs a variety of them; many programs
have extensive opening books. A good human player rec-
ognizes and employs endgame knowledge; many programs
have similar information.

There are, however, a variety of features that describe
human expertise, features that programs generally lack. A
good human game player plays faster in familiar situations
or when the other contestant makes a foolish move, and

slower when the other contestant makes a strong move. In-
deed, a good human game player constructs a model of her
opponent, and makes decisions accordingly. A good hu-
man game player has a variety of rationales for her behav-
ior, and is able to offer an explanation for her action, one
that may include alternative move sequences. People use
visual perception to organize their memories, and appear to
have sequential patterns as well as static ones. People learn
to play better as they play more, they readily annotate their
play with the motivations behind their choices, and they
plan. Moreover, human experts play faster when they
know more, while many programs play slower. This hu-
man speed up is known as the shift to automaticity.

A cognitively plausible program
Hoyle is a program that has been judged cognitively plau-
sible in both its construction and its performance
(Ratterman and Epstein 1995). Hoyle is based on FORR
(FOr the Right Reasons), an architecture for learning and
problem solving (Epstein 1994a). FORR’s thesis is that
there are many good reasons for making a decision in a
particular domain, and that a combination of those reasons
should be sufficient to learn to perform expertly.

In FORR, each good reason is called an Advisor.
Hoyle’s Advisors may be thought of as good reasons for
making a move. The rationales in Table 1 are actually
paraphrased (and in some cases, renamed) versions of
some of Hoyle’s Advisors. Theoretically, an Advisor can
be structured around any kind of computation, but FORR-
based programs have traditionally eschewed deep search in
favor of heuristic rationales.

Each Advisor is implemented as a procedure whose in-
put is the current world state, the choices available to the
decision maker, and acquired useful knowledge, learned
data that is potentially applicable to future experience but
only probably correct. An Advisor’s output is a set of
comments, at most one for each choice. A comment indi-
cates the degree ( strength) to which that particular Advisor
supports or opposes an individual choice.

Hoyle uses a mixture of game-playing Advisors to select
a move. Tier-1 Advisors take priority. For example, since
the objective in game playing is to win and Victory is al-
ways correct, there should be no debate between Victory
and any heuristic Advisor. The tier-1 Advisors are prese-
quenced by the programmer and consulted in order. If any
one of them can make the decision, it does so, and none of
the remaining Advisors in any tier is consulted. For the
most part, however, tier 1 does not comment, and the deci-
sion proceeds to the heuristic Advisors. They are consulted
in parallel, and their comments combined to make a deci-
sion. Heuristic Advisors vary in their relevance from one
game to the next. An Advisor for piece capture, for exam-
ple, is less important in tic-tac-toe than certain other Advi-
sors, although that may not be the case in every game. For
this reason, FORR provides a weight-learning algorithm
that combines the heuristic Advisors’ comments .

Prior to the work reported here, all Advisors were pre-
specified by the programmer and potentially applicable to



every problem class. Recently, however, Hoyle has begun
to learn perceptually-based, game-specific Advisors
(Epstein, Gelfand, and Lock 1998).

Hoyle begins as a novice at any game; it learns useful
knowledge (probably correct and possibly reusable) infor-
mation as it plays. Each kind of useful knowledge is pre-
specified by the programmer, with a learning time and a
learning algorithm. For example, a good opening is learned
by rote after a contest. Each kind of useful knowledge is
expected to be relevant to every game, but the values for a
particular useful knowledge item are not known in ad-
vance. Openings, for example, must be learned, and vary
from one game to another. This is what is meant by game-
specific useful knowledge.

In the college student experiment described above, the
overlap between the way Hoyle makes decisions, and the
way good human game players reasoned and believed they
should reason, was quite high. Moreover, the human sub-
jects and Hoyle favored the same principles/Advisors on
the same games, and found the games difficult to learn in
the same order. A cognitive psychologist judged Hoyle “a
plausible model of the acquisition of expertise in humans”
(Ratterman and Epstein 1995).

Formulating a Worthy Opponent
This section addresses the reasons for construction of a
human-like agent to play board games: competition, edu-
cation, and consultation.

The worthy opponent as competitor
For shogi and Go, programs in the style of Deep Blue have
not produced even strong amateur play. The creation of
large, useful endgame databases is unlikely, because there
are as many or more pieces on the board in the endgames,
and often a larger branching factor. Knowledge for a heu-
ristic evaluation function is also problematic. In shogi, un-
like chess, there is no consensus even on the relative
strength of the individual pieces (Beal and Smith 1998). In
Go, unlike chess, the rules distinguish no stone from any
other of the same color; a stone’s significance is deter-
mined by the state. There are, moreover, thousands of pos-
sible Go features whose interactions are not well under-
stood. To excel at games like shogi and Go, programs, I
believe, will require a cognitive orientation.

Based on the results discussed earlier, Go masters de-
pend upon sequences of actions. Some work has begun in
that area. Lock (Lock, in preparation) has extended Hoyle
to learn sequences of actions in a variety of ways. In small
games (e.g., lose tic-tac-toe) she has demonstrated a hu-
man-like shift to automaticity. In slightly larger ones (e.g.,
five men’s morris in Figure 2) she has also demonstrated
performance enhancement. Shih, meanwhile, has devel-
oped a case-based approach to sequence learning (Shih
2000). Bridge is a card game whose imperfect information
makes deep search intractable. Shih has shown that it is
possible to learn variable-length sequences of state de-

scriptions for three-no-trump contracts, and then use them
to play out a bridge hand surprisingly well.

Human Go masters also rely on visual perception to or-
ganize their memories and focus their attention. Given
their current weak level of play, it seems clear that Go pro-
grams should move in this direction. Although patterns are
noticed and exploited by people, purely pattern-based play
is not successful, even on the three games of Figure 1
(Painter 1993). Nonetheless, Go texts associate particular
patterns on the board with names (e.g., ladder), and have
standard responses to them. When Hoyle learns to observe
simple patterns and apply the successful ones, its perform-
ance on small games such as lose tic-tac-toe is substan-
tially enhanced (Epstein, Gelfand, and Lock 1998). The
patterns Hoyle uses are derived from templates (L’s, V’s,
straight lines, squares, and diagonals of squares) prespeci-
fied by the programmer, but Hoyle sizes and locates them
on the game board, and then learns to associate contest
outcomes with those patterns. Hoyle also constructs and
uses new, pattern-based Advisors that are particularly sali-
ent generalizations over patterns.

Nonetheless, for slightly more complex games, simple
patterns are unlikely to address the shapes crucial to ex-
pertise. The controlled generation and learning of impor-
tant patterns remains an open question. A second percep-
tual enhancement to Hoyle, however, appears more prom-
ising. The program now has a language with which to de-
scribe how territory on the board is held by winning,
drawing, and losing contestants. As it plays, Hoyle learns
how to describe territorial control, and then uses those de-
scriptions in games such as five men’s morris to make

Figure 2:  The game board for five men’s morris. Play is
between two contestants, black and white, each with five
playing pieces. In the placing stage contestants alternate
placing their pieces on any empty location (the 16 inter-
sections marked on the board). In the sliding stage a move
slides an owned piece along a predrawn line on the board
from one location to an immediately adjacent empty loca-
tion. Three pieces of the same color on a predrawn line
form a mill. When a move forms a mill, the mover cap-
tures any piece belonging to the other contestant, a piece
not currently in a mill if there are any. Play terminates
with a win for the non-mover whenever the mover is re-
duced to two pieces or cannot slide. Otherwise, a draw is
declared when play cycles three times through the same
state or the contest exceeds some fixed length (here, 80
moves). This game is non-trivial: contests between strong
players average 65 moves in a search space of about 7
million states.



better moves (Epstein, submitted for publication.). Hoyle
also constructs and tests new, territorially-oriented Advi-
sors for particularly salient expressions. Since Go is a
game about territorial control, such an approach could
prove valuable.

Finally, the development of expert players for games
that people do not understand well must to some extent
rely on machine learning. If we cannot infuse a system
with enough of our own knowledge, we must ask it to pro-
duce that knowledge itself. This approach has been suc-
cessful deductively in checkers (Schaeffer 1997) and in-
ductively in Othello, backgammon, and Scrabble (Buro
1998; Sheppard 1999; Tesauro 1995).

The worthy opponent as tutor or colleague
For both instruction and consultation, a worthy opponent
needs some ability to converse with the other contestant
about the behavior in question. Initially, this might be of
the form “nice move” when it is one the program’s evalua-
tion function would have chosen, or perhaps “that’s a sur-
prise” when it is not. Fundamental, therefore, is the notion
of choice (or lack thereof when a move is forced).

Fundamental too are the devices that people use. Dis-
course alone will not suffice. Demonstration (playing out
one or more sequences of moves) and highlighting key ac-
tions and locations diagrammatically are also essential to
good communication. A worthy opponent must recall sig-
nificant contests and game states, although significance is
for the moment ill-defined. A worthy opponent will main-
tain a transposition table, and be able to refer to a possible
move as one that was anticipated when an earlier choice
was made. A worthy opponent will also be knowledgeable
about both openings and endgame play. The former must
be a focus of attention in dialogue and in instruction, in-
cluding variations; the latter must be associated with ac-
tions that achieve or thwart a desired outcome. Whether or
not the program requires visual perception to play well, it
must be able to cast descriptions in that perspective when
good communication requires it.

A worthy opponent also needs some machine-accessible
representation of the rules of the particular game, both to
prevent illegal moves and to focus its attention. The no-
tions of defensive and offensive play are fundamental here;
the notions of risk, and of protecting and attacking pieces
or territory follow close behind. Given the rules, a program
can identify moves that are likely to support aggressive be-
havior (e.g., piece capture or preparation for it) and also
moves that are likely to put it at risk. Early work on this
merits further exploration (Pell 1993). Whether or not a
loss is irrevocable (can you recapture your own lost piece?
balance that loss by capturing another?) is also an impor-
tant component of discussion.

A worthy opponent also needs some knowledge of in-
tentionality. In a game, the goal is to win, but there are
usually subgoals (e.g., piece capture, pawn promotion)
that, while not essential, may support progress toward that
goal. Fundamental, therefore, is the notion of a sequence of
actions and also of a plan, a sequence of actions intended

to achieve a particular goal. A worthy opponent can expect
that a human will perceive and act sequentially; it therefore
must be able to plan itself, and to teach a pupil to plan.
This requires the ability to extract purposeful sequences of
actions and reapply them appropriately, as both Lock and
Shih have done. More difficult is the formulation of a plan
directed to a particular subgoal, and the construction of a
plan for an entire contest from a set of subgoal plans. For
example, in the play of a suit-contract bridge hand, one
might decide to pull trump, establish a secondary suit, and
then take high-card tricks. This is a strategy, an overall
plan for the development of the contest. Within the strat-
egy, there are several shorter-term plans or tactics. One
might, for example, establish a secondary suit by playing it
until the opponents are void, or by taking a finesse. Selec-
tion of individual tactics and their serialization or inter-
weaving to form a strategy is an important open research
topic.

Over-reliance on stored knowledge hampers explana-
tions; “the transposition table said so” is simply not a satis-
fying rationale for a person at any skill level. Given peo-
ple’s propensity to play based on commonsense principles,
the ones in Table 1, as well as Hoyle’s learned pattern-
oriented and territorially-oriented Advisors, would be a
good place to begin. A worthy opponent could then merely
paraphrase each Advisor to produce an explanation, such
as “I made that move because it established this pattern
[the program produces a diagram here] which appears to be
associated with successful play, and because when I used
this move in the past it was successful in this situation.”
Such an explanation would be enhanced by some search
results of alternatives suggested by the program’s evalua-
tion function. A worthy opponent must be equipped with
vocabulary that supports discussion, on which human in-
teraction in this domain depends.

There are, finally, probably as many theories on how to
teach game playing as there are human players. The classic
devices are examples drawn from expert performance (e.g.,
newspaper columns) and competition. Some work on the
nature of a good trainer (Epstein 1994b) has recently been
extended (Epstein, submitted for publication) and merits
attention. Particularly important there are the inherent
weakness of learning to play against oneself, the impor-
tance of a strong opponent, and the detection of key nodes,
states with important lessons to impart.

In summary, expert human game players focus their at-
tention with perception, and rely on carefully organized
knowledge and efficient procedures to manipulate that
knowledge. Such people learn and plan, and employ dia-
gram-annotated discourse to communicate with each other.
A machine–human pair should strive for similar expertise.
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