
Fast and Frugal Reasoning Enhances a Solver for Hard Problems

Susan L. Epstein (susan.epstein@hunter.cuny.edu)
Tiziana Ligorio (t.ligorio@verizon.net)

Department of Computer Science,
Hunter College and The Graduate Center of The City University of New York

695 Park Avenue, New York, NY 10021 USA

Abstract

This paper describes how a program that learns to solve
hard problems has been enhanced with fast and frugal, rec-
ognition-based reasoning methods. The program uses these
methods to help manage its own heuristics for solving con-
straint satisfaction problems. The result is a constraint
solver that reasons quickly, much the way people appear to
induce reasonable decisions in real-world situations. Em-
pirical evidence on a variety of problems indicates that fast
and frugal reasoning can accelerate the solution of very dif-
ficult problems, often without introducing additional error.

The thesis of this work is that the same fast and frugal
reasoning which people use to formulate decisions in real-
world situations (Gigerenzer, Todd, & The ABC Research
Group, 1999) can accelerate autonomous decision makers
without endangering their reliability. We investigate this
premise with a program that learns how to combine heu-
ristics to solve constraint satisfaction problems (CSPs).
The principal result reported here is that, on difficult
CSPs, when recognition alone is not sufficient, fast and
frugal, recognition-based reasoning enhances the solver.
This is particularly noteworthy because the program first
learns how to apply its CSP heuristics within its problem
environment, and then hones its performance using fast
and frugal reasoning. We believe this to be the first explo-
ration of fast and frugal reasoning on a large body of
challenging problems whose difficulty can be explicitly
characterized and whose solution can be incisively as-
sessed.

Many large-scale, real-world problems in areas such as
design and configuration, planning and scheduling, and
diagnosis and testing are readily understood, represented,
and solved as CSPs. CSP solution is, in general, not
known to be solvable by algorithms of any but exponen-
tial complexity. Thus the effectiveness of fast and frugal
reasoning on these problems is counterintuitive.

Fast and frugal reasoning assumes pre-acquired, accu-
rate, problem-area knowledge (Gigerenzer, Todd, & The
ABC Research Group, 1999). In real-world decisions, fast
and frugal reasoning adaptively exploits the environ-
ment’s structure. A program provided with heuristics
must learn their accuracy before turning to fast and frugal
decision making. The first sections of this paper provide
background information on fast and frugal reasoning, and
on CSP. Subsequent sections describe how we addressed
these ideas in a program that learns, describe the experi-
mental design, discuss the results, and sketch future work.

Background
As often happens in interdisciplinary work, terminology
overlaps here, but meaning does not. Thus we alert the
reader to the fact that, although “domain” means “prob-
lem area” in some fields, it has a different connotation
(described below) in constraint solving, for which we re-
serve it. Similarly, fast and frugal researchers generally
refer to their general problem-solving methods (e.g.,
Minimalist, Take the Last, Take the Best) as heuristics,
but so too do CSP researchers, and again we take the CSP
definition. As a result, we describe fast and frugal meth-
ods as “strategies that consult heuristics” rather than “heu-
ristics that consult cues.” Finally, the notion of recogni-
tion, which underlies the fast and frugal strategies, is itself
a heuristic, albeit a more general one, defined below.

Fast and frugal reasoning
Under limited time, there exists a trade-off between deci-
sion making speed and correctness. When pressed for
time, people may limit their search for information to
guide them in the decision process with non-
compensatory strategies, strategies that use a single heu-
ristic to prefer a single option (Gigerenzer & Goldstein,
1996). People appear to work from an adaptive toolbox, a
collection of cognitive mechanisms for inference in spe-
cific problem areas (Gigerenzer, Todd, & The ABC Re-
search Group, 1999). This adaptive toolbox includes low-
order perceptual and memory processes, including fast
and frugal strategies that may be combined to account for
higher-level mental processes. Such a model of cognitive
heuristics is ecologically rational, grounded in environ-
ment-specific structure and characteristics (Goldstein &
Gigerenzer, 2002; Gigerenzer & Stelten, 2001;
Gigerenzer, Todd, & The ABC Research Group, 1999).

In one-reason decision making, a set of heuristics is
consulted one at a time, until some heuristic is able to dis-
criminate, that is, able to select a single option. Recogni-
tion is the foundation heuristic for fast and frugal reason-
ing: it favors recognized options over unrecognized ones.
Recognition discriminates if and only if exactly one op-
tion is recognized (Gigerenzer & Goldstein, 1996). In that
case, it is sufficient for one-reason decision making, and
no further computation is required.

When recognition alone does not discriminate, each
strategy considered here may be thought of as a meta-
heuristic that speeds the selection of the next heuristic. All
three strategies initially try recognition on all the available
options. If more than one option is recognized, other heu-
ristics are consulted, one at a time, on a randomly-

selected pair of recognized options, until some heuristic
does discriminate. The preferred option is then selected.
The way these “other” heuristics are chosen defines the
decision-making strategy. The following are drawn from
Gigerenzer, Todd and the ABC Research Group (1999):
• Minimalist: Select a heuristic at random, until one dis-

criminates among the options and a decision is made.
• Take the Last: Use the last heuristic, the one that dis-

criminated the last time a decision was made, when
recognition did not. This captures the human tendency
to re-use the most recent successful strategy.

• Take the Best: Use the heuristic known to work best in
a specific environment. The insightfulness of a heuristic
on a set of problems is called its ecological validity.

Constraint satisfaction problems (CSPs)
CSPs are a good vehicle with which to explore fast and
frugal reasoning. They arise in classes whose difficulty
has a mathematical characterization, and many examples
can be readily generated within each class. Furthermore,
well-established criteria exist with which to gauge the
performance of a program that solves them.

A CSP consists of a set of variables, each associated
with a domain of possible values for assignment, and a set
of constraints that specify which combinations of values
are allowed. To represent a real-world problem as a CSP,
one casts the entities involved as variables, and expresses
the relationships required among these variables as con-
straints. A simple example appears in Figure 1. Real-
world CSPs, however, involve many more variables, sub-
stantial domains, and a broad variety of interacting, more
sophisticated restrictions as constraints. A solution for a
CSP is one value for each variable such that all con-
straints are satisfied. Every CSP has an underlying con-
straint graph that represents each variable by a vertex. An
edge in the graph represents a constraint between the cor-
responding variables, and is labeled by their permissible
pairs of values. The degree of a variable is the number of
edges to it in the graph. (For simplicity we restrict discus-
sion here to binary CSPs.)

How hard a CSP is to solve is determined by how diffi-
cult it is to find values that satisfy all its constraints at
once. A class of CSPs groups together problems with four
parameters thought to estimate their difficulty. A CSP
class may be described by <n,k,d,t>, where n is its number

of variables and k its maximum domain size. The density
d is the fraction of possible edges in the underlying con-
straint graph. The tightness t is the percentage of possible
value pairs the constraints exclude. Thus in
<30,8,.26,.66> every problem has 20 variables, each with
domain size at most 8, and 308 possible value assign-
ments. In a given class, every CSP has the same values
for n, k, d, and t, and the same minimal number of deci-
sions for solution.

To solve a CSP, one can repeatedly select a variable
and assigns it a value consistent with its constraints. For
example, Figure 2 represents a possible search for a solu-
tion to the problem in Figure 1. Reading from top to bot-
tom and from left to right, each circle (node) represents a
decision. There, Variable A was selected first, and as-
signed the value 2, then D was selected, and both its val-
ues (1 and 3) were tried without success. Therefore,
search backed up, the value 2 was withdrawn (retracted)
from A, and the value 1 was assigned to A instead.

The black nodes in Figure 2 represent the correct deci-
sions, and the solid path on the right represents the solu-
tion. When a value assignment is inconsistent with the
constraints, it is retracted and another assignment is tried.
In Figure 2, white nodes are errors, assignments that
cause subsequent decisions (the gray nodes) to be re-
tracted, so that an error can be corrected. For example, the
assignment D = 1 is inconsistent because it leaves no val-
ues for C. When that happens, values are retracted until
all current assignments are once again consistent, and new
values tried. Finding a single solution to a solvable prob-
lem this way requires at least n assignments.

Although CSP solution is NP-hard, some problem
classes surrender readily to heuristics. For a solvable CSP,
the order in which one selects variables (variable order-
ing, e.g., A, D, C, B in Figure 2) can speed solution, as
can the order in which one assigns a value to a just-
selected variable (value ordering, e.g., 2, 1 for A in Fig-
ure 2). There are dozens of variable-ordering and value-
ordering heuristics in the CSP literature, but their interac-
tions are ill-understood. The best approximation for CSP
problem difficulty is currently kappa, which is defined as
a function of n, k, d, and t (Gent, MacIntyre, Prosser, &
Walsh, 1996). Nonetheless, two problems from the same
class may still require different amounts of effort to solve.

During search, a CSP solver can apply a variety of in-
ference and retraction methods. When a partial solution
(a set of values assigned to a proper subset of the vari-
ables) is incompatible with the constraints, all the nodes
that include it (e.g., gray in Figure 2) may be eliminated.
An inference method can propagate the implications of a
newly-assigned value on to the remainder of the as-yet-
unassigned variables. Different amounts of inference are
possible, and there are tradeoffs between inference effort
and search savings. A specific inference method (the cen-
tral one is arc consistency) can be carried out to varying
degrees (Sabin & Freuder, 1994) and with different algo-
rithms (Bessière & Régin, 2001). A retraction method re-

(1 1) (1 3)

(1 1) (2 2)
A B

DC
(1 3) (2 3)

Variables: A, B, C, D

Domains: A is 1 or 2
B is 1, 2, or 3
C is 1, 2, or 4
D is 1 or 3

Constraints : A = B
C < D
D – A is even

Figure 1: A simple constraint satisfaction problem and its
underlying constraint graph. Edges in the graph are la-
beled with acceptable value pairs, computed from the
domains and the constraints.

sponds to an inconsistent partial solution (a subtree of
discarded nodes rooted at an error node in Figure 2). The
standard retraction method is chronological backtracking,
withdrawal of the most recent assignment(s).

ACE
ACE (the Adaptive Constraint Engine) is an autonomous
system that learns to solve classes of CSPs (Epstein,
Freuder, Wallace, Morozov, & Samuels, 2002). ACE is
based on FORR (FOr the Right Reasons), a cognitively-
oriented architecture for learning and problem solving
that supports the development of expertise (Epstein,
1994). Here, “cognitively-oriented” means that FORR’s
reasoning structure emulates approaches readily observ-
able in human problem solving, highly-effective ap-
proaches not always found in traditional AI artifacts
(Biswas, Goldman, Fisher, Bhuva, & Glewwe, 1995;
Crowley & Siegler, 1993; Klein & Calderwood, 1991;
Kojima & Yoshikawa, 1998; Novick & Coté, 1992;
Schraagen, 1993). FORR is based on the premise that de-
cisions are composed from more and less trustworthy ra-
tionales. One constructs a FORR-based program by speci-
fying heuristics that underlie decision making in a par-
ticular problem area.

ACE is an ambitious program – armed with many heu-
ristics, it can tackle difficult problems. The version we
used here begins with 40 CSP heuristics which are ini-
tially classified into a hierarchy of three tiers by the user.
ACE moves through those tiers to make a decision. The
heuristics in tiers 1 and 2 are consulted sequentially; the
heuristics in tier 3 are consulted (effectively) in parallel.

Tier 1 consists of perfect (i.e., error-free) heuristics
consulted sequentially. If any heuristic supports an action,
that action is executed without reference to any subse-
quent heuristics. Consulting perfect heuristics first en-
sures that obvious correct decisions (e.g., a checkmate at

chess) will be reached without devoting resources to
other, less reliable heuristics. A perfect heuristic that op-
poses an action (e.g., “don’t move into checkmate”) re-
moves that action from consideration by all subsequent
heuristics, thereby preventing obvious errors. Thus plac-
ing perfect heuristics in tier 1 permits easy problems to be
solved easily, a feature all too rare in complex systems.
(The second tier is not applicable to the work reported
here; the interested reader is referred to (Epstein, 1998)).

Tier-3 heuristics are the ordinary ones; they produce
single-action comments that are not guaranteed to be cor-
rect. All but two of the ACE heuristics in this version lie
in tier 3. Because they are fallible, their comments are
combined to select the next action in a process called
voting. Each heuristic may vote on different actions with
different strengths, or it may remain silent. ACE’s tier 3
heuristics were, for the most part, drawn from the CSP
expert community. In every case, however, the dual of a
popular heuristic was also implemented. For example, the
CSP literature suggests that the next variable to have a
value assigned to it should have a minimum dynamic do-
main size (set of values that would still be consistent with
existing variable assignments). ACE therefore has a heu-
ristic that comments in favor of such variables, but it also
has its dual, a heuristic to maximize the dynamic domain
size of a variable.

One-Reason Decision Making in ACE
ACE learns to solve CSPs efficiently by winnowing
through its heuristics and balancing them appropriately.
Laden with CSP knowledge, ACE’s decisions are care-
fully reasoned but time-consuming. Fast and frugal, one-
reason decision making seemed a reasonable enhance-
ment, but its adaptation for ACE required careful thought
about recognition, ecological rationality, ecological va-
lidity, and preference functions.

Recognition in ACE
Recognition is familiarity with something previously ex-
perienced. Recall that, during CSP solution, there are only
two kinds of experience: variable selection and value se-
lection. Therefore, we define recognition to be the identi-
fication of a current option as one previously selected
during search in the current problem. Note that recogni-
tion for ACE is a selection heuristic rather than a trigger
for situation assessment and re-evaluation, because mere
recognition of a single option is sufficient for decision
making without any consideration of the similarities of
the different search states (situations) in which it previ-
ously occurred. For example, in Figure 2 assigning 1 to
Variable D after Variable A is set to 1, eventually proves
to be an error, since all possible assignments to Variable
C are then incompatible with the constraints. In response
to the detected error, the gray nodes corresponding to the
selection of Variable C and the values tried for it are re-
tracted. The decisions made in this subtree, excluding the
error node, will be recognized during subsequent search.
Effectively, later in search, a decision point that includes

Variable D

3

Key
correct decision

error

underlying perfect
path

digression

discarded node

Variable A

Variable D

Variable C

2 1

1

2

Variable C

1

1 3

1 2 4
Variable B

Figure 2: A search tree for solution to the simple CSP in
Figure 1, depicted here as alternating variable selections
and value selections. When a value selection violates some
constraint, that decision is retracted, and search backtracks.
New values are assigned until all variables have a value
consistent with the constraints.

options previously found attractive will find them attrac-
tive again.

A counterargument to the role of recognition in human
reasoning is that recognition is often associated with other
cues to obtain a given judgment, and is thus compensatory
(Oppenheimer, 2003). When an object is recognized,
other information about that object is also recalled at the
moment of recognition. If this “extra” information is rele-
vant to the judgment being made, it will be taken into ac-
count while making the decision. The relevant informa-
tion may support or oppose the judgment about the recog-
nized object. Although the additional information may be
contradictory, for our purposes, the influence it has on
recognition is considered as a whole. Recognition may
have an attached positive or negative correlation with re-
spect to the judgment being made.

For ACE, recognition always has a positive correlation,
because it treats a previous decision as one it wants to
make again. The idea here is that, if no further knowledge
about ACE’s tier 3 heuristics has been acquired during
search on the current problem, and consulting these same
heuristics previously led to making certain decisions, they
should remain valid, if the option is still available. (Con-
sistency checking may have eliminated it.) By “recogniz-
ing” such previously-computed but subsequently-retracted
decisions, ACE can avoid reconsulting all its heuristics on
the same (or most of the same) options. For example, in
Figure 2, ACE initially assigned 2 to A and then chose
Variable D. Later, when 2 is retracted and 1 assigned to
A, the next variable must be selected. At that point D is
recognized and so need not be recomputed. Note too that
recognition can lead ACE to repeat an error. It tries 1 be-
fore 3 for D on both sides of the search tree in Figure 2.

Ecological rationality and ecological validity
ACE must have acquired problem-class-specific knowl-
edge before it attempts speed-up through one-reason deci-
sion making. Tier-3 heuristics are ACE’s version of the
adaptive toolbox, its knowledge about how CSP works.
ACE’s heuristics, however, are not all of equal signifi-
cance or reliability in a particular problem class. There-
fore, ACE learns weights to combine them.

DWL (Digression-based Weight Learning) learns
problem-class-specific weights for tier-3 heuristics
(Epstein et al., 2002). It is specifically designed to mini-
mize errors during solution (and therefore minimize the
number of nodes in the tree of Figure 2). After ACE
solves a problem, DWL examines the solution trace, and
adjusts the weight of each heuristic according to whether
or not it supported the correct decisions. All heuristics
start with the same weight. DWL provides the ecological
validity for the heuristics in a given problem class.

DWL also employs non-voting, baseline heuristics that
discriminate with randomly-generated strength on ran-
domly-chosen options. DWL uses them to gauge ACE’s
own heuristics, so that ACE learns to value only those
heuristics that make comments more valuable than ran-
dom ones. These baseline heuristics provide ACE’s eco-
logical rationality.

From preference to binary decisions
The one-reason decision-making model assumes binary
heuristics, ones that vote either in favor of or against an
option. Recall that, if recognition does not discriminate,
the model considers other heuristics on randomly-selected
pairs of options, until some heuristic discriminates. Rec-
ognition is a binary heuristic, and we translate it as such
for ACE: a decision was either previously made or not. A
tier-3 heuristic, however, expresses its preference for, or
opposition to, an option in a comment whose strength lies
between 0 and 10. To adapt ACE for one-reason decision
making, the option with the higher strength is deemed the
positive one. If a heuristic comments on both options with
the same strength, or it does not comment at all, the heu-
ristic does not discriminate, and another heuristic is con-
sulted, depending upon the particular strategy in use.

Experimental Design
The ACE project maintains a large library of problem

classes, each with many examples. In each experiment
here, ACE learned by attempting to solve at most 600
problems (the learning phase) and then was tested on 200
different problems from the same class, with learning
turned off (the testing phase). This learn-and-then-test ap-
proach was repeated 10 times, each time with different
learning problems but the same testing problems. Fast and
frugal reasoning was applied only in the testing phase.

ACE’s performance here is evaluated by three standard
CSP criteria: average number of nodes in the decision tree
(e.g. Figure 2), average number of mistakes during solu-
tion (number of retractions), and average computation
time (in seconds). Any differences identified in the fol-
lowing discussion are statistically significant at the .95
level. Learning was terminated early if the heuristics’
weights stabilized (did not vary in their standard deviation
by more than 0.1 over the most recent 20 problems) be-
fore 600 problems. ACE used chronological backtracking
for retraction and MAC3 (Mackworth, 1977) for consis-
tency checking. What we varied in our experiments was
the problem class, and which non-compensatory search
strategy was used in the testing phase.

Results
We tested ACE alone, and then with each of the fast

and frugal strategies on each of three problem classes.
The results appear in Table 1. The first class of problems
was <30, 8, .26, .66>, an extremely difficult set of ran-
domly-generated CSPs. (The state of the CSP art does not
yet support labeling them “the most difficult” for their
size, but these are certainly “exceptionally difficult.”) On
this class, each of the three non-compensatory strategies,
combined with recognition significantly improved overall
execution time. Speed-up came with a price, however.
Although ACE solved every problem, it made more (al-
beit relatively trivial) errors, and explored more nodes
during search. The most reasoned and ecologically ra-

tional strategy (Take the Best) outperformed the other
two.

The next class of problems on which we tested this ap-
proach was <30, 8, .12, .5>, a somewhat easier set. Here
again, all three strategies achieved significant speedup,
this time without increasing the number of errors or the
size of the search tree. Finally, we tested our approach on
a relatively easy class, <30, 8, .1, .5> (results not shown)
where no changes could be detected.

Discussion
ACE is complete, that is, as constructed it is guaranteed to
solve any solvable CSP — eventually. Expertise, how-
ever, requires that one solves problems efficiently. (All
solutions to a CSP are defined to be equally good. When
CSP researchers talk about optimal search, they refer one
that does the least work, as measured by propagation.)
Although extensive computation can minimize, or even
eliminate, incorrect value selection, such computation
may simply not be worth the time. Indeed, a solver that
makes many inexpensive mistakes may actually arrive at
a solution more quickly, despite a somewhat larger search
tree. In this sense, ACE is a satisficer — it makes “good
enough” decisions (Simon, 1981). Even when fast and
frugal reasoning introduces additional error, the program
solves problems faster. Both satisficing and our imple-
mentation of recognition, it should be noted, are tolerable
only on problems where errors are relatively harmless.

The results of these experiments indicate that enhancing
an intelligent and ecologically rational system with fast
and frugal reasoning can save computation time, but is not
guaranteed to do so. Because recognition, as we have im-
plemented it, is a consequence of previous errors on the
current problem, performance on these three problem
classes requires individual explanations. On the relatively
easy problems of <30, 8, .1, .5>, fast and frugal reasoning
does not improve performance because there are not
enough retractions during search to support subsequent
recognition.

Fast and frugal reasoning that is also ecologically ra-
tional (i.e., Take the Best) provided more speed-up here
than the other strategies. Recognition serves as a filter for

the best of the options; it recycles earlier reasoning inher-
ently. Nonetheless, ACE still needs to select from among
the recognized options the one which is likely to be the
most productive, and Take the Best is one way to do that.

On the problems of medium difficulty of <30, 8, .12,
.5>, fast and frugal reasoning achieves speedup because it
avoids some repeated computation. It also does so without
significantly introducing more error, because recognition
forces persistence by attempting to restrict ACE to previ-
ously-chosen options. Even if these “recycled decisions”
are wrong, there are simply not enough wrong ones to in-
troduce many new retractions.

On the very difficult problems of <30, 8, .26, .66>,
Take the Best introduces significantly less error and does
less work than the other fast and frugal strategies do. The
additional errors on these problems suggest that accurate
decision making here is more subtle and complex than a
single heuristic can support, and certainly more than rec-
ognition alone can handle. Even without fast and frugal
methods, ACE makes more mistakes solving these prob-
lems, simply because the problems are harder, Therefore
there are more errors that may be recycled by recognition,
as well as simply more recognized options to choose
from. Take the Best introduces significantly fewer errors
because it uses ecological rationality to avoid recycling
some of them. Here again the speedup is achieved through
the tradeoff between inexpensive errors and savings in
computation time.

ACE’s version of recognition is not the situation-based
recognition described in (Klein & Calderwood, 1991). In
that work, particular features of a situation bring to mind
possible solution approaches, approaches that may require
adaptation for the current situation. There, recognition
may be paraphrased as “I was once in a similar situation
where this sequence of decisions worked well, so I will
see if I can adapt it to work again here, testing it first in
simulation.” ACE’s recognition, in contrast, may be para-
phrased as “I have seen that option before, considered it
carefully (perhaps with different alternatives and in a
somewhat different context at the time), and have decided
to prefer it once again, without considering any potential
consequences.” ACE’s recognition applies only to a sin-
gle decision, not to a sequence; it does not permit adapta-

Table 1: Performance of ACE alone and with the recognition heuristic guided by three different non-compensatory, one-
reason decision making strategies, on two classes of CSPs: < 30, 8, .26, .66> and < 30, 8, .12, .5>. Time (in seconds), er-
rors and nodes are per problem. Figures in bold represent a statistically significant improvement over ACE without recog-
nition.

Class Criterion ACE Minimalist Take the Last Take the Best
Overall time 3.10 (3.04) 2.72 (2.57) 2.85 (2.73) 2.37 (2.19)
Tier 3 time 1.41 (1.51) 0.70 (0.62) 0.75 (0.68) 0.61 (0.68)
Errors 105.11 (107.64) 119.12 (134.69) 116.97 (129.27) 113.77 (127.33)

30-8-.26-.66

Nodes 165.11 (107.64) 179.12 (134.69) 176.97 (129.27) 173.77 (127.33)
Overall time 0.76 (0.57) 0.71 (0.49) 0.71 (0.42) 0.66 (0.44)
Tier 3 time 0.44 (0.38) 0.37 (0.31) 0.37 (0.28) 0.36 (0.34)
Errors 13.80 (15.52) 13.38 (15.26) 14.12 (16.17) 12.97 (14.36)

30-8-.12-.5

Nodes 73.80 (15.52) 73.38 (15.26) 74.12 (16.17) 72.97 (14.36)

tion; it makes no situation assessment; and it relates to
previous experience in the same problem.

To make use of fast and frugal reasoning, as we have
implemented it, a system needs to have a body of heuris-
tics with which to make decisions and, if it is to take the
best, it needs a metric on those heuristics. Furthermore,
since recognition, as we have interpreted it, requires deci-
sions that are made under some erroneous circumstances
and then withdrawn (gray nodes in Figure 2), the system
must not have perfected decision making, or there will be
no prior, within-problem decisions to recycle. Thus, fast
and frugal reasoning can improve mediocre or even fairly
reputable performance, but cannot improve flawless per-
formance, for without errors there can be no recognition.

Future Work and Conclusion
Previously-made decisions are here recycled through the
recognition heuristic. Whether or not ACE would have
remade those decisions, and in the same sequence, with-
out recognition remains to be determined. Future work
will examine ACE’s decisions at the same level but in dif-
ferent branches of the search tree, with and without fast
and frugal reasoning.

Although we did not use it in these experiments, ACE
can partition its tier-3 heuristics into any number of sub-
classes. We intend to compare ACE’s performance with
different numbers of tier-3 subclasses to ACE’s perform-
ance with Take the Best, which can be thought of as a
“one heuristic to a subclass” partition.

Fast and frugal reasoning has been shown here to have
a significant impact on an already competent CSP solver.
The premise that attractive options remain attractive as
problem solving progresses enables at least this program
to solve problems better. Furthermore, the problems we
have used here are sufficiently general to suggest that our
results have a potentially broad impact. We are optimistic
that, in problem areas that tolerate errors, fast and frugal
reasoning, as implemented here, can make an important
contribution to problem solving.

Acknowledgments
This work was supported in part by NSF IIS-0328743 and
by PSC-CUNY. Thanks for their support in this work go
to Gene Freuder, Anton Morozov, Rick Wallace, CUNY’s
ACE study group, and the Cork Constraint Computation
Centre, supported by Enterprise Ireland and Science
Foundation Ireland.

References
Bessière, C., & Régin, J.-C. (2001). Refining the basic
constraint propagation algorithm. JFPLC, 1-13.

Biswas, G., Goldman, S., Fisher, D., Bhuva, B., &
Glewwe, G. (1995). Assessing Design Activity in Com-
plex CMOS Circuit Design. In P. Nichols & S. Chipman
& R. Brennan (Eds.), Cognitively Diagnostic Assessment
(pp. 167-188). Hillsdale, NJ: Lawrence Erlbaum.

Crowley, K., & Siegler, R. S. (1993). Flexible Strategy
Use in Young Children's Tic-Tac-Toe. Cognitive Sci-
ence, 17(4), 531-561.

Epstein, S. L. (1994). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science, 18(3), 479-511.

Epstein, S. L. (1998). Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence, 100(1-2),
275-322.

Epstein, S. L., Freuder, E. C., Wallace, R., Morozov, A.,
& Samuels, B. (2002). The Adaptive Constraint Engine.
In P. Van Hentenryck (Ed.), Proceedings of CP2002
(Vol. LNCS 2470, pp. 525-540). Berlin: Springer Ver-
lag.

Gent, I. E., MacIntyre, E., Prosser, P. and Walsh, T.
(1996). The Constrainedness of Search. Proceedings of
the Thirteenth National Conference on Artificial Intelli-
gence (pp. 246-252).

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the
Fast and Frugal Way: Models of Bounded Rationality.
Psychological Review, 103(4), 650-669.

Gigerenzer, G., & Stelten, R. (2001). Bounded Rational-
ity: The Adaptive Toolbox. MA: MIT Press.

Gigerenzer, G., Todd, P. M. & The ABC Research Group
(1999). Simple Heuristics that Make Us Smart. NY: Ox-
ford University Press.

Goldstein, D. G. & Gigerenzer, G. (2002). Models of
Ecological Rationality: The Recognition Heuristic. Psy-
chological Review, 109(1), 75-90.

Klein, G. S., & Calderwood, R. (1991). Decision Models:
Some Lessons from the Field. IEEE Transactions on
Systems, Man, and Cybernetics, 21(5), 1018-1026.

Kojima, T., & Yoshikawa, A. (1998). A Two-Step Model
of Pattern Acquisition: Application to Tsume-Go. Pro-
ceedings of the First International Conference on Com-
puters and Games.

Mackworth, A. K. (1977). Consistency in Networks of
Relations. Artificial Intelligence, 8, 99-118.

Novick, L. R., & Coté, N. (1992). The Nature of Exper-
tise in Anagram Solution. Proceedings of the Fourteenth
Annual Conference of the Cognitive Science Society,
Bloomington, IN.

Oppenheimer, D. M. (2003). Not so Fast! (and not so
Frugal!): Rethinking the Recognition Heuristic. Cogni-
tion, 90, B1-B9.

Sabin, D., & Freuder, E. C. (1994). Contradicting Con-
ventional Wisdom in Constraint Satisfaction. Proceed-
ings of the Eleventh European Conference on Artificial
Intelligence, Amsterdam.

Schraagen, J. M. (1993). How Experts Solve a Novel
Problem in Experimental Design. Cognitive Science,
17(2), 285-309.

Simon, H. A. (1981). The Sciences of the Artificial (sec-
ond ed.). Cambridge, MA: MIT Press.

