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Abstract 
In global search for a solution to a constraint satisfaction 
problem, a value-ordering heuristic predicts which values 
are most likely to be part of a solution. When such a 
heuristic uses look-ahead, it often incurs a substantial 
computational cost. We propose an alternative approach, 
survivors-first, that gives rise to a family of dynamic value-
ordering heuristics that are generic, adaptive, inexpensive to 
compute, and easy to implement. Survivors-first prefers 
values that are most often observed to survive propagation 
during search. This paper explores two algorithms, and 
several modifications to them, that learn to identify and 
recommend survivors. Empirical results show that these 
value-ordering heuristics greatly enhance the performance 
of several traditional variable-ordering heuristics on a 
variety of challenging problems. 

Introduction   
In global search for a solution to a constraint satisfaction 
problem (CSP), variable-ordering and value-ordering 
heuristics can have substantial impact on search 
performance. The best-first principle for global search 
advocates the selection of a value most likely to be part of 
a solution. Value-ordering heuristics typically rely on look-
ahead strategies. Strict adherence to the best-first principle, 
however, often incurs a substantial computational cost as it 
tries to predict that probability. Our alternative, survivors-
first, advocates instead the selection of a value most likely 
to remain an option (i.e., to survive) after propagation.  
 Our thesis is that, instead of look-ahead, promising 
values can be learned inexpensively during propagation, 
and then applied by heuristics to speed solution to an 
individual problem. We investigate here two simple 
learning methods that support survivors-first, along with 
effective, adaptive value-ordering heuristics that severely 
restrict look-ahead at the root of search tree. Our learned 
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value-ordering heuristics are generic, adaptive, inexpensive 
to compute, and easy to implement. Moreover, search with 
a variety of traditional variable-ordering heuristics benefits 
significantly from survivors-first. After fundamental 
definitions and a brief discussion of related work, this 
paper describes our learned value-ordering heuristics and 
initial empirical results. It then introduces modifications 
that improve their performance and analyzes empirical 
results on a broad range of challenging problems. 

Background and Related Work  
Formally, a CSP P is represented by a triple <X, D, C>, 
where X is a finite set of variables, D is a set of domains 
individually associated with each variable in X, and C is a 
set of constraints. An assignment associates a variable with 
a value from its domain. A constraint c in C consists of a 
scope(c) ⊆ X and some relation(c) that identifies all 
acceptable combinations of assignments for variables in 
scope(c). The variables in scope(c) are neighbors of one 
another.  
 Global search systematically selects an unassigned 
variable (here, a focus variable), and assigns it a value. 
After value assignment to a focus variable, a propagation 
algorithm infers its impact upon the domains of the future 
(as yet unvalued) variables. Repeated propagation after 
each value assignment maintains consistency among future 
variables. A wipeout occurs when propagation empties the 
domain of some future variable. After any wipeout, global 
search backtracks (removes some consecutive sequence of 
previous assignments).  
 An instantiation for a CSP is a set of assignments of 
values to variables. A full instantiation assigns values to all 
the variables. Global search begins with an empty 
instantiation and seeks a solution (a full instantiation which 
is acceptable to every constraint in C). A solvable CSP has 
at least one solution; otherwise it is unsolvable. This paper 



addresses only solvable binary CSPs, where each 
constraint addresses at most two variables.  
 In general, variable-ordering heuristics drive search to 
select future variables that are more tightly constrained, 
while value-ordering heuristics drive search to select 
values that are more likely to succeed. Nonetheless, most 
global search algorithms rely mainly on variable-ordering 
heuristics and propagation. Value-ordering heuristics have 
been comparatively neglected because they require 
substantial computational resources in many situations.  
 Early criteria for value selection estimated the number of 
solutions to the problem (Dechter and Pearl 1988). 
Subsequent efforts used ideas from Bayesian networks to 
improve such estimation (Meisels, Shimony, and 
Solotorevsky 1997; Vernooy and Harvens 1999; and Kask, 
Dechter, and Gogate 2004). This work, however, ignored 
the cost of finding solutions within a subtree of a specific 
size. Other work used look-ahead strategies to select a 
value that maximized the product (Geelen 1992; Ginsberg 
et al. 1990) or the sum of the resulting domain sizes after 
propagation (Frost and Dechter 1995). When done 
dynamically (i.e., recomputed after propagation for every 
assignment), however, all these methods are costly.  
 More recent work sped solution counting with global 
constraints (Zanarini and Pesant 2007) or resorted once 
again to non-adaptive, faster, static value-ordering 
heuristics, calculated only once, prior to search (Mehta and 
von Dongen 2005). Nonetheless, even the initial 
computation to produce a static value ordering is non-
trivial for many large problems.  
 Early work on learning about values focused on nogoods 
(i.e., instantiations that are not part of any solution). 
Nogoods can guide search away from the re-exploration of 
fruitless subtrees, particularly with the help of restart 
(Lecoutre et al. 2007). Impact, the domain reduction 
observed after propagation, can be used heuristically to 
select both a variable and the value to assign to it (Refalo 
2004). More recently, multi-point constructive search has 
learned elite solutions, instantiations most likely to be 
extended to a solution (Beck 2007). Elite solutions are used 
in combination with restart to speed search, primarily on 
optimization problems. Other learning work has identified 
high-performing value heuristics (Epstein et al. 2005; 
Minton 1996), but does not tailor the heuristics to an 
individual problem. 

Learned Value-Ordering Heuristics 
Let L be an instantiation and let x be a future variable with 
possible value v and neighboring variable y. A value in the 
domain of y that is consistent with the assignment of v to x 
is a support for v. If L can be extended to a solution, we 
say that L is an extensible instantiation. Otherwise, L is an 

inextensible instantiation. If the assignment of v to x 
changes L from extensible to inextensible, that assignment 
is a value mistake (Harvey 1995). Otherwise, if L remains 
extensible, v for x is a compatible assignment and we say v 
is compatible with L. A perfect value-ordering heuristic 
makes no value mistakes during search for a solution to a 
solvable CSP.  
 Search with a perfect value-ordering heuristic would 
make variable ordering irrelevant, because propagation 
after a compatible assignment would never cause a 
wipeout. In general, if L is extensible, the values remaining 
for the future variables may also be compatible. 
Propagation after a newly-constructed compatible 
assignment seeks to remove additional values. Consider an 
example where values a1 and a2 for variable A and values 
b1 and b2 for variable B are all compatible with L, but a1 is 
only consistent with b1 and a2 is only consistent with b2. If 
a perfect value-ordering heuristic selects a1 for A, then 
propagation after such an assignment should remove b2 as 
an option. In contrast, the compatible value b1 that survives 
propagation may be part of a solution.  
 Our approach is assertively optimistic. It assumes that 
the current instantiation L is extensible, a heuristic to be 
sure. It also assumes that survival is uniform, that is, that a 
survivor in one area of the search space has the same 
probability of survival in other areas. Because constraints 
are bidirectional (Bessière, Freuder and Régin 1999), 
supports for a value compatible with L may also be 
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Figure 1: Pseudocode for (a) the original revise-3 
algorithm (Mackworth 1977) with (b) revisions in 
boldface to learn which values survive. 



compatible values. Thus, values that repeatedly survive 
propagation are likely to be compatible.  
 Our algorithms observe search and propagation 
carefully. Rather than look ahead to predict a value most 
likely to succeed, our algorithms instead learn and use 
those values that frequently survive propagation during 
search. They tabulate R, how often a value is removed 
during propagation, and S the frequency with which a 
value is challenged to see if it has support. Our value-
ordering heuristics assume that the more frequently a value 
has been removed, the less likely it is to be compatible, and 
that the more frequently a value has been challenged, the 
more likely R is to be an accurate predictor of that value’s 
ability to survive. 
 Our algorithms learn compatible values while enforcing 
arc consistency. (A binary CSP is said to be arc consistent 
if and only if, for every constraint between pairs of future 
variables, each value of both variables has at least one 
support from the domain of its neighbor.) An AC algorithm 
enforces arc consistency; a MAC algorithm maintains arc 
consistency during search (Sabin and Freuder 1994). There 
are many AC algorithms. Any AC algorithm, such as AC-3 
(Mackworth 1977) or AC-2001 (Bessière and Régin 2001; 
Bessière, Régin, Yap, and Zhang, Y. 2005.), would permit 
us to monitor the frequency of value removals. AC-2001 
and AC-3 have the same framework except that AC-2001 
stores the smallest support for each value on each 
constraint. For simplicity here, we only work within AC-3 
whose maintenance is denoted as MAC-3.  
 Observing R, the frequency of value removals, is 
inexpensive and straightforward. Value removals can be 
tallied within the key component, revise-3 of the AC-3 
propagation algorithm, shown in Figure 1(a). Revise-3 
checks every value v of a variable xi in the scope of a 
constraint cij for a support from the other variable xj 
constrained by cij. If no support exists in the domain of xj, v 
should be removed from the domain of xi. In Figure 1(b) 
lines 3 and 8 – 10 maintain R, the removal frequency of 
each value addressed by revise-3. A removal is recorded 
only when both variables in the scope of cij are future 
variables and neither is the current focus variable.  
  Observing S, the frequency with which a value is 
challenged, is also inexpensive and straightforward. During 
propagation, a value v of xi may repeatedly invoke revise-3 
to seek a support from another variable xj. How often 
revise-3 is invoked to seek support for v can be an 
indication of how difficult it is to remove v. In Figure 1(b), 
lines 4 and 13 record S for each value of each future 
variable encountered during propagation.  
 Our first search heuristic, RVO (R-value-ordering) 
chooses a value with the lowest recorded R. Our second 
search heuristic, RSVO (R/S-value-ordering) chooses a 
value with the lowest observed R/S ratio. RSVO prefers 
values that have rarely been removed (small R) and 

frequently challenged (high S) during propagation. We use 
a parameter to define ties. Any domain values whose R or 
R/S scores differ by no more than tie-range (here, 5%) are 
treated as if they produced a tie. Both heuristics direct 
search to choose values that have repeatedly survived 
propagation during search on this problem. The hope is 
that removal statistics from past propagation closely reflect 
the likelihood that a value is compatible, and that they can 
guide search successfully. 

Initial Empirical Results 
The test bed used here is ACE (the Adaptive Constraint 
Engine) (Epstein, Freuder, and Wallace 2005). ACE is 
readily configured to do global search with MAC-3 and 
particular variable-ordering and value-ordering heuristics. 
The heuristics used here employ the following definitions. 
The domain size of a variable is the number of values in its 
dynamic (i.e., after propagation) domain. A variable’s 
static degree is the number of its neighbors; its dynamic 
degree is the number of future variables that are its 
neighbors. A constraint can have a weight that is 
incremented whenever it incurs a wipeout during search. 
The weighted degree of a variable is then the sum of the 
weight values of all the constraints in whose scope it lies 
(Boussemart et al. 2004).   
 We report detailed results on six problem classes, all 
solvable and binary. The random problems are described 
with Model B notation, where <n, m, d, t> denotes 
problems on n variables, with maximum domain size m, 
density d (fraction of the possible pairs of variables that 
have constraints between them), and tightness t (average 
fraction of the possible pairs of values excluded by each 
constraint) (Gomes et al., 2004). We use problems from 
<50, 10, 0.38, 0.2> and <50, 10, 0.184, 0.631>. The former 
is at the phase transition, that is, particularly difficult for its 
size (n and m values) and type. We also use two classes of 
solvable balanced 10×10 quasigroups, one with 67 holes 
(at the phase transition) and one with 74 holes. Finally, 
composed problems were inspired in part by the hard 
manufactured problems of (Bayardo Jr. and Schrag, 1996). 
A composed CSP consists of a central component joined to 
one or more satellites. The number of variables n, 
maximum domain size m, density d, and tightness t of the 
central component and its satellites are specified 
separately, as are the density and tightness of the links 
between them. A class of composed graphs is specified 
here as  

<n, m, d, t> s <n′, m′, d′, t′> d′′ t′′ 
where the first tuple describes the central component, s is 
the number of satellites, the second tuple describes the 
satellite, and the links between the satellite and the central 
component have density d′′ and tightness t′′. Satellites are 



not connected to one another. Some classes of composed 
problems are particularly difficult for traditional solvers 
because the “natural” variable ordering is inappropriate, 
that is, they are better approached with minimum degree 

than maximum. We test here on two such classes of 
composed problems.  
   
 We test survivors-first with four popular variable-
ordering heuristics, one at a time: mdd minimizes the ratio 
of dynamic domain size to static degree, mddd minimizes 
the ratio of dynamic domain size to dynamic degree 
(Bessière and Régin 1996), wdeg prefers a future variable 
with maximum weighted degree, and dom/wdeg minimizes 
the ratio of dynamic domain size to weighted degree 
(Boussemart et al. 2004). For simplicity, we use mdd, 
mddd, wdeg, and dom/wdeg to denote a basic MAC-3 
solver with the corresponding variable-ordering heuristic 
and a lexical value-ordering heuristic. Results are reported 
as reductions in the effort a basic solver required to solve a 
problem, both in constraint checks and in CPU time. The 
latter includes the time to learn about value survivors and 
to apply our value-ordering heuristics. Unless otherwise 
indicated, all ties are broken by lexical ordering. 
 Our first set of experiments used the four solvers, to find 

Table 2: Performance of dom/wdeg solvers with lexical 
value ordering, and with RVO and RSVO value-ordering 
heuristics on 100 problems from each of two classes of 
quasigroups. (Although the quasigroup class with 67 holes 
is generally harder, there was a single problem on 74 holes 
that proved extremely difficult for dom/wdeg and inflated 
its average performance.) 

  % Reduction in 
Solver Holes Checks CPU time 

dom/wdeg averaged 121,527 checks/problem 
dom/wdeg+RVO 67 78.32% 65.83% 
dom/wdeg+RSVO 67 58.10% 47.34% 
dom/wdeg averaged 821,802 checks/problem 
dom/wdeg+RVO 74 89.99% 88.67% 
dom/wdeg+RSVO 74 96.26% 94.33% 

 

Table 1: Performance comparison among four CSP 
solvers equipped with lexical value ordering and variants 
of learned value-ordering heuristics on 50 problems in 
<50, 10, 0.38, 0.2>. The modifications TOP and SAC1 and 
the prefix m are described in the next section.  

 % Reduction in 
Solver Checks CPU time 

mdd averaged 29,977,216 checks/problem 
mdd+RVO 19.18% 12.00% 
mdd+RVO+TOP 12.25% 2.05% 
mdd+RVO+SAC1 61.80% 41.77% 
mdd+mRVO 62.58% 51.50% 
mdd+RSVO 35.79% 26.50% 
mdd+RSVO+TOP 23.80% 10.49% 
mdd+RSVO+SAC1 52.67% 35.91% 
mdd+mRSVO 65.11% 62.50% 
mddd averaged 26,655,702 checks/problem 
mddd+RVO 14.31% 18.36% 
mddd+RVO+TOP 7.73% 7.96% 
mddd+RVO+ SAC1 50.24% 49.52% 
mddd+mRVO  64.10% 64.73%  
mddd+RSVO 22.40% 22.71% 
mddd+RSVO+TOP 18.40% 16.11% 
mddd+RSVO+ SAC1 52.12% 50.25% 
mddd+mRSVO 63.50% 63.77% 
wdeg averaged 70,441,344 checks/problem 
wdeg+RVO 11.88% 4.20% 
wdeg+RVO+TOP 22.95% 6.30% 
wdeg+RVO+ SAC1 57.75% 52.65% 
wdeg+mRVO 68.68% 64.50% 
wdeg+RSVO 28.78% 31.30% 
wdeg+RSVO+ TOP 27.49% 26.00% 
wdeg+RSVO+ SAC1 67.19% 64.83% 
wdeg+mRSVO 68.57% 58.59% 
dom/wdeg averaged 26,494,236 checks/problem 
dom/wdeg+RVO 6.42% 8.73% 
dom/wdeg+RVO+ TOP 17.76% 26.42% 
dom/wdeg+RVO+ SAC1 52.15% 54.11% 
dom/wdeg+mRVO 61.69% 58.52% 
dom/wdeg+RSVO 6.13% 7.86% 
dom/wdeg+RSVO+ TOP 11.73% 15.55% 
dom/wdeg+RSVO+ SAC1 53.04% 52.02% 
dom/wdeg+mRSVO 63.22% 62.01% 

Table 3: Performance of dom/wdeg solvers with lexical 
value ordering, and with RVO and RSVO value-ordering 
heuristics on 100 composed problems from each of two 
classes.  

 % Reduction in 
Solver Checks CPU time 

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.012, 0.05> 
dom/wdeg averaged 318,057 checks/problem 
dom/wdeg+RVO 16.00% 6.37% 
dom/wdeg+RSVO 9.65% 0.32% 
<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.104, 0.05> 
dom/wdeg averaged 115,875 checks/problem 
dom/wdeg+RVO 8.02% 3.15% 
dom/wdeg+RSVO 11.14% 3.94% 



the first solution to each of 50 CSPs in <50, 10, 0.38, 0.2>. 
Table 1 summarizes the performance of each solver alone, 
and then enhanced in turn by RVO, RSVO, and their 
modified versions (described in the next section). The 
results clearly show that RVO and RSVO improve the 
performance of each of the four variable-ordering 
heuristics. Our second set of experiments was on the 
quasigroups. Table 2 reports only on dom/wdeg because 
the other solvers timed out on these problems. Note that 
dom/wdeg+RVO and dom/wdeg+RSVO dramatically 
outperform dom/wdeg with lexical value ordering on both 
problem classes.  Our third set of experiments was on the 
composed CSPs. Again, Table 3 reports only on dom/wdeg 
because the other solvers timed out on these problems. 

Modification for Value Mistakes  
CSPs in the same class are only ostensibly similar, that is, 
they may present a broad range of difficultly for any given 
solution method (Hulubei and O'Sullivan, 2005). Despite 
their impressive average case performance, RVO and 
RSVO may be unsuitable for a specific individual problem. 
For example, Figure 2 more closely examines the 
performance of the dom/wdeg-based solvers, which 
showed the least improvement under RVO and RSVO in 
Table 1. To construct Figure 2, we first gauged the 
individual difficulty of our problem set with a baseline 
solver (here, dom/wdeg). Then we tabulated our results in 
ascending order of the difficulty that each solver 
experienced on each problem, as measured by constraint 
checks. Clearly, although dom/wdeg+RVO and 
dom/wdeg+RSVO do well on problems that are difficult for 
dom/wdeg, their performance is less satisfactory on those 
that dom/wdeg finds easy. The likely explanation is that 
one or more value mistakes at the top of the search tree 

may have misled the solvers into a deep unsolvable 
subtree. Value mistakes may be frequent near the top of the 
search tree, where data that supports value ordering is far 
less informative (Walsh 1997; Meseguer and Walsh 1998).  
 We therefore make two modifications to decrease the 

Table 4: Performance comparison among four CSP 
solvers equipped with lexical value ordering and 
variants of learned value-ordering heuristics on 100 
problems in <50, 10, 0.184, 0.631>.  
 
 % Reduction in 

Solver Checks CPU time 
mdd averaged 1,782,781 checks/problem 
mdd+RVO 2.72% -1.01% 
mdd+RVO+TOP 4.69% -17.57% 
mdd+RVO+SAC1 29.07% 25.98% 
mdd+mRVO 24.54% 16.92% 
mdd+RSVO 6.36% 0.30% 
mdd+RSVO+TOP -0.59% -16.78% 
mdd+RSVO+SAC1 23.00% 16.82% 
mdd+mRSVO 22.74% 17.52% 
mddd averaged 1,519,155 checks/problem 
mddd+RVO 15.94% 13.05% 
mddd+RVO+TOP 5.22% -7.99% 
mddd+RVO+SAC1 28.87% 24.91% 
mddd+mRVO 28.22% 25.27% 
mddd+RSVO 18.45% 12.69% 
mddd+RSVO+ TOP -0.42% -16.63% 
mddd+RSVO+ SAC1 26.38% 20.12% 
mddd+mRSVO 26.94% 21.68% 
wdeg averaged 2,395,567 checks/problem 
wdeg+RVO 4.70% -1.39% 
wdeg+RVO+TOP -20.29% -32.10% 
wdeg+RVO+SAC1 24.62% 22.83% 
wdeg+mRVO 12.41% 16.04% 
wdeg+RSVO -7.78% -17.35% 
wdeg+RSVO+TOP -25.73% -35.20% 
wdeg+RSVO+SAC1 25.48% 20.70% 
wdeg+mRSVO 17.17% 18.00% 
dom/wdeg averaged 1,587,777 checks/problem 
dom/wdeg+RVO 9.36% 6.17% 
dom/wdeg+RVO+TOP 0.36% -11.30% 
dom/wdeg+RVO+SAC1 26.81% 25.14% 
dom/wdeg+mRVO 27.46% 25.49% 
dom/wdeg+RSVO 10.42% 3.43% 
dom/wdeg+RSVO+TOP -0.02% -3.77% 
dom/wdeg+RSVO+SAC1 27.33% 22.51% 
dom/wdeg+mRSVO 27.12% 22.97% 

 
Figure 2: Performance on 50 individual problems by 
dom/wdeg solvers with and without learned value-ordering 
heuristics on <50, 10, 0.38, 0.2>. 



likelihood of value mistakes near the top of the search tree. 
First, only for the first focus variable, we use look-ahead 
(Frost 1995) to choose a value that removes the fewest 
values from future variables under MAC. Essentially, this 
is singleton arc consistency (Debruyne and Bessière 1997) 
restricted to the root of the search tree. We denote it by 
SAC1. Second, we use the same procedure to break ties 
below the root but within the top of the search tree (its first 
ln(n) levels, where n is the number of variables in the 
problem). We denote this modification by TOP. All other 
ties are broken lexically.  
 We use mRVO (or mRSVO) to denote RVO (or RSVO) 
with both modifications. Observe that, in Figure 2, the 
curve for mRSVO is considerably more uniform than that 
for RSVO on dom/wdeg for problems in 
<50, 10, 0.38, 0.2>. We also tested the survivors-first 
algorithms on <50, 10, 0.184, 0.631>, a somewhat easier 
class of the same size. Tables 1 and 4 show that both 
mRVO and mRSVO improve all four variable-ordering 
heuristics on both sets of unstructured problems. 

Discussion 
To explore the modifications more closely, we ablated the 
modified versions, testing with each modification in turn. 
(Results appear in Tables 1 and 4.) On both classes of 
random problems, SAC1 is apparently well worth its 
computation cost; it significantly improves the 
performance of both RVO and RSVO. As intended, SAC1 
remedies the lack of information our value heuristics have 
at the root. Without RVO and RSVO, however, both 
maintained singleton arc consistency and SAC1 alone 
timed out on these problems. In contrast, TOP as the sole 
modification frequently impaired performance, probably 
because RVO and RSVO lacked the experience necessary to 
avoid value mistakes at the beginning of search. 
Nonetheless, in Table 1, where the problems are more 
difficult, TOP improves the performance of both mRVO 
and mRSVO with SAC1. On structured problems 
(quasigroups and composed problems), however, SAC1 
and TOP actually weaken the performance of RVO and 
RSVO. (Data omitted.) 
 Even the low overhead of RVO and RSVO could 
unnecessarily degrade performance on easy problems. 
Therefore, we also tested on a set of 300 smaller but still at 
the phase transition problems from <30, 8, 0.266, 0.66>. 
These are solved by mdd, mddd, wdeg, and dom/wdeg in 
fewer than 100,000 checks per problem. (Data omitted.) 
Both RVO and RSVO reduced checks for every solver, but 
by no more than 5%. There were only two small slow 
downs: mddd+mRVO and mddd+mRSVO were slower than 
mddd by 6.83% and 8.80%, respectively. 

 We have begun to compare our results with other value-
ordering heuristics as well (Geelen 1992; Ginsberg et al. 
1990; Frost and Dechter 1995; Refalo 2004). Real full 
look-ahead as a value-ordering heuristic assigns in turn 
each value of the focus variable only, and chooses a value 

Table 5: Comparison of survivors-first with promise and 
real full look-ahead. Improvements are positive 
(reductions); poorer performances (increases) are 
negative.  

 Change in basic performance 
Solver Checks CPU time 

Quasigroup 10 × 10 with 67 holes  
dom/wdeg averaged 121,527 checks/problem 
dom/wdeg+promise –5.00% –26.00% 
dom/wdeg+real full –115.00%  –43.00% 
dom/wdeg+RVO 78.32% 65.83% 
dom/wdeg+RSVO 58.10% 47.34% 
Quasigroup 10 × 10 with 74 holes  
dom/wdeg averaged 821,802 checks/problem 
dom/wdeg+promise 72.00% 64.60% 
dom/wdeg+real full 91.24% 93.86% 
dom/wdeg+ RVO 89.99% 88.67% 
dom/wdeg+RSVO 96.26% 94.33% 

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.104, 0.05> 
dom/wdeg averaged 115,875 checks/problem 
dom/wdeg+promise 47.88% –232.63% 
dom/wdeg+real full –94.29% –104.61% 
dom/wdeg+RVO 8.02% 3.15% 
dom/wdeg+RSVO 11.14% 3.94% 

<75, 10, 0.216, 0.05, 1, 8, 10, 0.786, 0.55, 0.012, 0.05> 
dom/wdeg averaged 318,057 checks/problem  
dom/wdeg+promise 9.32% –154.61% 
dom/wdeg+real full –127.78% –29.40% 
dom/wdeg+RVO 16.00% 6.37% 
dom/wdeg+RSVO 9.65% 0.32% 

<50, 10, 0.184, 0.631> 
dom/wdeg averaged 1,587,777 checks/problem 
dom/wdeg+promise 38.14% –28.41% 
dom/wdeg+real full –36.00% –29.74% 
dom/wdeg+mRVO 27.46% 25.49% 
dom/wdeg+mRSVO 27.12% 22.97% 

<50, 10, 0.38, 0.2>   
dom/wdeg averaged 26,494,236 checks/problem  
dom/wdeg+promise 75.70% 46.03% 
dom/wdeg+real full 51.03% 56.67% 
dom/wdeg+mRVO 61.69% 58.52% 
dom/wdeg+mRSVO 63.22% 62.01% 



that removes the fewest values from the domains of all the 
future variables after AC propagation. Promise does look-
ahead on the focus variable with forward checking and 
then chooses a value that maximizes the product of the 
resultant domain sizes after propagation. Table 5 uses 
dom/wdeg to compare the best of our survivors-first 
algorithms with promise and real full look-ahead. On four 
of the six classes cases, real full look-ahead and promise 
are substantially slower than dom/wdeg. On the other two 
(the harder random and the easier quasigroup), they 
improve dom/wdeg but remain slower than survivors-first. 
We also intend to apply survivors-first with randomized 
restart (Harvey and Ginsberg 1995), which was particularly 
effective with impact (Refalo 2004).  
 One might expect that unsolvable problems or search for 
all solutions to a problem would not benefit from value-
ordering heuristics (Frost and Dechter 1995). More recent 
work, however, has shown that 2-way branching and 
conflict-directed variable-ordering heuristics respond well 
to value ordering (Smith and Sturdy 2005, Mehta and von 
Dongen 2005). Under k-way branching, another value for 
the same focus variable is tried after retraction. Under 2-
way branching, consistency is maintained after 
backtracking, with the possibility of further domain 
reduction, and a (possibly different) focus variable is 
selected. We therefore tested our learned value-ordering 
heuristics under 2-way branching as well. Our learned 
heuristics continue to perform well under 2-way branching, 
although there is often less room for improvement. For 
example, on 100 problems in <50,10,0.38,0.2> with 2-way 
branching mddd+mRSVO reduced mddd’s constraint 
checks by 26.93% and reduced computation time by 
39.07% on average. 
 Setting the tie range very high (near 100%) approaches 
full look-ahead as the designation for “top of the tree” 
approaches n. Redefining the top of search tree, say as 
0.3n, has thus far been unsuccessful. We also tried an 
initial training period with a threshold, measured in 
number of backtracks, number of visited nodes or number 
of assigned variables. Before the threshold was reached, 
values were chosen lexically, without reference to the R 
and S values that might be inaccurate early on. After the 
threshold was reached, we used our value-ordering 
heuristics; this approach has thus far proved less 
satisfactory than using ln(n). 
 We continue to examine the relationship between SAC1 
and our other heuristics. Although our intuition is that 
survivors-first works best on harder problems, we also 
intend to evaluate its performance under a full suite of 
density and tightness values. We are also testing further the 
decision to exclude values in the domains of the neighbors 
of the focus variable from the survival computation. Our 
intuition was that there would be a peculiar bias without 
the exclusion, because neighbors of the focus variable 

would be considered only against a single value (the one 
being assigned).  
 Implementation of survivors-first in value-oriented AC 
algorithms like AC-6 may offer further challenges where 
overhead is linear with the size of the domain (Bessière 
and Cordier 1993). One possible solution would be to 
organize weights by search level. 
 Thus far we have only addressed binary CSPs. We 
expect, however, that the ideas presented here will 
smoothly transfer to global constraints. Our empirical 
results suggest that survivors-first plays a more important 
role on structured problems, which are more similar to 
those in the real world. 
 In summary, our algorithms, RVO and RSVO, require 
O(nm) space and O(m) time each time a value is selected, 
where n is the number of variables and m is the maximum 
domain size. Because they make straightforward use of 
traditional AC algorithms, they incur very little 
computational overhead. Survivors-first effectively 
accelerates search directed by four popular variable-
ordering heuristics. Both RVO and RSVO are robust and 
often provide dramatic speed-up, particularly on the most 
difficult problems in a set. Their modified versions often 
further assist in the identification of values that survive to 
participate in a solution.  
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