
Learned Value-Ordering Heuristics for Constraint Satisfaction

Zhijun Zhang1 and Susan L. Epstein1,2

1Computer Science Department, The Graduate Center of the City University of New York
365 Fifth Avenue, New York, NY 10016-4309, USA

zzhang@gc.cuny.edu

2Computer Science Department, Hunter College of the City University of New York,
695 Park Avenue, New York, NY 10065, USA

susan.epstein@hunter.cuny.edu

Abstract
In global search for a solution to a constraint satisfaction
problem, a value-ordering heuristic predicts which values
are most likely to be part of a solution. When such a
heuristic uses look-ahead, it often incurs a substantial
computational cost. We propose an alternative approach,
survivors-first, that gives rise to a family of dynamic value-
ordering heuristics that are generic, adaptive, inexpensive to
compute, and easy to implement. Survivors-first prefers
values that are most often observed to survive propagation
during search. This paper explores two algorithms, and
several modifications to them, that learn to identify and
recommend survivors. Empirical results show that these
value-ordering heuristics greatly enhance the performance
of several traditional variable-ordering heuristics on a
variety of challenging problems.

Introduction
In global search for a solution to a constraint satisfaction
problem (CSP), variable-ordering and value-ordering
heuristics can have substantial impact on search
performance. The best-first principle for global search
advocates the selection of a value most likely to be part of
a solution. Value-ordering heuristics typically rely on look-
ahead strategies. Strict adherence to the best-first principle,
however, often incurs a substantial computational cost as it
tries to predict that probability. Our alternative, survivors-
first, advocates instead the selection of a value most likely
to remain an option (i.e., to survive) after propagation.
 Our thesis is that, instead of look-ahead, promising
values can be learned inexpensively during propagation,
and then applied by heuristics to speed solution to an
individual problem. We investigate here two simple
learning methods that support survivors-first, along with
effective, adaptive value-ordering heuristics that severely
restrict look-ahead at the root of search tree. Our learned

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

value-ordering heuristics are generic, adaptive, inexpensive
to compute, and easy to implement. Moreover, search with
a variety of traditional variable-ordering heuristics benefits
significantly from survivors-first. After fundamental
definitions and a brief discussion of related work, this
paper describes our learned value-ordering heuristics and
initial empirical results. It then introduces modifications
that improve their performance and analyzes empirical
results on a broad range of challenging problems.

Background and Related Work
Formally, a CSP P is represented by a triple <X, D, C>,
where X is a finite set of variables, D is a set of domains
individually associated with each variable in X, and C is a
set of constraints. An assignment associates a variable with
a value from its domain. A constraint c in C consists of a
scope(c) ⊆ X and some relation(c) that identifies all
acceptable combinations of assignments for variables in
scope(c). The variables in scope(c) are neighbors of one
another.
 Global search systematically selects an unassigned
variable (here, a focus variable), and assigns it a value.
After value assignment to a focus variable, a propagation
algorithm infers its impact upon the domains of the future
(as yet unvalued) variables. Repeated propagation after
each value assignment maintains consistency among future
variables. A wipeout occurs when propagation empties the
domain of some future variable. After any wipeout, global
search backtracks (removes some consecutive sequence of
previous assignments).
 An instantiation for a CSP is a set of assignments of
values to variables. A full instantiation assigns values to all
the variables. Global search begins with an empty
instantiation and seeks a solution (a full instantiation which
is acceptable to every constraint in C). A solvable CSP has
at least one solution; otherwise it is unsolvable. This paper

addresses only solvable binary CSPs, where each
constraint addresses at most two variables.
 In general, variable-ordering heuristics drive search to
select future variables that are more tightly constrained,
while value-ordering heuristics drive search to select
values that are more likely to succeed. Nonetheless, most
global search algorithms rely mainly on variable-ordering
heuristics and propagation. Value-ordering heuristics have
been comparatively neglected because they require
substantial computational resources in many situations.
 Early criteria for value selection estimated the number of
solutions to the problem (Dechter and Pearl 1988).
Subsequent efforts used ideas from Bayesian networks to
improve such estimation (Meisels, Shimony, and
Solotorevsky 1997; Vernooy and Harvens 1999; and Kask,
Dechter, and Gogate 2004). This work, however, ignored
the cost of finding solutions within a subtree of a specific
size. Other work used look-ahead strategies to select a
value that maximized the product (Geelen 1992; Ginsberg
et al. 1990) or the sum of the resulting domain sizes after
propagation (Frost and Dechter 1995). When done
dynamically (i.e., recomputed after propagation for every
assignment), however, all these methods are costly.
 More recent work sped solution counting with global
constraints (Zanarini and Pesant 2007) or resorted once
again to non-adaptive, faster, static value-ordering
heuristics, calculated only once, prior to search (Mehta and
von Dongen 2005). Nonetheless, even the initial
computation to produce a static value ordering is non-
trivial for many large problems.
 Early work on learning about values focused on nogoods
(i.e., instantiations that are not part of any solution).
Nogoods can guide search away from the re-exploration of
fruitless subtrees, particularly with the help of restart
(Lecoutre et al. 2007). Impact, the domain reduction
observed after propagation, can be used heuristically to
select both a variable and the value to assign to it (Refalo
2004). More recently, multi-point constructive search has
learned elite solutions, instantiations most likely to be
extended to a solution (Beck 2007). Elite solutions are used
in combination with restart to speed search, primarily on
optimization problems. Other learning work has identified
high-performing value heuristics (Epstein et al. 2005;
Minton 1996), but does not tailor the heuristics to an
individual problem.

Learned Value-Ordering Heuristics
Let L be an instantiation and let x be a future variable with
possible value v and neighboring variable y. A value in the
domain of y that is consistent with the assignment of v to x
is a support for v. If L can be extended to a solution, we
say that L is an extensible instantiation. Otherwise, L is an

inextensible instantiation. If the assignment of v to x
changes L from extensible to inextensible, that assignment
is a value mistake (Harvey 1995). Otherwise, if L remains
extensible, v for x is a compatible assignment and we say v
is compatible with L. A perfect value-ordering heuristic
makes no value mistakes during search for a solution to a
solvable CSP.
 Search with a perfect value-ordering heuristic would
make variable ordering irrelevant, because propagation
after a compatible assignment would never cause a
wipeout. In general, if L is extensible, the values remaining
for the future variables may also be compatible.
Propagation after a newly-constructed compatible
assignment seeks to remove additional values. Consider an
example where values a1 and a2 for variable A and values
b1 and b2 for variable B are all compatible with L, but a1 is
only consistent with b1 and a2 is only consistent with b2. If
a perfect value-ordering heuristic selects a1 for A, then
propagation after such an assignment should remove b2 as
an option. In contrast, the compatible value b1 that survives
propagation may be part of a solution.
 Our approach is assertively optimistic. It assumes that
the current instantiation L is extensible, a heuristic to be
sure. It also assumes that survival is uniform, that is, that a
survivor in one area of the search space has the same
probability of survival in other areas. Because constraints
are bidirectional (Bessière, Freuder and Régin 1999),
supports for a value compatible with L may also be

revise-3 (variable x
i
, constraint c

ij
)

domain-change ← false
for each v

i
 in D(x

i
)

 if not exist (v
i
, vj) ∈ cij then

 remove v
i
 from D(x

i
)

 domain-change ← true
 end if
end for
return domain-change

(a)

revise-3-L (variable x
i
, constraint c

ij
)

1 domain-change ← false
2 for each v

i
 in D(x

i
)

3 R ← retrieve-R-value(v
i
)

4 S ← retrieve-S-value(v
i
) + 1

5 unless (v
i
, v

j
) ∈ c

ij

6 remove v
i
 from D(x

i
)

7 domain-change ← true
8 unless v

i
 or v

j
 is the focus variable

9 R ←R + 1
10 update-R-value(v

i
, R)

11 end unless
12 end unless
13 update-S-value(v

i
, S)

14 end for
15 return domain-change

(b)

Figure 1: Pseudocode for (a) the original revise-3
algorithm (Mackworth 1977) with (b) revisions in
boldface to learn which values survive.

compatible values. Thus, values that repeatedly survive
propagation are likely to be compatible.
 Our algorithms observe search and propagation
carefully. Rather than look ahead to predict a value most
likely to succeed, our algorithms instead learn and use
those values that frequently survive propagation during
search. They tabulate R, how often a value is removed
during propagation, and S the frequency with which a
value is challenged to see if it has support. Our value-
ordering heuristics assume that the more frequently a value
has been removed, the less likely it is to be compatible, and
that the more frequently a value has been challenged, the
more likely R is to be an accurate predictor of that value’s
ability to survive.
 Our algorithms learn compatible values while enforcing
arc consistency. (A binary CSP is said to be arc consistent
if and only if, for every constraint between pairs of future
variables, each value of both variables has at least one
support from the domain of its neighbor.) An AC algorithm
enforces arc consistency; a MAC algorithm maintains arc
consistency during search (Sabin and Freuder 1994). There
are many AC algorithms. Any AC algorithm, such as AC-3
(Mackworth 1977) or AC-2001 (Bessière and Régin 2001;
Bessière, Régin, Yap, and Zhang, Y. 2005.), would permit
us to monitor the frequency of value removals. AC-2001
and AC-3 have the same framework except that AC-2001
stores the smallest support for each value on each
constraint. For simplicity here, we only work within AC-3
whose maintenance is denoted as MAC-3.
 Observing R, the frequency of value removals, is
inexpensive and straightforward. Value removals can be
tallied within the key component, revise-3 of the AC-3
propagation algorithm, shown in Figure 1(a). Revise-3
checks every value v of a variable xi in the scope of a
constraint cij for a support from the other variable xj
constrained by cij. If no support exists in the domain of xj, v
should be removed from the domain of xi. In Figure 1(b)
lines 3 and 8 – 10 maintain R, the removal frequency of
each value addressed by revise-3. A removal is recorded
only when both variables in the scope of cij are future
variables and neither is the current focus variable.
 Observing S, the frequency with which a value is
challenged, is also inexpensive and straightforward. During
propagation, a value v of xi may repeatedly invoke revise-3
to seek a support from another variable xj. How often
revise-3 is invoked to seek support for v can be an
indication of how difficult it is to remove v. In Figure 1(b),
lines 4 and 13 record S for each value of each future
variable encountered during propagation.
 Our first search heuristic, RVO (R-value-ordering)
chooses a value with the lowest recorded R. Our second
search heuristic, RSVO (R/S-value-ordering) chooses a
value with the lowest observed R/S ratio. RSVO prefers
values that have rarely been removed (small R) and

frequently challenged (high S) during propagation. We use
a parameter to define ties. Any domain values whose R or
R/S scores differ by no more than tie-range (here, 5%) are
treated as if they produced a tie. Both heuristics direct
search to choose values that have repeatedly survived
propagation during search on this problem. The hope is
that removal statistics from past propagation closely reflect
the likelihood that a value is compatible, and that they can
guide search successfully.

Initial Empirical Results
The test bed used here is ACE (the Adaptive Constraint
Engine) (Epstein, Freuder, and Wallace 2005). ACE is
readily configured to do global search with MAC-3 and
particular variable-ordering and value-ordering heuristics.
The heuristics used here employ the following definitions.
The domain size of a variable is the number of values in its
dynamic (i.e., after propagation) domain. A variable’s
static degree is the number of its neighbors; its dynamic
degree is the number of future variables that are its
neighbors. A constraint can have a weight that is
incremented whenever it incurs a wipeout during search.
The weighted degree of a variable is then the sum of the
weight values of all the constraints in whose scope it lies
(Boussemart et al. 2004).
 We report detailed results on six problem classes, all
solvable and binary. The random problems are described
with Model B notation, where <n, m, d, t> denotes
problems on n variables, with maximum domain size m,
density d (fraction of the possible pairs of variables that
have constraints between them), and tightness t (average
fraction of the possible pairs of values excluded by each
constraint) (Gomes et al., 2004). We use problems from
<50, 10, 0.38, 0.2> and <50, 10, 0.184, 0.631>. The former
is at the phase transition, that is, particularly difficult for its
size (n and m values) and type. We also use two classes of
solvable balanced 10×10 quasigroups, one with 67 holes
(at the phase transition) and one with 74 holes. Finally,
composed problems were inspired in part by the hard
manufactured problems of (Bayardo Jr. and Schrag, 1996).
A composed CSP consists of a central component joined to
one or more satellites. The number of variables n,
maximum domain size m, density d, and tightness t of the
central component and its satellites are specified
separately, as are the density and tightness of the links
between them. A class of composed graphs is specified
here as

<n, m, d, t> s <n′, m′, d′, t′> d′′ t′′
where the first tuple describes the central component, s is
the number of satellites, the second tuple describes the
satellite, and the links between the satellite and the central
component have density d′′ and tightness t′′. Satellites are

not connected to one another. Some classes of composed
problems are particularly difficult for traditional solvers
because the “natural” variable ordering is inappropriate,
that is, they are better approached with minimum degree

than maximum. We test here on two such classes of
composed problems.

 We test survivors-first with four popular variable-
ordering heuristics, one at a time: mdd minimizes the ratio
of dynamic domain size to static degree, mddd minimizes
the ratio of dynamic domain size to dynamic degree
(Bessière and Régin 1996), wdeg prefers a future variable
with maximum weighted degree, and dom/wdeg minimizes
the ratio of dynamic domain size to weighted degree
(Boussemart et al. 2004). For simplicity, we use mdd,
mddd, wdeg, and dom/wdeg to denote a basic MAC-3
solver with the corresponding variable-ordering heuristic
and a lexical value-ordering heuristic. Results are reported
as reductions in the effort a basic solver required to solve a
problem, both in constraint checks and in CPU time. The
latter includes the time to learn about value survivors and
to apply our value-ordering heuristics. Unless otherwise
indicated, all ties are broken by lexical ordering.
 Our first set of experiments used the four solvers, to find

Table 2: Performance of dom/wdeg solvers with lexical
value ordering, and with RVO and RSVO value-ordering
heuristics on 100 problems from each of two classes of
quasigroups. (Although the quasigroup class with 67 holes
is generally harder, there was a single problem on 74 holes
that proved extremely difficult for dom/wdeg and inflated
its average performance.)

 % Reduction in
Solver Holes Checks CPU time

dom/wdeg averaged 121,527 checks/problem
dom/wdeg+RVO 67 78.32% 65.83%
dom/wdeg+RSVO 67 58.10% 47.34%
dom/wdeg averaged 821,802 checks/problem
dom/wdeg+RVO 74 89.99% 88.67%
dom/wdeg+RSVO 74 96.26% 94.33%

Table 1: Performance comparison among four CSP
solvers equipped with lexical value ordering and variants
of learned value-ordering heuristics on 50 problems in
<50, 10, 0.38, 0.2>. The modifications TOP and SAC1 and
the prefix m are described in the next section.

 % Reduction in
Solver Checks CPU time

mdd averaged 29,977,216 checks/problem
mdd+RVO 19.18% 12.00%
mdd+RVO+TOP 12.25% 2.05%
mdd+RVO+SAC1 61.80% 41.77%
mdd+mRVO 62.58% 51.50%
mdd+RSVO 35.79% 26.50%
mdd+RSVO+TOP 23.80% 10.49%
mdd+RSVO+SAC1 52.67% 35.91%
mdd+mRSVO 65.11% 62.50%
mddd averaged 26,655,702 checks/problem
mddd+RVO 14.31% 18.36%
mddd+RVO+TOP 7.73% 7.96%
mddd+RVO+ SAC1 50.24% 49.52%
mddd+mRVO 64.10% 64.73%
mddd+RSVO 22.40% 22.71%
mddd+RSVO+TOP 18.40% 16.11%
mddd+RSVO+ SAC1 52.12% 50.25%
mddd+mRSVO 63.50% 63.77%
wdeg averaged 70,441,344 checks/problem
wdeg+RVO 11.88% 4.20%
wdeg+RVO+TOP 22.95% 6.30%
wdeg+RVO+ SAC1 57.75% 52.65%
wdeg+mRVO 68.68% 64.50%
wdeg+RSVO 28.78% 31.30%
wdeg+RSVO+ TOP 27.49% 26.00%
wdeg+RSVO+ SAC1 67.19% 64.83%
wdeg+mRSVO 68.57% 58.59%
dom/wdeg averaged 26,494,236 checks/problem
dom/wdeg+RVO 6.42% 8.73%
dom/wdeg+RVO+ TOP 17.76% 26.42%
dom/wdeg+RVO+ SAC1 52.15% 54.11%
dom/wdeg+mRVO 61.69% 58.52%
dom/wdeg+RSVO 6.13% 7.86%
dom/wdeg+RSVO+ TOP 11.73% 15.55%
dom/wdeg+RSVO+ SAC1 53.04% 52.02%
dom/wdeg+mRSVO 63.22% 62.01%

Table 3: Performance of dom/wdeg solvers with lexical
value ordering, and with RVO and RSVO value-ordering
heuristics on 100 composed problems from each of two
classes.

 % Reduction in
Solver Checks CPU time

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.012, 0.05>
dom/wdeg averaged 318,057 checks/problem
dom/wdeg+RVO 16.00% 6.37%
dom/wdeg+RSVO 9.65% 0.32%
<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.104, 0.05>
dom/wdeg averaged 115,875 checks/problem
dom/wdeg+RVO 8.02% 3.15%
dom/wdeg+RSVO 11.14% 3.94%

the first solution to each of 50 CSPs in <50, 10, 0.38, 0.2>.
Table 1 summarizes the performance of each solver alone,
and then enhanced in turn by RVO, RSVO, and their
modified versions (described in the next section). The
results clearly show that RVO and RSVO improve the
performance of each of the four variable-ordering
heuristics. Our second set of experiments was on the
quasigroups. Table 2 reports only on dom/wdeg because
the other solvers timed out on these problems. Note that
dom/wdeg+RVO and dom/wdeg+RSVO dramatically
outperform dom/wdeg with lexical value ordering on both
problem classes. Our third set of experiments was on the
composed CSPs. Again, Table 3 reports only on dom/wdeg
because the other solvers timed out on these problems.

Modification for Value Mistakes
CSPs in the same class are only ostensibly similar, that is,
they may present a broad range of difficultly for any given
solution method (Hulubei and O'Sullivan, 2005). Despite
their impressive average case performance, RVO and
RSVO may be unsuitable for a specific individual problem.
For example, Figure 2 more closely examines the
performance of the dom/wdeg-based solvers, which
showed the least improvement under RVO and RSVO in
Table 1. To construct Figure 2, we first gauged the
individual difficulty of our problem set with a baseline
solver (here, dom/wdeg). Then we tabulated our results in
ascending order of the difficulty that each solver
experienced on each problem, as measured by constraint
checks. Clearly, although dom/wdeg+RVO and
dom/wdeg+RSVO do well on problems that are difficult for
dom/wdeg, their performance is less satisfactory on those
that dom/wdeg finds easy. The likely explanation is that
one or more value mistakes at the top of the search tree

may have misled the solvers into a deep unsolvable
subtree. Value mistakes may be frequent near the top of the
search tree, where data that supports value ordering is far
less informative (Walsh 1997; Meseguer and Walsh 1998).
 We therefore make two modifications to decrease the

Table 4: Performance comparison among four CSP
solvers equipped with lexical value ordering and
variants of learned value-ordering heuristics on 100
problems in <50, 10, 0.184, 0.631>.

 % Reduction in

Solver Checks CPU time
mdd averaged 1,782,781 checks/problem
mdd+RVO 2.72% -1.01%
mdd+RVO+TOP 4.69% -17.57%
mdd+RVO+SAC1 29.07% 25.98%
mdd+mRVO 24.54% 16.92%
mdd+RSVO 6.36% 0.30%
mdd+RSVO+TOP -0.59% -16.78%
mdd+RSVO+SAC1 23.00% 16.82%
mdd+mRSVO 22.74% 17.52%
mddd averaged 1,519,155 checks/problem
mddd+RVO 15.94% 13.05%
mddd+RVO+TOP 5.22% -7.99%
mddd+RVO+SAC1 28.87% 24.91%
mddd+mRVO 28.22% 25.27%
mddd+RSVO 18.45% 12.69%
mddd+RSVO+ TOP -0.42% -16.63%
mddd+RSVO+ SAC1 26.38% 20.12%
mddd+mRSVO 26.94% 21.68%
wdeg averaged 2,395,567 checks/problem
wdeg+RVO 4.70% -1.39%
wdeg+RVO+TOP -20.29% -32.10%
wdeg+RVO+SAC1 24.62% 22.83%
wdeg+mRVO 12.41% 16.04%
wdeg+RSVO -7.78% -17.35%
wdeg+RSVO+TOP -25.73% -35.20%
wdeg+RSVO+SAC1 25.48% 20.70%
wdeg+mRSVO 17.17% 18.00%
dom/wdeg averaged 1,587,777 checks/problem
dom/wdeg+RVO 9.36% 6.17%
dom/wdeg+RVO+TOP 0.36% -11.30%
dom/wdeg+RVO+SAC1 26.81% 25.14%
dom/wdeg+mRVO 27.46% 25.49%
dom/wdeg+RSVO 10.42% 3.43%
dom/wdeg+RSVO+TOP -0.02% -3.77%
dom/wdeg+RSVO+SAC1 27.33% 22.51%
dom/wdeg+mRSVO 27.12% 22.97%

Figure 2: Performance on 50 individual problems by
dom/wdeg solvers with and without learned value-ordering
heuristics on <50, 10, 0.38, 0.2>.

likelihood of value mistakes near the top of the search tree.
First, only for the first focus variable, we use look-ahead
(Frost 1995) to choose a value that removes the fewest
values from future variables under MAC. Essentially, this
is singleton arc consistency (Debruyne and Bessière 1997)
restricted to the root of the search tree. We denote it by
SAC1. Second, we use the same procedure to break ties
below the root but within the top of the search tree (its first
ln(n) levels, where n is the number of variables in the
problem). We denote this modification by TOP. All other
ties are broken lexically.
 We use mRVO (or mRSVO) to denote RVO (or RSVO)
with both modifications. Observe that, in Figure 2, the
curve for mRSVO is considerably more uniform than that
for RSVO on dom/wdeg for problems in
<50, 10, 0.38, 0.2>. We also tested the survivors-first
algorithms on <50, 10, 0.184, 0.631>, a somewhat easier
class of the same size. Tables 1 and 4 show that both
mRVO and mRSVO improve all four variable-ordering
heuristics on both sets of unstructured problems.

Discussion
To explore the modifications more closely, we ablated the
modified versions, testing with each modification in turn.
(Results appear in Tables 1 and 4.) On both classes of
random problems, SAC1 is apparently well worth its
computation cost; it significantly improves the
performance of both RVO and RSVO. As intended, SAC1
remedies the lack of information our value heuristics have
at the root. Without RVO and RSVO, however, both
maintained singleton arc consistency and SAC1 alone
timed out on these problems. In contrast, TOP as the sole
modification frequently impaired performance, probably
because RVO and RSVO lacked the experience necessary to
avoid value mistakes at the beginning of search.
Nonetheless, in Table 1, where the problems are more
difficult, TOP improves the performance of both mRVO
and mRSVO with SAC1. On structured problems
(quasigroups and composed problems), however, SAC1
and TOP actually weaken the performance of RVO and
RSVO. (Data omitted.)
 Even the low overhead of RVO and RSVO could
unnecessarily degrade performance on easy problems.
Therefore, we also tested on a set of 300 smaller but still at
the phase transition problems from <30, 8, 0.266, 0.66>.
These are solved by mdd, mddd, wdeg, and dom/wdeg in
fewer than 100,000 checks per problem. (Data omitted.)
Both RVO and RSVO reduced checks for every solver, but
by no more than 5%. There were only two small slow
downs: mddd+mRVO and mddd+mRSVO were slower than
mddd by 6.83% and 8.80%, respectively.

 We have begun to compare our results with other value-
ordering heuristics as well (Geelen 1992; Ginsberg et al.
1990; Frost and Dechter 1995; Refalo 2004). Real full
look-ahead as a value-ordering heuristic assigns in turn
each value of the focus variable only, and chooses a value

Table 5: Comparison of survivors-first with promise and
real full look-ahead. Improvements are positive
(reductions); poorer performances (increases) are
negative.

 Change in basic performance
Solver Checks CPU time

Quasigroup 10 × 10 with 67 holes
dom/wdeg averaged 121,527 checks/problem
dom/wdeg+promise –5.00% –26.00%
dom/wdeg+real full –115.00% –43.00%
dom/wdeg+RVO 78.32% 65.83%
dom/wdeg+RSVO 58.10% 47.34%
Quasigroup 10 × 10 with 74 holes
dom/wdeg averaged 821,802 checks/problem
dom/wdeg+promise 72.00% 64.60%
dom/wdeg+real full 91.24% 93.86%
dom/wdeg+ RVO 89.99% 88.67%
dom/wdeg+RSVO 96.26% 94.33%

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.104, 0.05>
dom/wdeg averaged 115,875 checks/problem
dom/wdeg+promise 47.88% –232.63%
dom/wdeg+real full –94.29% –104.61%
dom/wdeg+RVO 8.02% 3.15%
dom/wdeg+RSVO 11.14% 3.94%

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.012, 0.05>
dom/wdeg averaged 318,057 checks/problem
dom/wdeg+promise 9.32% –154.61%
dom/wdeg+real full –127.78% –29.40%
dom/wdeg+RVO 16.00% 6.37%
dom/wdeg+RSVO 9.65% 0.32%

<50, 10, 0.184, 0.631>
dom/wdeg averaged 1,587,777 checks/problem
dom/wdeg+promise 38.14% –28.41%
dom/wdeg+real full –36.00% –29.74%
dom/wdeg+mRVO 27.46% 25.49%
dom/wdeg+mRSVO 27.12% 22.97%

<50, 10, 0.38, 0.2>
dom/wdeg averaged 26,494,236 checks/problem
dom/wdeg+promise 75.70% 46.03%
dom/wdeg+real full 51.03% 56.67%
dom/wdeg+mRVO 61.69% 58.52%
dom/wdeg+mRSVO 63.22% 62.01%

that removes the fewest values from the domains of all the
future variables after AC propagation. Promise does look-
ahead on the focus variable with forward checking and
then chooses a value that maximizes the product of the
resultant domain sizes after propagation. Table 5 uses
dom/wdeg to compare the best of our survivors-first
algorithms with promise and real full look-ahead. On four
of the six classes cases, real full look-ahead and promise
are substantially slower than dom/wdeg. On the other two
(the harder random and the easier quasigroup), they
improve dom/wdeg but remain slower than survivors-first.
We also intend to apply survivors-first with randomized
restart (Harvey and Ginsberg 1995), which was particularly
effective with impact (Refalo 2004).
 One might expect that unsolvable problems or search for
all solutions to a problem would not benefit from value-
ordering heuristics (Frost and Dechter 1995). More recent
work, however, has shown that 2-way branching and
conflict-directed variable-ordering heuristics respond well
to value ordering (Smith and Sturdy 2005, Mehta and von
Dongen 2005). Under k-way branching, another value for
the same focus variable is tried after retraction. Under 2-
way branching, consistency is maintained after
backtracking, with the possibility of further domain
reduction, and a (possibly different) focus variable is
selected. We therefore tested our learned value-ordering
heuristics under 2-way branching as well. Our learned
heuristics continue to perform well under 2-way branching,
although there is often less room for improvement. For
example, on 100 problems in <50,10,0.38,0.2> with 2-way
branching mddd+mRSVO reduced mddd’s constraint
checks by 26.93% and reduced computation time by
39.07% on average.
 Setting the tie range very high (near 100%) approaches
full look-ahead as the designation for “top of the tree”
approaches n. Redefining the top of search tree, say as
0.3n, has thus far been unsuccessful. We also tried an
initial training period with a threshold, measured in
number of backtracks, number of visited nodes or number
of assigned variables. Before the threshold was reached,
values were chosen lexically, without reference to the R
and S values that might be inaccurate early on. After the
threshold was reached, we used our value-ordering
heuristics; this approach has thus far proved less
satisfactory than using ln(n).
 We continue to examine the relationship between SAC1
and our other heuristics. Although our intuition is that
survivors-first works best on harder problems, we also
intend to evaluate its performance under a full suite of
density and tightness values. We are also testing further the
decision to exclude values in the domains of the neighbors
of the focus variable from the survival computation. Our
intuition was that there would be a peculiar bias without
the exclusion, because neighbors of the focus variable

would be considered only against a single value (the one
being assigned).
 Implementation of survivors-first in value-oriented AC
algorithms like AC-6 may offer further challenges where
overhead is linear with the size of the domain (Bessière
and Cordier 1993). One possible solution would be to
organize weights by search level.
 Thus far we have only addressed binary CSPs. We
expect, however, that the ideas presented here will
smoothly transfer to global constraints. Our empirical
results suggest that survivors-first plays a more important
role on structured problems, which are more similar to
those in the real world.
 In summary, our algorithms, RVO and RSVO, require
O(nm) space and O(m) time each time a value is selected,
where n is the number of variables and m is the maximum
domain size. Because they make straightforward use of
traditional AC algorithms, they incur very little
computational overhead. Survivors-first effectively
accelerates search directed by four popular variable-
ordering heuristics. Both RVO and RSVO are robust and
often provide dramatic speed-up, particularly on the most
difficult problems in a set. Their modified versions often
further assist in the identification of values that survive to
participate in a solution.

References
Bayardo Jr., R. J., and Schrag, R. 1996. Using CSP Look-
Back Techniques to Solve Exceptionally Hard SAT
Instances. In Proceedings of CP-1996, 46-60.
Beck, J. C. 2007. Solution-Guided Multi-Point
Constructive Search for Job Shop Scheduling. JAIR 29: 49-
77
Bessière, C. and Cordier M. O. 1993. Arc-Consistency and
Arc-Consistency Again. Artificial Intelligence 65: 179-
190.
Bessière, C.; Freuder, E. C.; and Régin, J. C. 1999. Using
Constraint Metaknowledge to Reduce Arc Consistency
Computation. Artificial Intelligence 107: 125-148.
Bessière, C., and Régin, J. C. 1996. MAC and Combined
Heuristics: Two Reasons to Forsake FC (and CBJ?) on
Hard Problems. In Proceedings of CP-1996, 61-75.
Bessière, C., and Régin, J. C. 2001. Refining the Basic
Constraint Propagation Algorithm. In Proceedings of
IJCAI-2001, 309-315.
Bessière, C.; Régin, J. C.; Yap, R. H. C.; and Zhang, Y.
2005. An Optimal Coarse-Grained Arc Consistency
Algorithm. Artificial Intelligence 165: 165-185.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L.
2004. Boosting Systematic Search by Weighting
Constraints. In Proceedings of ECAI-2004, 146−150.

Debruyne, R., and Bessière, C. 1997. Some Practicable
Filtering Techniques for the Constraint Satisfaction
Problem. In Proceedings of IJCAI-1997, 412−417.
Dechter, R., and Pearl, J. 1988. Network-based Heuristics
for Constraint Satisfaction Problems. Artificial Intelligence
34: 1-38.
Epstein, S. L.; Freuder, E. C.; and Wallace, R. L. 2005.
Learning to Support Constraint Programmers.
Computational Intelligence 21: 337 – 371.
Frost, D., and Dechter, R. 1995. Look-ahead Value
Ordering for Constraint Satisfaction Problems. In
Proceedings of IJCAI-1995, 572−578.
Geelen, P. A. 1992. Dual Viewpoint Heuristics for Binary
Constraint Satisfaction Problems. In Proceedings of ECAI-
1992, 31-35.
Gent, I. P.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1996.
The Constrainedness of Search. In Proceedings of AAAI-
1996, 246-252.
Ginsberg, M.; Frank, M.; Halpin, M.; and Torrance, M.
1990. Search Lessons Learned from Crossword Puzzles. In
Proceedings of AAAI-1990, 210−215.
Golomb, S., and Baumert, L. 1965. Backtracking
Programming Journal of the ACM 12: 516-52.
Gomes, C.; Fernandez, C.; Selman, B.; and Bessière, C.
2004. Statistical Regimes Across Constrainedness Regions.
In Proceedings of CP-2004, 32−46, Springer.
Harvey, W. D. 1995. Nonsystematic Backtracking Search.
PhD Thesis, Stanford University (1995).
Harvey, W. D., and Ginsberg, M. L. 1995. Limited
Discrepancy Search. In Proceedings of IJCAI-1995, 607-
613.
Hulubei, T., and O'Sullivan, B. 2005. Search Heuristics
and Heavy-Tailed Behavior. In Proceedings of CP-2005,
328-342.
Kask, K.; Dechter, R.; and Gogate, V. 2004. Counting-
Based Look-Ahead Schemes for Constraint Satisfaction. In
Proceedings of CP-2004, 317-331.
Lecoutre, C.; Sais, L.; Tabary, S.; and Vidal, V. 2007.
Nogood Recording from Restarts. In Proceedings of
IJCAI-2007, 131-136.
Mackworth, A. K. 1977. Consistency in Networks of
Relations. Artificial Intelligence 8: 99−118.
Mehta, D., and von Dongen, M.R.C. 2005. Static Value
Ordering Heuristics for Constraint Satisfaction Problems.
In Proceedings of CPAI-2005, 49−62.
Meisels, A.; Shimony, S. E.; and Solotorevsky, G. 1997.
Bayes Networks for Estimating the Number of Solutions to
a CSP. In Proceedings of AAAI-1997, 185-190.
Meseguer, P., and Walsh, T. 1998. Interleaved and
Discrepancy Based Search. In Proceedings of ECAI-1998,
239-243.
Minton, S. 1996. Automatically Configuring Constraint
Satisfaction Programs: A Case Study. Constraints 1: 7-44.

Refalo, P. 2004. Impacted-Based Search Strategies for
Constraint Programming. Proceedings of CP-2004, 557-
571.
Walsh, T. 1997. Depth-bounded Discrepancy Search, In
Proceedings of IJCAI-1997, 1388-1393.
Sabin, D., and Freuder, E. C. 1994. Contradicting
Conventional Wisdom in Constraint Satisfaction. In
Proceedings of ECAI-1994, 125-129.
Smith, B. M., and Sturdy, P. 2005. Value Ordering for
Finding All Solutions. In Proceedings of IJCAI-2005,
311−316.
Vernooy, M., and Harvens, W. S. 1999. An Evaluation of
Probabilistic Value-Ordering Heuristics. in Proceedings of
the Australian Conference on Artificial Intelligence, 340-
352.
Zanarini, A., and Pesant, G. 2007. Solution Counting
Algorithms for Constraint-Centered Search Heuristics. In
Proceedings of CP-2007, 743-757.

