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 Abstract. The Adaptive Constraint Engine (ACE) seeks to automate the applica-
tion of constraint programming expertise and the extraction of domain-specific
expertise. Under the aegis of FORR, an architecture for learning and problem-
solving, ACE learns search-order heuristics from problem solving experience.
This paper describes ACE’s approach, as well as new experimental results on
specific problem classes. ACE is both a test-bed for CSP research and a discov-
ery environment for new algorithms.

1. Introduction

The Adaptive Constraint Engine (ACE) is a program that learns from experience to be a
better constraint programmer. A constraint satisfaction problem (CSP) involves a set of
variables, a domain of values for each variable, and a set of constraints that specify
which combinations of values are allowed. A solution to the problem assigns a value to
each variable that satisfies all the constraints. Every (binary) CSP has an underlying
constraint graph, where each variable is represented by a vertex whose possible labels
are its domain values. An edge in the constraint graph appears between two vertices
whenever there are constraints on the values of their corresponding vertices. One may
think of an edge as labeled by the permissible pairs of values between its endpoints.
The degree of a variable is the number of edges to it in the underlying constraint graph.

Currently, ACE learns search-order heuristics. We supply ACE with a set of primi-
tive methods that characterize variables in the constraint graph, such as maximum do-
main size, minimum domain size, maximum degree, and minimum degree. These
primitives are embedded in procedures called Advisors that collaborate on search-order
decisions. For example, one Advisor, might recommend “choose the variable with
maximum domain size” while another recommends “choose the variable with mini-
mum domain size.” As it solves problems, ACE learns which Advisors to value, and
how to weight their advice.

ACE relies upon an underlying Advisor-based architecture called FORR (FOr the
Right Reasons), which has proved successful in other domains [1-4]. In an earlier pa-
per, some of us used FORR to construct GC, a graph-coloring program [5]. Here we
extend the approach to general CSP’s and incorporate the following advances:
• ACE can combine primitive Advisors to learn new Advisors.
• ACE demonstrates how learning on simple training instances can transfer to difficult

test problems.
• ACE can learn different heuristics for different search stages (early, middle, late).



• ACE employs a new weight-learning algorithm.
ACE has demonstrated that it can not only rediscover classic heuristics, but also

make new discoveries of equal or greater value. Specifically, ACE has discovered that
maximizing the product of degree and forward-degree only in the early stage of search,
and simply minimizing domain size thereafter, can be more effective in reducing the
size of the search tree than minimizing the ratio of domain size to degree throughout
the search. We also demonstrate that lessons learned by ACE can be applied in a more
conventional context. In general, ACE provides a powerful testbed for exploring the
nature of the search process with much greater ease and subtlety than has been hereto-
fore available.

The next section of this paper provides an overview of FORR. Subsequent sections
describe ACE, the experimental design and results, and our ability to transfer ACE’s
discoveries to a more traditional context. The final discussion includes an analysis of
our results and plans for future work.

2. FORR

FORR is a problem-solving and learning architecture for the development of expertise
from multiple heuristics. To make a decision, FORR combines the output of a set of
procedures called Advisors; each Advisor represents a general principle that may sup-
port expert behavior [1]. This approach is supported by evidence that people integrate a
variety of strategies to accomplish problem solving [2, 6, 7]. A FORR-based applica-
tion is constructed for a particular set of related tasks called a domain, such as path
finding in mazes [3] or game playing [4]. A FORR-based program develops expertise
during repeated solution attempts within a problem class , a set of problems in its do-
main (e.g., contests at the same game, or trips with different starting and ending points
in the same maze). FORR-based applications often produce expert-level results after
learning on as few as 20 problems in a class. Learning is relatively fast because a
FORR-based application begins with the pre-specified, domain-specific knowledge of
its Advisors.

FORR partitions its Advisors into a hierarchy of tiers, based upon their correctness
and the nature of their response. A FORR-based program begins with a set of pre-
specified Advisors intended to be problem-class independent , that is, relevant to most
classes in the domain. Each Advisor represents some domain-specific principle likely
to support expert behavior. An Advisor is represented as a time-limited procedure
whose input is the current problem state and the legal actions in that state. An Advi-
sor’s output is a set of comments which indicate how its particular principle evaluates
those actions. A comment has the form <strength, action, Advisor> where strength in-
dicates the degree of support or opposition as an integer in [0, 10]. Comments may
vary in their strength, but an Advisor may not comment more than once on any action
in the current state.

During execution, a FORR-based application develops expertise for a new problem
class as it learns weights (described in Section 3.3) to reflect the reliability and utility
of Advisors for that particular set of problems. Thus far, ACE learns only from its own
problem solving attempts, without examples solved by others. (Our description here
does not cover the full scope of the FORR architecture, only those aspects which ACE
currently uses. The interested reader can find further details in [8].)



3. ACE

ACE is a FORR-based program for the CSP domain. For ACE, a problem class is the
set of problems produced by the generator under a particular set of specifications, as
described in Section 4. Within any given class, problems are randomly generated.

3.1 Decision Making in ACE

A problem-solving state for ACE is a partially (or fully) solved CSP. A state descrip-
tion pairs each variable either with an assigned value or with a domain of possible val-
ues from which its value will be selected. ACE represents the solution to a CSP as a
sequence of steps generated with the following algorithm:

While some variable has no assigned value
Select an unassigned variable v
Select a value a for v from the domain of v
Assign a to v
For each unassigned neighbor n of v

Remove any values in the domain of n inconsistent with a
While any unassigned variable has an empty domain

Retract the most recent value assignment

From this perspective, a CSP on n variables requires at least 2n decision steps in its
solution: n variable selections alternated with n value selections. Thus an error-free
solution path will contain exactly 2n steps.

Given this framework, there are four key decision-making processes involved:
propagation, retraction, variable selection, and value selection. ACE has a set of proce-
dures to address each process. Propagation is done either with forward checking, where
the domains of the neighbors (in the constraint graph) of the newly-valued variable are
recalculated, based on the constraints from the newly-valued variable, or with main-
tained arc consistency  (MAC3), where this process is extended repeatedly to every un-
assigned variable until no domain changes. Retraction is currently done only with
backtracking, which returns to a node closer to the root in the search tree, where it re-
tracts the value assignment that caused the empty domain and removes that value from
the legal values that variable may subsequently assume in the current state. If neces-
sary, additional variables are automatically “unvalued” as well. With either propagation
method plus backtracking, ACE is complete (capable of finding a solution). The proce-
dures for variable selection and value selection are represented in ACE by Advisors.

3.2 ACE’s Advisors

In a domain with many heuristics, FORR’s Advisor hierarchy promotes both efficiency
and accuracy. First, tier 1 isolates rationales expected to be correct from those that are
merely heuristic. A FORR-based application begins decision making with a pre-
sequenced list of tier-1 Advisors. When a tier-1 Advisor comments positively on an
action, no subsequent Advisors are consulted (given the opportunity to comment), and
the action is executed. When a tier-1 Advisor comments negatively on an action, that



action is eliminated from consideration, and no subsequent Advisor may support it. If
the set of possible actions is thereby reduced to a single action, that action is executed.
ACE has two tier-1 Advisors, Victory and Later. If only one variable remains unvalued
and has at least one legal value, Victory assigns it a value. If an iteration is for variable
selection, Later limits that choice to variables whose degree is at least as large as the
number of values remaining after propagation. (Although Later is always correct for
graph coloring, it is not for general CSP’s. We are currently addressing this notion of
timing with an approach similar to that of Section 4.3)

Typically with FORR, tier 1 does not identify an action, so control passes to tier 2.
Tier-2 Advisors plan, and recommend sequences of actions, instead of a single action.
(ACE does not yet incorporate tier-2 Advisors; they are a focus of current work.) Fi-
nally, if neither tier 1 nor tier 2 produces a decision, control passes to tier 3, where
most decisions are made. Tier-3 Advisors are heuristic and consulted in parallel. A de-
cision is computed as a weighted combination of their comments in a process called

Table 1.  The concerns underlying ACE’s tier-3 Advisors. All concerns are computed dynami-
cally, except where noted. Sources are given where relevant.

Concern Definition
Variable selection
Degree Number of neighbors in the constraint graph (static)
Domain Number of remaining possible values
Forward Degree Number of unvalued neighbors
Backward Degree Number of valued neighbors
Domain/Degree Ratio of domain size to degree
Constraints Number of constraint pairs on variable [9]
Edges Edge degree, with preference for the higher/lower

degree endpoint (static)
Reverse Edges Edge degree, with preference for the lower/higher

degree endpoint (static)
Dynamic Edges Edge degree, with preference for the higher/lower

degree endpoint
Dynamic Reverse Edges Edge degree, with preference for the lower/higher

degree endpoint
Value selection
Common Value Number of variables already assigned this value
Options Value Number of constraints on selected variable that in-

clude this value
Conflicts Value Resulting domain size of neighbors [10]
Domain Value Minimal resulting domain size among neighbors [10]
Secondary Options Value Number of constraints from neighbors to nearly-

neighbors
Secondary Value Number of values among nearly-neighbors
Weighted Domain Size Value Domain size of neighbors, breaking ties with fre-

quency [10]
Point Domain Size Value Weighted function of the domain size of the neigh-

bors, a variant on an idea in [10]
Product Domain Value Product of the domain sizes of the neighbors



voting, described in the next section. The action that receives the most support during
voting is executed, with ties broken at random. (ACE uses heuristics to search because
the problem space in which it functions is NP-hard. Nonetheless, any solution it pro-
duces is complete.)

Each of ACE’s tier-3 Advisors encapsulates a single primitive, naive approach to
selecting a variable or selecting a value. To generate them, we identified basic proper-
ties ( concerns) and formulated one procedure to minimize each concern and another to
maximize it. Thus each concern gives rise to two Advisors. Some concerns were
gleaned from the literature, some are common CSP lore, and others were naively hy-
pothesized. For example, one traditional concern is the degree of a variable, the num-
ber of neighbors it has in the constraint graph. For variable selection, the tier-3 Advisor
Max Degree supports the selection of unvalued variables in decreasing degree order,
with comment strengths from 10 down. Although Max Degree is popular among CSP
solvers, we also implemented its dual, Min Degree, which comments on variables in
increasing degree order. Another example of a concern, this time a naïve one for value
selection of an already-chosen variable, is common value , the number of variables al-
ready assigned this value. Min Common Value  supports the selection of values less fre-
quently in use; Max Common Value is its dual. The full complement of concerns that
generate ACE’s tier-3 Advisors is detailed in Table 1. There, edge degree is the sum of
the degrees of the endpoints of an edge, and a nearly-neighbor is a variable at distance
two in the constraint graph from the variable being assigned a value.

These 19 concerns generate 38 Advisors that correspond naturally to properties of
the constraint graph and search tree associated with general CSP’s. A skeptical reader
might be concerned that, consciously or not, we have somehow “biased” our set of Ad-
visors. Even if that were so, we would respond that it is still up to FORR to learn how
to use the Advisors appropriately, and that the ability to incorporate our expertise into
the FORR architecture by specifying appropriate Advisors is a feature, not a bug.

3.3 Voting and Weight Learning in ACE

Although a FORR-based program begins with problem-class-independent, tier-3 Advi-
sors, they may not all be of equal significance or reliability in a particular problem
class. Therefore, FORR is equipped with a variety of weight-learning algorithms.
FORR permits the user to partition each task into stages, so that a weight-learning al-
gorithm can learn weights for each stage in the solution process. For now, the number
and definition of each stage is pre-specified by the user. The premise behind all weight
learning in FORR is that the past reliability of an Advisor is predictive of its future re-
liability. We used a weight-learning algorithm called DWL in these experiments.

DWL (Digression-based Weight Learning) learns problem-class-specific weights
for tier-3 Advisors; it is specifically designed to encourage short solution paths. After a
problem has been solved successfully, DWL examines the trace of that solution. DWL
extracts training instances, pairs of the form <state, decision>. The intuition behind
DWL is suggested by Figure 1, which diagrams the search to a solution. The solid path
is the underlying perfect search path; it includes exactly 2n correct decision steps, rep-
resented in Figure 1 as black circles.  Those decisions should be maximally reinforced.
The remainder of the search consists of digressions , subtrees rooted along the solid
path, whose roots (represented as white circles in Figure 1) are eventually retracted. A
decision at the root of a digression is an error that produces an over-constrained (i.e.,



unsolvable) sub-problem; it should be discouraged. Decisions at all but the root of a di-
gression address an over-constrained problem, and should be reinforced in inverse pro-
portion to the number of steps required to discover that the problem has no solution.

Under DWL, all pre-specified tier-3 Advisors begin as equally significant. The
comments of an often-correct Advisor gradually have more influence during voting,
while those of an often-incorrect Advisor are soon overwhelmed. DWL learns weight
wi for Advisor i with the following algorithm:

For all i, wi ← 0.05
For each training instance <s, d>with state s, decision a, and next state s

For each Advisor Ai that produces comments ci on s
di ← di + 1
If s  was not the root of a digression

 then if ci supports a, increase wi else decrease wi

else if ci supports a, decrease wi else increase wi

DWL also uses a discount factor of 0.1 to introduce each Advisor gradually into the
decision process. When ACE makes a decision, tier 3 chooses the action with the
greatest support, as follows:

argmax 

j
iw icij∑

i
 where 

di = number of opinions i has generated.

i = 
0.1*di if di < 10.

1 otherwise.

w i = weight of Advisor i.

cij = opinion of consulted Advisor i on choice j .

Note that an Advisor must be consulted and comment to figure in this computation.
Although all Advisors are consulted during learning, only those that have earned a
weight greater than that of Anything are consulted during testing. Anything is a non-
voting baseline Advisor which comments with randomly-generated strength on n ran-

domly-chosen actions (0.5)
n
% of the time. Thus DWL fits ACE to correct decisions,

learning to what extent each tier-3 Advisor reflects expertise.

Key  
correct decision  

error  
underlying perfect path  
digression  

solution    

Fig. 1. A search tree for a CSP, as seen by DWL



3.4 An Example

The following example shows how ACE makes decisions. Figure 2 represents a con-
straint graph on five variables, each with domain {1, 2, 3, 4, 5}. If D were now as-
signed the value 3, D’s immediate neighbors (A and C) have their own domains re-
duced: A can now be 1 or 4, while C can be 1 or 2. Under forward checking, ACE does
not continue to remove values of variables more distant from D, so B and E would still
have 5 possible values each, while A and C would have 2. ACE must now select an-
other variable to value. Since the number of possible values for each of B and E is
greater than their respective degrees, the Advisor Later will eliminate B and E from
among the possibilities. The remaining unvalued variables, A and C, are then for-
warded to the variable-selection Advisors in tier 3. For example, Min Degree would
support the selection of variable C with a strength of 10, and the selection of variable A
with a strength of 9. (In this simple example, Max Degree would counter those com-
ments exactly. In a larger constraint graph, however, the dual pairs of Advisors typi-
cally address different choices.) Similarly, Max Forward Degree would support the se-
lection of variable A, which has 2 unvalued neighbors, with a strength of 10, and vari-
able C, which has one unvalued neighbor, with a strength of 9. ACE tallies the com-
ments on A and C from all the tier-3 Advisors, multiplying each comment’s strength by
the weight of the Advisor that produced the comment, and then selects the variable
with the most support.

4. Experimental Design and Results

Because it breaks voting ties at random, ACE is non-deterministic. Its performance is
therefore typically judged over a set of r runs. Each run consists of a learning phase
and a testing phase. In the learning phase, the program learns weights while it attempts
to solve each of l problems from the specified class. In the testing phase, weight-
learning is turned off, and the program tries to solve a set of additional problems from
the same class. Since ACE can get stuck in a “blind alley,” where there are no suc-
cesses from which to learn, new runs also present fresh opportunities for success. This
is actually conservative, as we argue below that one could reasonably utilize the best
result from multiple runs.

In all the experiments reported here, ACE used DWL. Rather than assume that se-
lection heuristics are consistently reliable throughout the solution of a problem, we
specified three distinct weight-learning stages, determined by the percentage of vari-

 (4 4) (1 3) (2 3)
C

A

E

D (1 1) (3 5) 

B

Fig.2. A partially-valued problem on 5 variables. Edges are labeled by permissible
value pairs, in alphabetical order



ables thus far assigned values: early (fewer than 20%), middle (at least 20% but no
more than 80%), and late (more than 80%). (This is different from the graph coloring
work in [5] which employed only a single stage.) Unless otherwise stated, ACE also
used MAC3 for propagation and was permitted no more than s task steps per problem.
A task step is either the selection of a variable, the selection of a value, or the retraction
of a value or a variable. As discussed earlier, a CSP on n variables requires at least 2n
steps. Data was averaged over 10 runs, each with a learning phase of 80 problems fol-
lowed by a testing phase of 10 problems.

All problems were produced by a random problem generator available at
http://www.cs.unh.edu/ccc/code.html. Although there is no guarantee that any particu-
lar set of problems was distinct, given the large size of the problem classes the prob-
ability that a testing problem was also a training problem is extremely small. Our gen-
erator defines edge density as the percentage of possible edges beyond the minimal n-1
necessary to connect the constraint graph on n vertices, and tightness as the percentage
of possible value pairs that are forbidden by the constraints. When generating problems
of a fixed size (number of variables, maximum domain size, and tightness), increasing
the density eventually makes it more difficult to find problems with solutions. For ex-
ample, with 50 variables, domain size 20, and tightness 0.6, no such problems could be
generated with density 0.100 in 100 attempts, although they could be generated at den-
sity 0.080. We focus our attention here on densities where problems with at least one
solution were readily generated. (Those reported upon here are guaranteed to have at
least one solution, but ACE can work with over-constrained problems as well.)

We evaluated ACE on its solutions: by computation time (in seconds), number of
retractions (backtracks), and number of constraint checks. (A constraint check is a con-
firmation that a value in the domain of an unassigned variable is still possible given the
current assigned values.) Cited differences are significant at the 95% confidence level.

4.1 Step-limited Learning

The learning phase in a run gleans training instances from successful problem-solving

Table 2. Performance of an ablated version of ACE under forward checking, averaged over 10
runs in different training environments. All problems had 30 variables, maximum domain size 5,
tightness .4, and density .005. Power is percentage of backtrack-free solutions. Time is in sec-
onds per solved problem. Also included are the number of steps in the longest solution during
testing, and the percentage of learning problems unsolved due to the step limit.

Learning
step limit Power  Time Checks

Longest testing
solution

Unsolved learning
problems

70 13% .16 145.40 1639 32.38%
80 14% .12 118.44 717 21.38%

100 18% .13 167.77 1041 11.50%
200 12% .17 163.34 2471 5.00%
400 10% .13 125.41 837 1.25%
800 11% .12 121.93 511 0.50%

1000 11% .14 125.68 1035 0.38%



experience, as described in Section 3.3. ACE’s learning is, at the moment, unsuper-
vised, that is, no outside expert is offering suggestions or corrections. The quality of its
training instances is unpredictable — they may be good examples or they may simply
have been lucky choices. To function as an expert, however, ACE needs to experience
the sorts of decision situations that an expert would confront.

One way to enhance the quality of the training instances is to consider only those
from good (i.e., short) solution traces. ACE can either abandon a problem after some
fixed number of steps, or work until it is solved. The experiment described here sought
to identify the best approach. We used forward checking with a primitive version of
ACE that included only the first four concerns from Table 1, so that there would be
room for improvement in the program’s performance. We then limited the program to
s = 70, 80, 100, 200, 400, 800, and 1000 steps for learning, but permitted it to work to
solution during testing. The results appear in Table 2, where power is percentage of
backtrack-free solutions. Although their size (30 variables, domain size 5) leaves room
for inefficient solutions by naïve solvers, these are sparse problems (density .005,
tightness .4), so one would expect an expert to solve them quickly. A perfect solution
to such a problem would include 60 steps. Under a 70-step limit, however, ACE did
not solve, and therefore could not learn from, nearly a third of the learning problems.
Moreover, its performance after learning on the remaining two thirds offered no note-
worthy improvement in time or number of constraint checks over higher s values.
When the program was given many more than 100 steps in which to solve learning
problems, the quality of its testing performance never consistently improved. We have
therefore settled on a 100-step learning limit for problems on 30 variables; it is efficient
during development and appears to provide examples as good as those from higher or
lower limits. During testing, however, we let each program run until it solved the
problem.

4.2 The Value of Learning

The next set of problems, this time for the full version of ACE, all had a larger domain
size of 8 and tightness .5. Densities of 0.075 and 0.100 for 30 variables and .045 for 50
variables were examined. For comparison, on 100 problems from each problem class,

Table 3. ACE’s performance, as averaged over 10 runs. All problems had maximum domain size
8, and tightness .5. Power is percentage of backtrack-free solutions.

Variables Density Approach Power Time Retractions Checks
30 .075 Traditional 68% 0.43 0.41 7381.90
30 .075 ACE no learning 87% 0.99 0.19 6323.31
30 .075 ACE learning 70% 0.72 0.60 6884.24

30 .100 Traditional 19% 0.65 3.42 12216.55
30 .100 ACE no learning 61% 1.72 6.40 12945.50
30 .100 ACE learning 81% 0.96 1.24 8476.14

50 .045 Traditional 0% 0.16 3.50 39445.70
50 .045 ACE learning 42% 2.00 3.89 21599.17



we also tested both ACE without weight-learning and Traditional, which minimizes
the ratio of a variable’s domain size to its degree and selects values at random [5].
(Traditional simply reduces ACE to a single tier-1 Advisor.)

The results, in Table 3, show that weight learning substantially improved perform-
ance on the two more difficult sets of problems. With learning, ACE solved those test
problems with fewer constraint checks, and in less time. ACE requires more elapsed
time than Traditional because its decision calculation is more complex: it must com-
pute the opinions of many Advisors, combine them with their current weights, and tally
the results. The resultant decisions, however, are more likely to be correct, that is, not

Table 4. The number of runs during which an ACE tier-3 Advisor was active during early (1),
middle (2), and late (3) stage testing on the last two problem sets in Table 3. Particularly consis-
tent Advisors appear in bold, those that are significant without their dual appear in italics, and
those that are infrequently relevant appear in parentheses.

n = 30 n = 50
Advisor 1 2 3 1 2 3

Variable concerns
Max Backward Degree 10 10 10 10
(Min Backward Degree) 2
Max Constraints 10 2 10
Max Degree 10 10 10 10 10 10
Min Domain 7 10 10 10 10 10
Min Domain/Degree 10 10 10 10 10 10
Max Dynamic Edges 10 7 10
Max Dynamic Reverse Edges 7 10
Max Forward Degree 10 4 10
Min Forward Degree 6 10
Max Reverse Edges 10 5 9 10
Value concerns
Max Common Value  3 7 4 1 8 8
Min Common Value 10 6 6 9 7 2
Max Conflicts Value 2 5 4 4
Min Conflicts Value 10 8 5 9 6 6
Max Domain Value 10 8 5 10 6 6
Min Domain Value 2 5 4 4
Max Options Value 10 8 5 9 6 6
Min Options Value 2 5 4 4
Max Point Domain Size Value 2 5 4 4
Min Point Domain Size Value 10 8 5 10 6 6
Max Product Domain Value 10 8 5 10 6 6
Min Product Domain Value 2 5 4 4
Max Secondary Options Value 10 8 5 10 6 6
Min Secondary Options Value 2 5 4 4
Max Secondary Value 10 8 5 10 6 6
Min Secondary Value 2 5 4 4
Max Weighted Domain Size Value 10 8 5 10 7 6
Min Weighted Domain Size Value 10 2 5 10 5 4



retracted later.
Recall that an Advisor active during testing is one whose weight has demonstrated

that it consistently performs better than random advice (Anything). For each class, the
Advisors that ACE relied on during testing appear in Table 4, along with the number of
runs (out of 10) where their weight in a stage qualified them for use during testing. To-
gether with their weights, the Advisors of Table 4 could be construed as an algorithm
for variable selection and value selection within the problem class. Note that al-though
every concern is represented in Table 4, 9 Advisors are absent. According to Table 4,
both an Advisor and its dual (e.g., Max and Min Weighted Domain Size Value) can be
relevant in a stage; it is the extremity of the concern, rather than its value, that is sig-
nificant. Some Advisors, such as Max Constraints, are relevant only in a single stage.
Others, such as Max Dynamic Edges, are relevant only early and late in problem solv-
ing, and not in the middle. Still others, such as Max Degree, appear consistently rele-
vant. The active Advisors also display much greater consistency in the early stage of
problem solving. Finally, there appear to be more heuristics that are consistently reli-
able in all stages for variable selection than there are for value selection.

It is interesting to compare ACE’s learned weights with the performance predicted
in the literature for some of these concerns. Min Domain/Degree [11] is confirmed as
valuable in all problem-solving stages. Min Point Domain Size Value is confirmed for
early and middle-stage solving, but relevant only about half the time for late-stage
solving. Contrary to prediction, however, the Constraints concern functions well only
in the early period, and as a maximum, not as a minimum. This may turn out to be a
peculiarity of this class of problems, but one of ACE’s advantages is that it automates
the process of adapting heuristic processing to specific problem classes.

4.3 Learning New Advisors

Given a language in which to express them, FORR can learn new tier-3 Advisors [12].
Min Domain/Degree led us to wonder about the efficacy of other arithmetic combina-
tions of concerns. We therefore formulated an arithmetic variable language in which
an Advisor’s concern would be either the product or the quotient of a pair of variable-
selection concerns. (Sums and differences proved weaker in early testing and were
eliminated.) Each expression in this language is of the form:

<function1, function2, attitude, stage>
where stage is early, middle, or late (as defined in Section 3.3), the two functions are
any pair of distinct concerns (such as those in Table 1), and attitude is one of the fol-
lowing: maximize function1* function2, minimize function1* function 2, maximize func-
tion1/ function2, and minimize function1/ function2.

To learn new Advisors within a language, FORR monitors how each possible ex-
pression would perform at problem solving. During weight learning, each expression is
given the opportunity to comment on training instances from the underlying perfect
search path, as if it were a tier-3 Advisor. For each expression, FORR tallies each atti-
tude’s frequency (number of times it discriminates) and accuracy (number of times it is
correct) for each stage.

During problem solving, each expression in a language is either potential, active,
spawned, or inactive. Initially, all expressions are potential, monitored for possible in-
clusion in decision making. After every t tasks (t = 10 here), FORR reevaluates each



expression’s status. Those that fail to discriminate or never comment are eventually
made inactive, to speed subsequent computation. Potential expressions with an attitude
that has been accurate at least 85% of the time are promoted to active status. Active
expressions provide input to their language’s summary Advisor, which combines their
comments to structure its own. Once an active expression has tallied 95% accurate, it is
spawned, that is, transformed into an individual Advisor, and the expression no longer
participates in the summary Advisor’s computation. Both the summary Advisor and the
spawned Advisors are subject to the discount factor discussed in Section 3.3, so that
they enter the decision process gradually. This permits ACE to maintain its perform-
ance level as it introduces new Advisors.

In our first experiment with learning new Advisors, we formulated a simple lan-
guage for the concerns Domain, Degree, Forward Degree, and Backward Degree. As
described earlier, each expression combined a pair of these concerns (e.g., Domain and
Degree) and considered four computations on them: minimize their product, maximize
their product, minimize their quotient, or maximize their quotient. We then removed
the Domain/Degree concern from ACE’s list in Table 1 (ACE–), and had ACE learn on
30 variables, maximum domain size 8, tightness .4, density .100. For comparison we
also tested ACE– alone, and MDD, a program with Min Domain/Degree as its only
Advisor.

The results, in Table 5, were startling. ACE outperformed MDD, as expected, but so
did ACE–, suggesting that the Min Domain/Degree heuristic might not make a neces-
sary contribution, despite its high weight. Indeed there was no statistically significant
difference between ACE and ACE– along any metric. Furthermore, when ACE was
permitted to learn new Advisors in a language capable of expressing Min Do-
main/Degree (the last line in Table 5), the expression for Min Domain/Degree never
became active even once in 10 runs. Instead, on every run, exactly one expression ever
became active, the same one every time: “maximize the product of degree and forward
degree in the early stage.” With this single learned Advisor, the learning-Advisors ver-
sion of ACE performed just as well as ACE and as ACE–.

4.4 Learning Transfer

We have confirmed, outside of ACE and on fairly hard problems, that when the new
“maximize the product of degree and forward degree” heuristic is used at the top of the
search tree, subsequent use of Min Domain/Degree is comparable to the use of domain
size alone. To accomplish this, we incorporated the new heuristic into a CSP algorithm

Table 5.  Performance of a variety of programs, with and without the ability to learn tier-3 Advi-
sors. MDD is the program with Min Domain/Degree as its only Advisor. ACE– is the program
without the Domain/Degree concern. The learning Advisors approach is an ablated version of
ACE, as described in the text.

Approach Concerns Power Time Retractions Checks
MDD — 19% 0.69 3.42 12216.55
ACE all 81% 0.96 1.24 8476.14
ACE– all but MDD 80% 0.96 1.17 8152.18
Learn Advisors 4 variable 80% 1.04 1.34 8048.66



coded in a conventional manner, and tested it on reasonably difficult 150-variable
problems.

Our results, in Table 6, are significant for several reasons. They demonstrate that:
• Lessons learned with ACE can be transferred to a conventional algorithmic context.
• Lessons learned on easy problems can be relevant to hard problems.
• Our conventional understanding of search-order heuristics may be overly simplistic.

Our initial tests ran three conventional heuristics: min domain (MD), min (do-
main/degree) (MDD), and MD after first ordering the variables by descending degree.
Then we repeated the same tests, this time replacing the conventional heuristic by min
(degree * forward-degree) in the top fifth of the search tree. It is admittedly odd that all
the latter tests averaged to the same (rounded off) search tree size, but the top of the
tree appears so dominant that, in most cases, the same nodes get visited, albeit in a dif-
ferent order. With this approach, the search tree is actually somewhat reduced, while
processing time slightly increases due to the dynamic calculation of forward degree.

In general, the importance of the processing at the top of the search tree is not sur-
prising, but ACE allows us to make progress on turning “folklore” (what you do at the
top of the search tree is more important than what you do at the bottom) into science
(or, at least, into engineering). The fact that domain size, the conventional bedrock of
variable ordering, can be ignored at the critical top of the search tree is surprising, at
least at first blush. On reflection it would seem to make perfect sense that domain size
would be less critical at the top of the tree, before propagation from search choices has
as much chance to effect domain size reduction, while forward degree would be critical
at the top of the tree, where it is going to be relatively large, and help to determine the
amount of propagation. ACE can inspire us to pose and help us to further evaluate such
hypotheses.

5. Discussion

A traditional CSP heuristic for variable ordering uses secondary heuristics to break ties,
or combines a few heuristics in crude mathematical combinations. The few attempts to
automate the construction of constraint solvers, including Laurière’s pioneering work,
have thus far either tried to select a single method or tried to invent a special-purpose
algorithm [13-17]. In contrast, ACE permits us to order such advice in a more flexible
and subtle manner.

In experiments on a variety of problems, ACE regularly identifies heuristics previ-
ously considered essential by constraint researchers in a general CSP context: Min
Domain, Max Degree, Min Domain/Degree, and Max Backward Degree. In particular,

Table 6. Performance results in nodes per problem for MAC3 and three conventional heuristics,
with and without the product heuristic learned by ACE. Data is averaged over 10 runs using code
separate from ACE. Problems had 150 variables, domain size 5, density .05, and tightness .24.

Conventional heuristic Alone Enhanced heuristic
Min domain (MD) 86,065 3,218
MDD 4,277 3,218
MD after degree preorder 12,602 3,218



for ordinary CSP’s, ACE has confirmed the importance of minimal domain size, often
employed individually by constraint researchers in a general CSP context, as a variable
ordering heuristic. ACE indicates, however, that in the early stage, when fewer than
20% of the variables have been valued, Min Domain is not necessarily productive.

With Advisor learning, ACE permits thorough empirical investigation not only of
individual heuristics, but of combinations of them as well. ACE’s ability both to con-
firm conventional wisdom and to provide further analysis is enticing. The emphasis on
maximizing backward degree, for example, is puzzling until one realizes that, since
these problems are so sparse, maximizing backward degree may push a significant
number of degree-one variables to the end of the search, where forward checking will
have ensured that they can be instantiated without any backtracking. This raises a fur-
ther puzzle as to why minimizing backward degree does not figure prominently in the
late stage; but then one realizes that this could risk switching over too early. Maximiz-
ing backward degree will do the “right “thing up to and including the time when the
maximum backward degree is one, whenever that occurs. All this begins to seem aw-
fully clever of ACE, though, of course, “clever” is not really the operative word here;
the currently popular “emergent” may be more appropriate.

In general, ACE is able not only to “rediscover” useful heuristics, but also to explore
more sophisticated combinations and timing patterns in applying these heuristics than
an individual experimenter could easily consider. In this manner ACE can not only
support but also instigate research. Our work with Domain/Degree in Section 4.3 is a
good example.

To build ACE we did not have to tune FORR’s learning parameters. The discount
factor of 0.1 has been traditional in FORR, as have the initial Advisor weight of 0.05
and the constants employed in learning new Advisors (discussed in Section 4.3). The
proportion of Anything’s comments was devised to make few comments more likely
than a single one, and again is standard in FORR. Only the stage designations (set
rather arbitrarily at 20% and 80%) are new; in previous FORR-based, non-CSP appli-
cations there were only two stages, with 15% in the early stage.

Our current research plans include extension to over-constrained problems, as well
as to other, more concrete classes of CSP’s. We are also investigating a variety of
propagation and retraction methods, and actively solicit empirically-validated sugges-
tions for new Advisors from the CSP community. Furthermore, we are working to
make stage designation more flexible, and to incorporate other weight learning algo-
rithms, as well as planning Advisors for tier 2.

In summary, ACE is intended to become a comprehensive architecture for acquiring
and controlling collaborative and adaptive constraint solving methods. It will establish
a taxonomy of Advisors, from very problem-dependent to very general, languages in
which to express them, and ways to combine them effectively. ACE should eventually
be able to acquire uncodified expertise, to uncover new techniques, and to discover
useful new solvers for specific classes of CSP’s. In short, ACE is both a CSP-solver
and a partner in CSP research.
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