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Abstract

This paper introduces GURU, a system that in-
formatively and flexibly helps people find an item
they are likely to enjoy. Our thesis is that a recom-
mendation system can be cognitively plausible and
collaborate with its users in real time. Like people,
GURU retrieves supplementary data and considers
similarity along multiple dimensions. Its represen-
tation is analogous to the ways that people recog-
nize similarity, with overlapping sets of items and
their prototypes. This paper provides empirical ev-
idence from human subjects that GURU’s approach
to recommendation is both reasonable and effective
for a large dataset of movies.

1 Introduction
A recommender (computer-based recommendation system)
offers items intended to satisfy its human users. People, how-
ever, often find recommenders’ suggestions trivial, arcane, or
irrelevant (e.g., [Kille and Abel, 2015]). Human preferences
are nuanced, distinctive, and may be difficult for their owner
to express. This “I’ll know it when I see it” perspective is
particularly prevalent for items, such as movies, where users
seek variety. Our thesis is that an effective recommender can
be cognitively plausible (i.e., appear to reason as a person
might) and collaborate with its users in real time. This pa-
per introduces GURU (Gather Useful Recommendations for
Users), a cognitively plausible movie recommender that in-
teracts with people to find movies they are likely to enjoy.

The task of a recommender is to recognize an item attrac-
tive to a particular user. In cognitive psychology, the expec-
tation that a new item will have a property (here, be enjoyed
by the user) requires conceptual knowledge that supports in-
ferences about that item. There is no evidence that human
conceptual knowledge is expressible as a label or as a sim-
ple set of features. Indeed, psychologists report that human
perception of similarity is far more complex than a pairwise
metric [Tversky, 1977], and neuropsychological theories for
the semantics of concepts increasingly incorporate multiple
kinds of similarities (e.g., [Mahon and Caramazza, 2009]).

In response, our work adopts Wittgenstein’s description of
a concept as a set of items with a strong family resemblance

[Wittgenstein, 1953]. GURU represents a concept as a fam-
ily, a set of mutually similar items closely related to a pro-
totypical item (its seed). Family similarity is calculated with
respect to a similarity rationale, a metric on a set of features
that together convey a particular aspect of an item. Here, for
example, GURU generates separate sets of movie families un-
der each of three similarity rationales: how much people en-
joy movies (ratings), how they summarize them (text), and
how they create them (provenance).

Given a similarity rationale, GURU creates overlapping
families of items that resemble one another from the perspec-
tive of that rationale. Items in a family need only have feature
values similar enough to one another’s to produce a coher-
ent, cohesive set that relates to its seed under the similarity
rationale. Thus the same item can belong to many different
families constructed under the same similarity rationale.

GURU uses families to make recommendations and to
guide dialogues with the user. Human item choices, however,
are often multimodal and diverge considerably from their ex-
pressed preferences [Edelman and Shahbazi, 2012]. GURU
narrows the challenge of “I’ll know it when I see it” by guid-
ing the user to provide one hint: a movie she has enjoyed.
Rather than consider prior history, GURU responds to an im-
plicit request of the form “I want an x like y.”

The next section of this paper discusses related work. Sub-
sequent sections describe data acquisition, properties of the
knowledge base, preprocessing, and concept construction as
family generation. Finally, we report on experiments with
human subjects and plans for future work.

2 Related Work
Given a set U of users and a set I of items, each represented
as a vector of feature values, the task of a recommender is to
select a subset of I that a particular u ∈ U will enjoy. Most
recommenders implement this as “predict u’s rating for some
subset of I and select the items with the highest predicted rat-
ings.” In collaboration with u, however, GURU sifts through
families of items constructed from I.

The request for “an x like y” is reminiscent of case-based
reasoning, where the system seeks similar examples. Movies
are a weak-theory domain, one where the relationships among
items are predominantly correlational. Most work on such
domains seeks to partition I , and expects x to match par-
ticular features of the exemplars that represent its categories



(e.g., [Porter et al., 1990]), the way genre-based suggestions
do. The resultant categories seek to avoid polymorphy (unex-
plained variability). In contrast, GURU does not partition I ,
and tolerates polymorphy in the service of variety.

We emphasize that, although a family is a subset of items
similar to one another under a specified metric, it is not a
traditional cluster [Berkhin, 2006]. Families do not partition
I, nor are they hierarchical. Although a family focuses on
its seed, it typically overlaps with other families that may
not even contain that seed. In this sense, families are more
closely related to psychologists’ categories, where similarity
is essential and a prototype is a salient stimulus (e.g., [Gold-
stein, 1994; Rosch and Mervis, 1975]). Section 5 identifies
criteria for family quality.

Traditional recommenders are content-based or do collab-
orative filtering. A content-based recommender identifies
items in I most similar to (but distinct from) the user’s pre-
vious choices. Common pairwise similarity rationales over I
include cosine, adjusted cosine, and correlation [Sarwar et al.,
2001]. In contrast, collaborative filtering identifies subsets of
users who rate many items similarly, and then recommends
the most popular items among those users to the entire sub-
set. For both kinds of recommenders, each new user is a cold
start, that is, she must describe her preferences for the system
to retain. GURU, however, assumes that users’ preferences
vary from one recommendation session to the next, so that
every session is a cold start.

To ameliorate the cold-start problem, recommenders can
supplement ratings with information about I and U. Let R be
the |U |× |I| ratings matrix whose uith entry is user u’s rating
for item i. Matrix factorization decomposes R into an up-
per triangular |U | × |A| matrix and an |A| × |I| matrix. The
recommender that won the Netflix prize, BellKor, corrected
its ratings for global and temporal biases and then did col-
laborative filtering with matrix factorization [Bell and Koren,
2007]. Because GURU assumes a cold start, it treats ratings
with BellKor’s global corrections but not its temporal ones.

Probabilistic matrix factorization (PMF) calculates the
probability that a factorization is appropriate given the ob-
served ratings, and searches for the most likely factorization
[Salakhutdinov and Mnih, 2008]. Shan and Banerjee ex-
tracted topics from text summaries on the IMDb movie site,
and then used expectation maximization to optimize a mix-
ture of PMF models that predicted ratings [Blei et al., 2003;
Shan and Banerjee, 2010]. Because it requires ratings, PMF
is inadequate for cold starts and also for gray sheep, users
whose preferences are consistent with no user group.

GURU is a hybrid recommender, that is, it considers both
content and agreement on ratings. On a much smaller scale,
a hybrid on a query tree with associated rankings combined
user preferences with item features [Das et al., 2013]. A hy-
brid similar to Shan and Banerjee’s cited work recommended
papers to researchers based on their collection of items of in-
terest [Charlin et al., 2014].

Another important issue for recommenders is their ability
to present a diverse set of items. A user who rejects Termina-
tor 2, for example, is unlikely to welcome a recommendation
for Terminator 3. To address this, one system k-clustered
movies based on predicted ratings from a collaborative fil-

tering system, where k movies fit the display screen [Boim
et al., 2011]. It recommended each cluster’s priority medoid
(top-rated item maximally similar to those in its cluster) and
would branch to other clusters at the user’s request. An exten-
sion of that work adapted k for the user with a probabilistic
model of her observed behavior [Hasan et al., 2014]. In con-
trast, GURU supports diversity through its creation of item
families under different similarity rationales.

The work discussed thus far makes one-shot recommen-
dations, that is, it presents a set of top-ranked items without
further interaction. Content-based recommenders rely on user
history in part because lengthy questionnaires or dialogues to
elicit preferences are unreliable [Holbrook et al., 2003]. Al-
ternatively, a conversational recommender conducts an ini-
tial dialogue with the user to determine her current prefer-
ences. Such a dialogue can assist with both cold starts and
gray sheep. To date, however, this approach has been ap-
plied only to relatively small datasets with predetermined
questions and/or small feature vectors (e.g., [Mahmood and
Ricci, 2009; Thompson et al., 2004]). GURU is a conver-
sational recommender that generates appropriate questions to
elicit the user’s current preferences.

3 Data
When work on GURU began, MovieLens had three pub-
licly available movie datasets (https://movielens.org/); we
use those three here. The largest dataset is a superset of
the medium one, which is in turn a superset of the small-
est. MovieLens data includes integer ratings in [1,5] from
anonymized users, and at least one genre for each movie.

For the largest dataset, our web crawler collected supple-
mentary data from five well-known, extensive websites: Rot-
ten Tomatoes, IMDb, Turner Classic Movies, TV Guide, and
Wikipedia. It retrieved text synopses (not reviews) and any
available feature values for provenance: genres, stars, writ-
ers, directors, release year, and MPAA rating. (MPAA rat-
ings are the Motion Pictures Association of America’s dis-
crete, ordered set of labels for child-appropriate content: G,
PG, PG-13, R, NC-17.) We refer here to these three en-
hanced datasets as SmallD, MediumD, and LargeD. LargeD,
with 10,681 movies, 71,567 users, and 10,000,054 ratings,
provides a broad context within which we refined the ratings
and synopses, as follows.

We converted ratings into expected ratings with Koren’s
method [Koren, 2010]. Let rui be the rating assigned by user
user u to item i, and r̄ be the mean of all ratings in the dataset.
The item bias bi for item i is the mean difference between r̄
and the ratings ρi assigned to i by the users who rated it:

bi =

∑
ρi

(rui − r̄)
|ρi|

(1)

The user bias bu for user u is the mean difference between
the ratings Ru that u provided and r̄ + bi:

bu =

∑
Ru

(rui − (r̄ + bi))

|Ru|
(2)

For user u and movie i, the expected rating r̄+bu+bi adjusts
for both user and item biases.



For text data, we concatenated all synopses for a single
movie into a text document for it, and then preprocessed
the resultant 9,244,636-word corpus. We removed all oc-
currences of 180 stop words, common words that do not
contribute to the text’s meaning (e.g., “the”). To discour-
age coincidental similarity between movies that reference the
same proper noun (e.g., character names), we removed proper
nouns with Stanford’s named entity recognizer [Finkel et al.,
2005]. Finally, we replaced each word with its stem [Porter,
1980]. The corpus of 10,681 documents then included 81,896
distinct tokens (word stems).

4 Item Graph Construction
An item graph is a weighted, undirected graph where each
node represents a movie and an edge weight represents the
similarity between the two nodes it connects. For each en-
hanced dataset, we built three complete item graphs, one for
each of text, provenance, and ratings. Each node has a vec-
tor representation appropriate to its graph’s rationale. In the
LargeD ratings graph, for example, a node is is labeled by
a vector of length 71,567 (the number of users), whose uth
entry is the difference between user u’s expected rating and
actual rating for that movie, or 0 if u did not rate it. Ratings
graph edge weights are pairwise cosine similarities.

In the provenance graph a node is labeled by four vectors
whose lengths are determined by the number of relevant dis-
tinct values in LargeD. Provenance vectors are of the form
〈g, p, y, x〉 for genre vector g, participants vector p (stars,
writers and directors), release year y, and MPAA rating x.
Each vector may have multiple non-zero entries, that is, fea-
ture values are not unique. Vectors for genre and participants
are boolean; vectors for release year and MPAA rating have
discrete values. The similarity metric for provenance is

.25[T (g1, g2) + T (p1, p2) + sy(y1, y2) + sx(x1, x2)] (3)

where T is the Tanimoto (a.k.a. Jaccard) coefficient

sy(y1, y2) =
10− |y1 − y2|

10
if |y1 − y2| ≤ 10, 0 otherwise

sx(x1, x2) =


1.0 if x1 = x2
0.5 if x1 and x2 are consecutive
0 otherwise

The term frequency tf(t,d) of token t in document d is the
number of times t occurs in d. In a corpus D of documents,
the tf-idf(t,d) of t in d is [Zhao and Karypis, 2005]

tf-idf (t, d) = tf (t, d) · log |D|
|d′ : t ∈ d′|

(4)

For document d, tf-idf is high for a token frequent in d but
uncommon in the rest of D; tf-idf is low for a token common
across D or uncommon in d. In the text graph a movie is
labeled by a vector of length 81,896 (the number of distinct
tokens in our corpus). The kth value of that vector is the tf-idf
of the kth token in the movie’s synopsis document d. Text
graph edge weights are pairwise cosine similarities.

To focus on stronger similarities in what were originally
complete graphs, we eliminated edges whose weights de-
noted trivial or unreliable similarities. (Thresholds were 0.04

Table 1: The MediumD graphs and their families
Similarity rationale Text Provenance Ratings
Item graph
Nodes 3718 3839 3437
Edges 659,263 886,370 1,656,337
Density 9.54% 12.04% 28.05%
Average edge weight 0.050 0.431 0.110
Averages for families
Nodes 54.32 35.48 18.71
Density 98.78% 98.85% 99.89%
Average edge weight 0.079 0.550 0.200

for the text graph and 0.38 for the provenance graph.) In the
ratings graph, we dropped edges with negative weights and
dropped edges between pairs of movies rated by fewer than
30 of the same users. Finally, in every item graph we pruned
any nodes of degree 0. The upper portion of Table 1 describes
the resultant item graphs for the 3900 movies in MediumD.

5 Family Construction and Evaluation
To model the conceptual relationships that underlie human
similarity judgment, the FF (Family Finder) algorithm finds
weighted subgraphs in an item graph. FF is an adaptation
of an algorithm that partitioned a weighted constraint graph
into dense, high-weight subgraphs [Li and Epstein, 2010].
FF uses Variable Neighborhood Search, a non-deterministic
metaheuristic [Hansen and Mladenovic, 2003].

Algorithm 1: FF pseudocode to find a family F

Input: graph G, seed s, scoring function sf , greedy function
g, swap function wf , termination function Q
F ← {s}
G← G− s
improved← false
iteration← 1
until Q = true
candidate← node n in G that maximizes g(n, F )
provisional← F ∪ {candidate}
if sf (provisional) > sf (F ) /**greedy improvement**/
then F ← provisional
G← G− candidate
improved← true
iteration← 1

else swap-set← wf (F )
while swap-set 6= ∅ and Q = false
candidate← pop(swap-set)
provisional← swap(F, candidate)
if sf (provisional) > sf (F ) /**swap improvement**/
then F ← provisional

G← adjust(G, candidate)
improved← true

else improved← false /**shake**/
F ← shake(F, iteration)
iteration← iteration+ 1

return F



Algorithm 1 is pseudocode for FF. It builds a family F in
graph G from seed node s. On each iteration, FF tries to
strengthen and enlarge F under its scoring function sf :

sf (F ) = .6µEW (F ) + .4 log (log size(F )) (5)
where the log functions place F ’s mean edge weight µEW
and number of nodes size(F ) on about the same scale. All
ties are broken at random.

Each iteration tries to improve sf (F ) by a greedy addition
or a swap. A new node n selected from G need not be adja-
cent to s in G, but must maximize the greedy function g:
g(n, F ) = .3SW (n, F )+.6µIW (n, F )+.1µOW (n, F ) (6)

where SW (n, F ) is the edge weight from n to F ’s seed s,
µIW is n’s mean edge weight to nodes inside F other than s,
and µOW is n’s mean edge weight to nodes outside F .

When FF finds no further greedy additions, it tries to swap,
that is, to replace some node w in F with one or two nodes
not in F . The swap function wf identifies w 6= s with degree
|F | − 2 or |F | − 3 in F , along with one or two replacements
forw with degree≥ 2 in F . If two nodes replacew, they must
also be adjacent to one another. When a swap improves F ’s
score, adjust returns w to G and removes the replacements.

When neither greedy additions nor swaps improve F ’s
score, FF shakes (removes) nodes from F at random and re-
turns them to G. Initially FF shakes out one node; that num-
ber increases each time additions and swaps do not improve
F ’s score, and FF tries additions and swaps again. To halt
FF, the termination function Q limits search time, number of
iterations, and the maximum number of nodes to shake out.

Equation (6) emphasizes mutual similarity among non-
seeds in F more strongly than similarity to s. This is be-
cause preliminary work indicated the presence of magnets,
nodes that draw their large coterie of similar movies into F
on subsequent greedy additions. In the examples of Figure 1,
seeds are gray circles. The left graph is an acceptable fam-
ily, but in the right graph a magnet (white circle) overshad-
ows the seed. Without the constants in (6), magnets often
overwhelmed families from dissimilar seeds until the fami-
lies became nearly identical. Equation (6) downplays µOW ,
a measure of n’s ability to support future family growth when
it draws its neighbors along high-weight edges into F on sub-
sequent iterations. If a magnet does join F , the SW term in
(6) discourages the subsequent inclusion of neighbors of the
magnet that are less similar to s than the magnet was.

Table 2 shows the 9-movie family built by FF from the rat-
ings graph on 10,681 movies in LargeD for the seed Sleepless
in Seattle. Qualitatively, fans of romantic comedies will rec-
ognize most of these movies. (All movie descriptions here
are excerpts from synopses in LargeD.)

Figure 1: An acceptable family (left) and a family in thrall to
a magnet (right). Heavier-weight edges are darker.

Table 2: Ratings family for Sleepless in Seattle

Sleepless in Seattle: a recently-widowed man’s son calls a
radio talk show...to find his father a partner

Pretty Woman : a man...needs an escort...and hires a beau-
tiful prostitute...only to fall in love

You’ve Got Mail: a man and a woman who meet on-line in
a chat room finally end up meeting one another

My Best Friend’s Wedding: a woman realizes that friends
can be lovers, but now has to convince the friend in
question

Coyote Ugly: a sexy romantic comedy
How to Lose a Guy in 10 Days: executive and ladies’

man...bets that he can make a woman fall in love with
him in 10 days

Pearl Harbor: the story of two best friends...and their love
lives as they go off to join the war

Under the Tuscan Sun: a divorced American writer ...
moves to Italy in search of a...more romantic life

Head in the Clouds: a young Cambridge student gets in-
volved with a budding photographer...their relationship
gets severed

Our quantitative criteria for recommendation families are
size, cohesiveness, focus on the seed, and non-randomness.
Families should be large enough to be informative, but not
so large that they cover more than a small fraction of the
graph. The lower portion of Table 1 describes the families
FF learned when seeded on each movie in MediumD’s three
item graphs. These families meet the size criterion; none was
ever larger than 180. A family is cohesive if, compared to its
item graph, it is denser and its edges are of uniformly higher
weight. On MediumD, FF finds cohesive families; despite
the relative sparsity of the item graphs in Table 1, the families
themselves are all cliques or nearly so, and have considerably
higher mean edge weights than their item graphs.

We used random sets [Newton et al., 2007] to gauge the
likelihood that FF’s families were simply artifacts of ran-
dom local search. Given the heavy computational burden this
method entails, we tested only in SmallD, and compared the
families to randomly selected subsets of the same size by their
items’ z-scores. A z-score of at least 2 is considered non-
random. For the 1547 provenance families of size at least 3,
we scored all 133,224 item occurrences. Every occurrence
had a z-score of at least 4, which indicates that its partici-
pation in the set is significant. Moreover, the seeds’ mean
z-scores were substantially higher than that of the non-seeds:
13.03, compared to 7.72 for non-seed nodes. This test con-
firms that the families built by FF are not only non-random,
but also highly interrelated and focused on their respective
seeds. Results for the text families and the ratings families
were equally strong. In other words, we would expect human
subjects to accept movies in an FF family as related to one
another under the similarity rationale that supports them.

6 Empirical Design and Results
Our experiments recruit human subjects online, through
email and bulletin boards, with no reward for participation.



After informed consent, the subject answers questions while
GURU records both her answers and the clickstream. Finally,
the subject may volunteer demographic information.

A recommender should guide its user efficiently. Because
people prefer prototypes when they reference a set of items
[Rosch and Mervis, 1975] and also name prototypes first in
discussion [Mervis et al., 1976], we give GURU a computa-
tional head start: 92 prototypes for genres. The 92 were cho-
sen from among movies in MediumD that had been rated at
least 30 times. In each genre, the 3 movies that most often re-
ceived a 5-star rating, and so were likely to be recognized and
enjoyed, became prototypes. (Not every genre was rated of-
ten enough to contribute three prototypes.) GURU uses these
92 movies to estimate the subject’s current preferences.

To begin a session in any of our experiments, the subject se-
lects a starter, a movie she considers enjoyable. In the starter
dialogue, GURU offers a randomly selected, randomly or-
dered list of five prototypes, and asks the subject to select
one she has seen and enjoyed. If she selects “None of these,”
GURU provides a brief synopsis for each of them and asks
which she thinks she might enjoy. (Longer synopses are also
clickable, concealed by a spoiler warning.) The subject may
read any number of synopses before she selects a starter or
requests a new set of five from which to choose. Once the
subject selects a starter, GURU generates its prospects, all
movies in any family that includes the starter. The starter
need not be the family’s seed, and the family may have been
constructed under any of the three similarity rationales.

6.1 Experiments 1, 2, and 3
The first three experiments used FF’s families for MediumD.
GURU asked, one at a time, about a set of randomly ordered
movies. For each movie, GURU offered a synopsis and, on
request, a longer synopsis concealed by a spoiler warning.
On a Likert scale from 5 (extremely enjoyable) to 1 (not en-
joyable at all), subjects were asked to indicate the degree to
which they had enjoyed the movie (if they had seen it) or ex-
pected to enjoy it based on the synopsis. In each experiment,
a paired sample t-test showed no significant difference in the
Likert values our subjects assigned to pairs of movies under
the same condition, that is, subjects were consistent in their
ratings of movies generated under the same rationale.

Experiment 1 tested whether a subject would be more
likely to consider movies enjoyable if they were in the same
family as her starter. GURU offered eight movies drawn
at random: two from MediumD, and two from each of the
starter’s text prospects, its ratings prospects, and its prove-
nance prospects. Under a t-test, our 143 subjects preferred
movies similar to their starter under each similarity ratio-
nale to randomly selected movies (t = 143, p < 0.01, µ =
2.5, 2.769, 2.867, 2.769). Subjects did not, however, prefer
movies suggested under one similarity to those suggested un-
der any other (t = 143, p = 0.05).

Experiment 2 tested whether a subject would be more
likely to consider movies enjoyable under one pair of similar-
ity rationales than another. Let Lr be the set of all prospects
under rationales R1 or R2 (or both). We scored m ∈ Lr with

v(m, r,R1, R2) = w(m, r,R1) · F (m, r,R1)+
w(m, r,R2) · F (m, r,R2) (7)

where w(m, r,R) is the weight of the edge between m and
the starter r in the item graph for rationale R, and F (m, r,R)
is the number of families under rationale R that contain
both m and r. Without repetition, GURU sampled movies
similar to starter r from Lr with probabilities based on the
v scores computed in (7). GURU offered 102 subjects 9
movies each: 3 from each pair of similarity rationales. Lik-
ert scores for movies similar under ratings and provenance
were higher than for movies similar under ratings and text
(t = 102, p = 0.05, µ = 3.086, 3.039).

Experiment 3 tested whether a subject would be more
likely to consider movies enjoyable if they were nearest
neighbors of the starter r in the ratings graph (the traditional
approach to recommendation) than if they were related to r
under one similarity rationale. GURU offered 66 subjects
8 movies: the 2 nearest neighbors under ratings and 2 from
each pair of rationales, selected under equation (7) as in Ex-
periment 2. An ANOVA indicated no significant differences
in Likert scores from 66 subjects on any of those pairs (p =
0.05). This test is currently underpowered; we continue to re-
cruit more subjects to see if non-statistically significant trends
will become significant.

6.2 Experiment 4
Our hypothesis in Experiment 4 is that good recommenda-
tions can arise from families with above-average similarity to
a movie identified by the subject as enjoyable. Let P (r) be
the set of all prospect families, those, under any of the three
rationales, that contain the subject’s starter r. The movies in
P (r) are potentially relevant but typically so many that a full
list would overwhelm the user. For example, Field of Dreams
belongs to 41 families and has 429 prospects.

GURU generates questions, one at a time, to narrow
P (r) rapidly in response to the subject’s current preferences.
GURU asks about a text or provenance feature f∗. For exam-
ple, if f∗ is a text token, “Would you like to watch a movie
about dogs?” or, if f∗ is a participant, “Would you like to
watch a movie written by Michael Crichton?” Other prove-
nance features ask the subject to select any number from a
short list of values. If f∗ is genre, GURU lists the 10 genre
values with the highest acuity; if f∗ is the movie’s year,
GURU lists all decades in the dataset; and if f∗ is MPAA
rating, it lists all MPAA ratings. Every question has a “No
preference” option.

To find f∗, GURU represents each familyFj by its centroid
cj , an artificial movie whose feature values are the means of
the respective features’ values in Fj . Initially, the utility of a
family F ∈ P (r) is r’s mean edge weight in F . A question
about feature f∗ is intended to maximally distinguish among
all prospects in the useful families U(r) ⊆ P (r), those with
above average utility. In U(r), f∗ is the feature that maxi-
mizes the average difference between its values f(cj) in the
centroids and its mean value µf across U(r):

f∗ = arg max
f

1

|U(r)|

|U(r)|∑
j=1

|f(cj)− µf | (8)

On each iteration, GURU identifies U(r), calculates which
feature f∗ to ask the subject about, and then, if the subject



expresses a preference, refines P (r) and recalculates U(r)
based on her answer. In response to a preference for or against
f∗, GURU eliminates prospects that violate it, recalculates
the centroids of reduced families, and adjusts the utility of
each family Fj by f∗(cj), as an increment for a “yes” answer
or a decrement for a “no.” Iteration halts when |U(r)| ≤ 3,
fewer than 7 prospects remain, or an expressed preference
does not reduce P (r).

GURU then recommends one prospect at random from
each useful family, in descending order by their utility, until
6 prospects have been chosen or none remain. If the subject
has seen the movie, she is asked how much she enjoyed it.
Otherwise, she sees a brief synopsis and can request a longer
one before she evaluates how much she would expect to en-
joy the recommendation. Both questions use the Likert scale
from the earlier experiments.

Table 3 is a sample real-time, online dialogue. With only
5 questions, GURU rapidly narrowed U(r) from 69 families
and 309 movies down to 23 families, 3 of which were use-
ful, and offered the subject the 5 movies shown in Table 3.
(One synopsis indeed described Godzilla as a “dinosaur-like
beast.”) Experiment 4 is now in preliminary testing.

7 Discussion
7.1 Responsiveness and Plausibility
Human uncertainty, impatience, and unreliability preclude
the ideal approach to reactive recommendation: ask the user
which features she cares about at this moment, their relative
importance, and what their values should be, and then comb
the dataset for good matches. Instead, GURU uses a starter to
capture the user’s attitude, and uses families to create a richer
structure that supports multiple similarities while it casts a
broad but thoughtful net.

The automatic acquisition of knowledge from unstructured
data is at the heart of our approach. GURU crawls the web for
descriptive information about the items in its dataset, applies
similarity metrics to construct graphs on those items, and de-
velops an interrelated family around each item in each graph.

Refusal to commit to any of the starter’s feature values al-
lows GURU to avoid the pitfalls of more traditional recom-
menders. Without forced matching on features like genre,
GURU provides breadth. Without reliance on nearest neigh-
bors, GURU can offer more than merely a sequel or a prequel.
Nor does GURU ignore the user’s current mood to focus on
popularity, as collaborative filtering might. For example, one
movie in Table 3 was the second-nearest neighbor of Jurassic
Park under ratings, but none of the others appeared among its
top 30 nearest neighbors. Instead, GURU looks for similar-
ities under its rationales and prefers recommendations with
support from multiple rationales.

GURU’s advice is compatible with what we know about
human representation of and conversation about concepts.
Unlike a semantic network or an artificial neural network, a
small set of prospects closely related to the starter and ac-
companied by descriptive text is easy to consider. Although
one could display an entire family, we believe that even a
list of more than six movies would drive away most users.
GURU’s simple explanation for each recommendation is the

Table 3: Sample GURU dialogue for the starter Jurassic Park.
The user’s replies are in boldface.
Do you want to watch a movie about a dinosaur?
Yes
What kind of movie do you want to watch?
Please check all that apply [list of 10 genres here]
Action, Science Fiction
Do you want to watch a movie directed by Steven Spiel-

berg?
No
Do you care about the release year of the movie?
No
Does a movie’s MPAA rating matter to you (e.g., PG-13)?
Yes
Please select all acceptable ratings: G,PG,PG-13,R,NC-17
PG, PG-13, R
GURU now recommends one movie at a time and asks how
much the user enjoyed it or would expect to enjoy it.
I recommend Carnosaur 3: Primal Species because it is

an action movie about a dinosaur
Description please
...terrorists get a surprise when their cargo turns out to con-

tain living dinosaurs...now have to...prevent the extinc-
tion of the human species

That would be quite enjoyable
I recommend Lost World: Jurassic Park because it is a

science fiction movie about a dinosaur
I have seen it; it was moderately enjoyable
I recommend Baby... Secret of the Lost Legend because it

is a science fiction movie about a dinosaur
Description please
Paleontologist and her husband discover a mother and

baby brontosaurus...try to protect them from hunters
who want to capture them.

That would be moderately enjoyable
I recommend Carnosaur 2 because it is an action movie

about a dinosaur
Description please
Extinction is a thing of the past. [User requests a longer

description, omitted to conserve space.]
That would be quite enjoyable
I recommend Godzilla because it is an action movie and a

science fiction movie about a dinosaur
I have seen it; it was extremely enjoyable

features that the recommended movie shares with the user’s
starter. Combined with text descriptions from the dataset, this
highlights family resemblances for the user.

7.2 Generality
For clarity, this paper has described GURU simply as a movie
recommender, but its automated acquisition of knowledge is
more generally applicable. DRILL (Dialogue for Recommen-
dations in Large Libraries) was a book recommender for pa-
trons of a real-world library [Epstein et al., 2012]. DRILL
gathered descriptions for 53,616 books from the librarians’
synopses, a commercial book seller’s website, and an exten-



sive book mashup [Bizer and Gaub, 2012]. DRILL differed
from GURU in several significant ways.

Without readers’ ratings, DRILL relied on circulation data
made available by the library: the borrowing history and ex-
pressed genre preferences of 414 anonymized patrons. Be-
cause book provenance data (e.g., editors, researchers) is
less widely available, DRILL had only two similarity metrics
rather than three, and thus generated only two sets of fam-
ilies: text and circulation. DRILL’s text graph was similar
to GURU’s, and its text families were often qualitatively as
compelling as GURU’s. For example, 13 of the 14 books in
the text family for the biography The Jackie Robinson Reader
were about baseball or another sport, but they also included
fiction and books on minority players and on young athletes.

DRILL’s circulation graph, however, was a boolean vec-
tor on the 414 patrons, and thus considerably less nuanced
than GURU’s ratings graph. Moreover, because the library’s
patrons were unavailable, evaluation had to be by simula-
tion from patrons’ borrowing histories: if DRILL suggested
a book that the patron had checked out, that was considered a
successful recommendation. The quantity of readily available
movie data, particularly provenance, and the greater willing-
ness of human volunteers to discuss movies with a computer
resulted in GURU. Nonetheless, DRILL demonstrated that it
is possible to harness existing unstructured descriptive item
data for another domain, along with opinions and behavioral
data, to construct meaningful relationships among items.

7.3 Alternatives and Future Work
PageRank detects and ranks similarity within a large
weighted graph [Brin and Page, 1998]. If applied here, once
it converged it would provide a pairwise view of the likeli-
hood that one movie would recommend another under some
similarity rationale. Item graphs, however, are considerably
denser than those to which PageRank is typically applied. FF
can also set a time limit, score a family as it evolves, and
quantify explicitly the qualities valued in a family.

GURU promotes diversity. In different sessions, it will rec-
ommend different movies to a user who chooses the same
starter, unless she also provides the same preferences and
GURU makes the same random choices in U(r). Although
GURU still allows families to exploit magnets for diversity,
the user’s starter and GURU’s questions balance a user’s cur-
rent preferences against the strength of a magnet.

The use of three nested datasets was crucial here. LargeD
provided a broad context within which to norm ratings and to
identify a substantial token vocabulary. SmallD (with 1682
movies, 943 users, and 100,000 ratings) allowed us to demon-
strate, exhaustively, that despite FF’s non-determinism, the
families it generates are non-random. SmallD was also the
test-bed where we investigated only a few values for two other
computationally exorbitant tasks: pruning thresholds for the
item graphs, and the constants in equations (5) and (6). Both
were applied unchanged to MediumD and LargeD.

Although we used MediumD to accelerate online testing,
we expect to run Experiment 4 on LargeD in a laboratory set-
ting. Preliminary tests suggest that, as the dataset enlarges,
family size does not necessarily increase. Instead, each fam-
ily focuses more strongly on its seed — both its score under

equation (5) and the mean edge weight to its seed increase,
while the standard deviation of its edge weight decreases.

A significant issue in recommendation is that both the user
set U and the item set I are dynamic. (This was one rea-
son Netflix never put BellKor into production [Amatriain and
Basilico, 2012].) New users and items appear, known users
and items become unavailable, and new descriptive features
(e.g., a new director) arise for items across time. Thus, any
attempt to classify U or I by a predetermined set of features
must be temporary.

Improvements in family scores in the larger datasets, how-
ever, bode well for an incremental version of FF, one that
would activate the web crawler to extract data for a new
movie nm. (The text item graph is large enough to defer
full re-computation of tf-idf values to infrequent, offline up-
dates. Ratings could be updated at the same time. Given
nm, the system could create three families seeded on it, add
nm to each existing family for which it satisfied equation (6),
and reactivate FF on those families for further additions and
swaps. If a movie were to become unavailable, the system
would shake it from each family that contained it, and refresh
that family with a single iteration of FF. Moreover, much of
this computation could proceed in parallel.

Unlike traditional recommenders, GURU does not attempt
to predict ratings. Instead, it suggests a small set of movies
the user is likely to enjoy, based on a real-time dialogue that
elicits spur-of-the-moment preferences. Future work includes
further investigation of the constants in equations (5) and (6)
with human subjects. Given that people do not weight fea-
tures equally when they gauge similarity [Weisberg, 2012],
it may also be possible to refine the provenance edge-weight
formula in equation (3).

As DRILL demonstrated, GURU’s approach is not re-
stricted to movies. It is suitable for consumable and recre-
ational items (e.g., books, videos, clothing, food) that offer
many choices. Other similarity rationales (e.g., accessibility,
critics’ opinions) are also readily incorporated. GURU is a
first step in the use of family resemblance to enhance human
cognition with an expert assistant who shares people’s world-
view. GURU collaborates with its user to help make choices
in an item-rich environment, so that the user will indeed know
it when she sees it.
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