
Metaknowledge for Autonomous Systems

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate Center of The City University of New York
 susan.epstein@hunter.cuny.edu

Abstract
An autonomous system is postulated here as a collection of
cooperating heuristics. The goal of such a system is to be-
come expert in a particular domain by solving problems
there. The system develops by analyzing the performance
of its heuristics, and changing its decision process to re-
flect its knowledge about them. Metaknowledge metrics
are postulated both to evaluate the system’s developing
expertise and to evaluate the heuristics on which it is
based. The implementation of these metrics within a prob-
lem-solving architecture is discussed, and their impact on
an application that learns to solve challenging, large-scale
problems is detailed.

Introduction

A discovery system is expected to learn autonomously
from its problem-solving experience. Such a system
probes its environment for data from which to learn.
Without human intervention, the system acquires knowl-
edge and, ideally, becomes an expert in its domain. The
thesis of this work is that such a system can develop sub-
stantial expertise as it solves problems and analyzes its
own components and performance. The principal contri-
bution of this paper is a metaknowledge ontology for
systems that use multiple representations, multiple learn-
ing methods, and multiple heuristics. It begins by outlin-
ing an approach which decouples representation and
learning from reasoning. The paper then discusses
metaknowledge for heuristics and for self-evaluation. The
final section describes a learning and problem solving
architecture that derives its power from many of these
ideas and expects to benefit from the others shortly.

Fundamental Assumptions

The autonomous systems under consideration here have
as their task the achievement of expert performance in a
particular domain, where performance is the ability to
solve problems. In this paper, a problem is an initial state
of the world, a set of actions that can be applied to trans-
form one world state into another, and a goal test. The
goal test accepts a world state and returns a numerical
value when a problem is solved. The returned value
measures how skillful the solution process was; it may
therefore incorporate such factors as execution time and
number of retracted erroneous decisions. Problem solving
is thus finding a sequence of actions that transforms the
initial state into a positive response from the goal test.

Expert problem solving finds a sequence of actions that
receives a high-valued response from the goal test.

Because an autonomous system cannot rely upon human
intervention, it must be able to learn. In an unknown or
dynamic environment, all world states are not predictable,
and any pre-organized set of production rules is likely to
be brittle. A prudent designer therefore provides a variety
of tools with which to consider alternative actions. These
include representations, learning methods, and general
heuristics that harness multiple perspectives on decision
making to solve problems. This approach has succeeded
in several domains, including game playing (Epstein
2001), path finding (Epstein 1998), challenging crossword
puzzles (Keim et al. 1999), and constraint satisfaction
(Epstein et al. 2002). Some of these systems can also
learn new heuristics that are subsequently incorporated in
the decision process (Epstein et al. 1998). Whether its
heuristics are pre-specified or learned, the system should
trust them only as they prove helpful in problem solving.

Although representation can provide powerful insights
into the nature of a problem, there is no reason to require
all of a system’s heuristics to compute from a common
representation. The current problem solving state, we ar-
gue, should provide as many representations as the sys-
tem’s heuristics require. (For example, a game board
might be represented as a list, as a two-dimensional lay-
out, and also as lines of attack.) When more than one heu-
ristic employs the same representation, it is possible to
compute the representation only once and store it, so that
it is readily available to any other heuristics that may use
it. In this way, an autonomous system need not credit or
blame a representation, only the heuristics that reference
it. Furthermore, if no successful heuristic ever employs a
particular representation, the system can eventually note
that, drop the representation, and redirect the computa-
tional resources once devoted to it.

Similarly, it is possible to decouple learning methods
from the reasoning process. An autonomous system
should acquire only knowledge that it can subsequently
apply. The system’s skill lies not in the agglomeration of
information but in the intelligent application of that
knowledge once it is acquired. Knowledge is applied in
decision making by a process (here, a heuristic) that refer-
ences it. Thus an autonomous system need not credit or
blame a particular learning method, only the heuristics
that reference the knowledge it acquires. Indeed, if no

successful heuristic ever employs knowledge derived
from a particular method, then the system can eventually
note that and drop both the method and the knowledge it
produces, again conserving computational resources.

Knowledge about Performance

A human expert is one who performs a task faster and
better than the rest of us (D'Andrade 1990). Because the
autonomous learner considered here is intended to de-
velop into an expert, it should monitor both its speed and
its performance. Speed is captured by CPU seconds to
solution, but performance requires a variety of measures.
Possibilities include number of problems solved (if the
system is not complete), number of retracted decisions
(errors) during solution, and number of errors relative to
the size of the problem.

As an autonomous system ages (operates alone across
time), the quality of its performance is likely to vary. The
system may make decisions differently, or a dynamic en-
vironment may present different kinds of problems. In
response, an autonomous system can seek to improve the
speed with which it solves problems, or seek out more
difficult ones.

The consistency of a system’s expertise reflects its ability
to solve problems. It can be measured by the number of
consecutive problems solved or by the percentage of
problems solved within some recent window. As a system
ages, it should not only become more consistent and
faster, but should also improve its power, its ability to
solve problems without any errors at all.

An autonomous system should be able to restart as neces-
sary. If search for a solution to a particular problem is not
proceeding well, the system should be able to choose to
restart the problem, that is, to begin to solve it once again,
but with a different initial decision. Repeated restarts of
the same problem with an increasing resource bound help
the system determine the degree of difficulty of a prob-
lem. Once a problem is solved, repeated restarts with a
decreasing resource bound enable the system challenge
itself to perform better, based on what it has learned. In
addition, if the system judges its performance on a par-
ticular set of problems to be poor, the system should be
able to choose to restart the entire process, that is, to start
afresh on the current problem set.

Heuristics and Planners

For our purposes, a heuristic is a decision process that,
when consulted (given the current state of the problem-
solving world), may comment (express an opinion about
which action to take). A comment may be expressed ei-
ther as a suggestion (e.g., “do x”) or as a preference (e.g.,
“x is better than y”). More generally, comments may in-

clude alternative actions (e.g., “do x or y”), oppose an ac-
tion (e.g., “don’t do z”), or value preferences and aver-
sions with a numerical strength (e.g., “ x is a 10, y is an 8,
but z is a –3”).

A heuristic whose comment references more than one
action in combination (e.g., “do x and y”) is here termed a
planner. Its comment (plan) may be ordered, partially-
ordered, or merely a set of actions which it believes
should take priority over all other alternatives. With this
characterization, planners become heuristics whose com-
ments may need other heuristics to assist in their execu-
tion. For example, if a planner specifies an unordered set
of actions, the sequence in which they are executed falls
to the single-action heuristics, which then comment upon
them as if they were a restricted set of possible actions.

Heuristics, either pre-specified or learned, are presumably
present in an autonomous system because they are ex-
pected to be relevant to the domain of interest. (For ex-
ample, avoiding dead-ends is relevant to path finding,
while emphasizing good openings is relevant to game
playing.) Heuristics, however, come with no guarantee.
An autonomous learner should therefore winnow through
its heuristics, discarding some and emphasizing others.
There is, in addition, no reason to assume that heuristics
are independent of each other. To manage a collection of
questionable, potentially-dependent heuristics success-
fully requires a host of evaluation metrics, discussed indi-
vidually below.

Knowledge about Heuristics

The computation of any metric on heuristics should con-
sider timing , the position an action occupies in a solution
sequence. There is no reason to suppose that a heuristic
behaves uniformly across a solution sequence. (For ex-
ample, a heuristic that provides good openings for game
playing will not be equally prized in the final moves of a
contest.) A simple, workable approach is to partition each
solution sequence into stages (contiguous problem-
solving intervals, e.g., “early,” “middle,” and “late”) and
then evaluate a metric separately within each stage.

An autonomous system should evaluate its heuristics to
improve its expertise. Low-performing heuristics can be
discarded, and high-performing ones can in some manner
be emphasized, so that the system makes better decisions
and makes them more quickly. These decisions should be
made within the context of timing, that is, each metric
should be computed for each heuristic by stage. The fol-
lowing metrics on heuristics are proposed.

Accuracy. The accuracy of a heuristic is the frequency
with which it makes correct decisions. If an autonomous
system can judge whether or not, in retrospect, a decision
was correct, it can tabulate the accuracy of each of its
heuristics as it solves problems. There are a variety of

ways to tabulate accuracy, including number of correct
comments and percentage of correct comments.

It may not be possible to specify an absolute standard of
heuristic accuracy before problem solving begins. This is
because an autonomous decision maker is repeatedly
faced with sets of choices, whose size and nature will
vary. In this case, a useful device with which to gauge
accuracy is a benchmark, a baseline procedure for a heu-
ristic that faces the same decisions as its heuristic, but
constructs random comments on randomly many actions,
with random strengths. A heuristic whose accuracy is
lower than its benchmark during a particular stage can
justifiably be ignored, since that heuristic makes no better
contribution to expertise than a random process would.

Stability. The stability of a heuristic is the consistency of
the heuristic’s accuracy across the system’s lifetime. A
variety of statistical methods gauge stability, including the
change in standard deviation of accuracy across time, or
moving averages on accuracy. Whatever method is used
to compute stability, it is important not to change the
system’s treatment of a heuristic until both the heuristic
and its benchmark are deemed stable.

Utility. Two heuristics may be equally accurate in their
decisions, but differ dramatically in their resource con-
sumption. The utility of a heuristic is the ratio of its accu-
racy to its cost. (Cost is measured in time here, plus space
if a system is memory-constrained.) The cost of comput-
ing a heuristic could conceivably outweigh the benefit the
system derives from its comments, particularly if the heu-
ristic scores low on several other metrics. At the very
least, a low-utility heuristic in a stage should probably be
reserved for decision situations where other, equally accu-
rate heuristics have been unable to finalize a decision.

Influence. A heuristic may be unnecessary, even though
it is accurate and has high utility. A heuristic drove a de-
cision if and only if a different action would have been
chosen without that heuristic’s comments. The influence
of a heuristic is the frequency with which it drives deci-
sions when it comments. Regardless of its utility, any
heuristic with low influence in a stage makes little contri-
bution to the decision process, and is a candidate for
elimination. Some caution must be exercised here, how-
ever. For example, if two ostensibly different, highly-
accurate heuristics are highly correlated, neither might
have high influence, but the removal of them both could
reduce accuracy.

Novelty. The novelty of a heuristic compares its applica-
bility to that of other heuristics. A heuristic that often
comments on some action on which others have no opin-
ion is novel; one that comments only in concert with
many others is not. A novel, accurate heuristic within a
stage is worth retaining.

Acuity. The acuity of a heuristic is the degree to which it
is capable of discriminating among alternatives. A heuris-
tic that singles out relatively few actions as worthy is
more valuable than one that finds almost all actions
equally acceptable. A heuristic that assigns different
strengths to a set of actions is more valuable than one that
supports or opposes them all equally. An acute, accurate
heuristic within a stage is worth retaining if no heuristic
surpasses it on other metrics.

Involvement. The frequency with which a heuristic
comments is its involvement. To comment, a heuristic
must be able to distinguish among alternative actions, that
is, it must not award every action the same strength. A
heuristic with low involvement may still be valuable in a
stage, particularly if its acuity or novelty is high.

Risk. The risk associated with a heuristic is the expected
computational cost incurred if it were the sole decision
maker. Risk should be computed from the likelihood of
error and the additional work that error would incur. This
metric becomes important when the system attempts to
accelerate decision making without sacrificing perform-
ance quality. A low-risk, highly-accurate heuristic may
warrant special treatment during decision making. (See
the discussion of promotion and prioritization below.)

Before any heuristic participates fully in decision making,
it must comment often enough for the metrics to evaluate
it properly. Until then, a heuristic should have probation-
ary status, during which its comments are discounted
(considered less important) during decision making. Dis-
counting preserves any consistency the system has al-
ready developed, particularly if the system learns new
heuristics. After the discount period, the decision compu-
tation should take the metrics into careful consideration,
allowing valuable heuristics their full impact, and pre-
venting poor heuristics from doing harm.

A Demonstration: FORR and ACE

Many large-scale, real-world problems are readily repre-
sented, solved, and understood as constraint satisfaction
problems (CSPs). A CSP is a set of variables, each with a
domain of values, and a set of constraints that specify
which combinations of values are allowed (Tsang 1993).
(For simplicity, we restrict discussion here to binary
CSPs, whose constraints involve at most two variables.) A
value assignment for all the variables is a solution for a
CSP if and only if it satisfies all the constraints. Every
CSP has an underlying constraint graph, that represents
each variable by a vertex whose possible labels are its
domain values. An edge in a constraint graph appears
between two vertices whenever there is a constraint on the
values of their corresponding vertices. One may think of
an edge as labeled by the permissible pairs of values be-
tween its endpoints. The degree of a variable is the num-
ber of edges to it in the underlying constraint graph. A

simple CSP solution algorithm appears in Figure 1.

FORR (For the Right Reasons) is an architecture for
learning and problem solving that supports the develop-
ment of expertise (Epstein 1994). FORR relies on a col-
lection of domain-specific heuristics to solve problems,
and supports learning new heuristics. FORR-based pro-
grams have developed considerable expertise in game
playing, path finding, and constraint satisfaction (Epstein
1998; Epstein 2001; Epstein et al. 2002). Throughout this
section, examples will be given from ACE (the Adaptive
Constraint Engine), a FORR-based system for constraint
solving (Epstein et al. 2002). ACE is an autonomous sys-
tem that learns to solve CSPs. It is an ambitious program
— armed with dozens or even hundreds of heuristics, it
can solve difficult problems. As such, it is an excellent
domain within which to demonstrate FORR, and to ex-
plore the behavior of collections of heuristics.

CSP solution is NP-complete. In response, CSP research-
ers have produced a wealth of good, general-purpose heu-
ristics to solve a broad range of real-world problems
(Nudel 1983; Freuder et al. 1994). The solution of a CSP
remains more art form than automated process, however,

in part because the interactions among existing heuristics
are not well understood. Thus each new, large-scale CSP
faces the same bottleneck: difficult constraint program-
ming problems need people to “tune” a solver efficiently.
ACE addresses that bottleneck by learning to be an expert
on a set of problems, autonomously.

A Hierarchy for Heuristics
To use FORR, one defines a domain and a set of relevant
heuristics. The heuristics are initially classified into a hi-
erarchy of three tiers by the user; FORR moves through
them to make a decision. As Figure 2 indicates, the heu-
ristics in tier 1 are consulted sequentially; the heuristics in
tiers 2 and in tier 3 are consulted (effectively) in parallel.

Tier 1 consists of perfect (i.e., error-free) heuristics con-
sulted sequentially. If any heuristic comments in favor of
an action, that action is executed, without reference to any
subsequent heuristics. Consulting perfect heuristics first
ensures that obvious correct decisions (e.g., capturing a
king in chess) are reached without devoting resources to
other, less reliable heuristics. A perfect heuristic that
comments against an action (e.g., “don’t move into
checkmate”) removes that action from consideration by
all subsequent heuristics, thereby preventing obvious er-
rors. Placing perfect heuristics in tier 1 permits easy
problems to be solved easily, a feature all too rare in
complex systems.

Tier 1 heuristics are generally common knowledge to do-
main experts, and are quick to compute. A simple exam-
ple of a tier-1 heuristic from ACE is Victory. If only a
single variable remains without an assigned value, and
one or more consistent values are available, Victory

Until the problem is solved
Select an unvalued variable v
Assign v the value a
If v = a is consistent with all currently

assigned values
then continue
else backtrack to the last variable for
which there was an alternative value

Figure 1. An algorithm to solve a CSP.

execute
decision

H1 Decision ?

yes

H2 Decision ?

yes

Hk Decision ?

yes
no no

no

…

P1
yes

no

execute
plan

current
state

knowledge

 Plan ?

Hk+2 Hn
…

Hk+1

Voting

Tier 1:
perfect
heuristics

Tier 2:
planners

Tier 3:
ordinary
heuristics

execute
decision

P2 … Pj

Figure 2: The FORR decision hierarchy. Heuristics (in boxes) in tier 1 either determine an action or forward a (possibly re-
duced) set of choices. Heuristics in tier 2 identify a subset of choices that take priority in subsequent decisions. Heuristics in
tier 3 determine an action collectively.

comments to make an arbitrary assignment.

FORR’s tier 2 organizes the planners for a domain. A
plan, recall, is a set of actions. Planners are intended to be
quick and heuristic. Plans in FORR are abandoned (rather
than repaired) when their actions are no longer executable
during solution, so limited resources are devoted to plan
construction. Locating planners in tier 2 both retains the
correctness of the tier-1 heuristics and values longer-
range perspectives over the single-action heuristics of tier
3. A heuristic named Enforcer, early in tier 1, guarantees
that the actions in a plan produced by tier 2 take priority
over other actions, until the plan is either completed or
becomes inapplicable and is therefore abandoned.

ACE’s current planners capitalize on the CSP graph. Sub-
graphs are identified that should be solved as a whole,
before other segments of the problem are addressed, or
should be postponed until the remainder of the problem is
completed. Some planners may be perfect, such as ACE’s
No Tree, which postpones consideration of entire acyclic
components. Others are heuristic, such as ACE’s Maxi-
mally Restricted, which addresses the most constrained
connected component first.

Tier-3 heuristics in FORR produce single-action com-
ments that are not guaranteed to be correct. These gener-
ally form the bulk of a FORR-based system. Because they
are fallible, their comments are combined to select the
next action in a process called voting.

ACE’s tier-3 heuristics were, for the most part, drawn
from the CSP literature. In every case, however, the dual
of the heuristic’s underlying metric was also imple-
mented. For example, the CSP literature suggests that the
next variable to have a value assigned to it should have a
minimum dynamic domain size (set of values that would
still be consistent with existing variable assignments).
ACE therefore has a heuristic that comments in favor of
such variables, but it also has its dual, a heuristic to
maximize the dynamic domain size of a variable. ACE
has two benchmarks for accuracy: one for heuristics that
select a variable, and one for heuristics that select a value.

Implementing Metaknowledge
FORR now implements most of the ideas presented ear-
lier in this paper. Both representation and learning meth-
ods are decoupled from heuristics. The current world state
offers multiple representations, and every heuristic has
equal access to them. Heuristics are permitted to make
multiple comments that support or oppose actions, and
assign strengths to those opinions.

A FORR-based system (e.g., ACE) runs in phases, with
learning followed by testing. During a learning phase,
metaknowledge is acquired. Between learning and testing,
metaknowledge is applied to evaluate and possibly revise
the components of Figure 2. Then, during each testing

phase, learning is turned off and performance is meas-
ured. The solution of an individual problem is partitioned
into stages pre-specified by the user. For example, in
ACE one may specify the early stage of problem solving
as the first 20% of the variable assignments, the late stage
as the last 30%, and relegate the remainder of the deci-
sions to a middle stage. During learning, FORR gathers
metaknowledge about each tier-3 heuristic for each stage.

FORR monitors the number of steps required to solve a
problem, and (in domains where it is appropriate) the
number of retracted decisions made during solution.
Problem solving may be limited by the user to some num-
ber of steps or seconds of CPU time. FORR supports both
individual problem restart and restart on an entire learning
phase. The ability to restart a problem, the number of re-
starts permitted, and increasing resource bounds are speci-
fied by the user.

FORR can terminate learning based on a variety of crite-
ria. The user can specify that learning should stop after
some number of problems, enough to ensure (based on
previous observation of the system) that expertise has
leveled off. It is also possible, however, to have the sys-
tem decide that it has learned enough. It can terminate
learning when some consecutive number of expert solu-
tions (those within some number of decisions) have been
reached, or when all heuristics and their respective
benchmarks are stable. Still another option permits the
entire process to restart, based upon some number of fail-
ures to solve problems during learning.

FORR measures the accuracy of a heuristic by its weight.
There are a variety of weight-learning algorithms, all of
which include discounting. One algorithm, for example,
tabulates the ratio of the number of expert-like comments
to the number of comments (Epstein 2001). For domains
such as CSP, where an error and its severity can be read-
ily identified by the system, more sophisticated weight-
learning algorithms blame the heuristics responsible for
each error (Epstein et al. 2001). Poor heuristics, those
whose accuracy is lower than that of their respective
benchmarks, are eliminated from decision making on a
stage by stage basis, when learning is over, but before
testing begins.

Experimental Results

A CSP can be characterized by four parameters: its num-
ber of variables n, its maximum domain size k, its density
d (the fraction of possible edges it includes), and its tight-
ness t (the percentage of possible value pairs it excludes).
A problem class is a set of CSPs with the same parame-
ters. In the descriptions that follow, a class is described as
n-k-d-t, for example, 30-8-.1-.5 is the class of problems
on 30 variables with maximum domain size 8, density .1,
and tightness .4.

A problem in n-k-d-t presents a substantial search tree,
potentially of size O(kn). Although CSP solution is NP-
hard, some problem classes surrender readily to heuris-
tics. A problem with low density and tightness will be
relatively easy to solve and usually admit multiple solu-
tions, while one with high density and tightness is likely
to have no solutions at all. The most difficult problem
classes, for a fixed number of variables and fixed domain
size, generally lie within a relatively narrow range of pairs
of values of density and tightness (Cheeseman et al.
1991).

ACE solves a CSP by repeatedly selecting a variable and
then selecting a value for it, as in the algorithm of Figure
1. In the experiments reported here, ACE used MAC3
(maintained arc consistency) to constrain the domains of
the neighbors (in the constraint graph) of each newly-
valued variable, extending those restrictions repeatedly to
every unassigned variable until no variable’s domain
changed. Retractions were done with standard backtrack-
ing.

In the empirical results that follow, each experiment was
performed on a set of randomly-generated problems for a
single class. Learning on the first 600 problems was fol-
lowed by testing on 200 new problems. (Typically such a
problem set is produced by a random generator. Given the
enormity of the problem space, the likelihood of generat-
ing the same problem more than once in a set of 800
problems is negligible.) No planners were employed, and
the system was not permitted to learn new heuristics.

A variety of metrics may be applied to gauge the per-
formance of a CSP solver: computation time, constraint
checks (times that pairs of values are confirmed accept-
able to a constraint), retractions (times that a value selec-
tion or a variable selection is withdrawn during back-
tracking), and power (percentage of retraction-free solu-
tions). All cited differences are statistically significant at
the 95% confidence level within the cited problem class,
but may not pertain to all CSPs.

Results with Metaknowledge
The following examples of the power of metaknowledge
are all drawn from ACE:
• Eliminating inaccurate heuristics provides substantial
speedup during testing, typically by a factor of 2. In 30-8-
.12-.5 problems, for example, the mean execution time is
reduced by 55% when only heuristics with weights higher
than their respective benchmarks’ are consulted.
• Measuring accuracy in graph coloring problems (a sub-
set of CSP), ACE quickly discarded many of its input
heuristics, some of which had been deliberately included
to mislead the program. In the process, ACE independ-
ently rediscovered the Brélaz heuristic, a well-known
theorem in graph coloring (Epstein et al. 2001).
• While learning new heuristics for CSP solution, ACE
identified an outstanding, hitherto unknown heuristic for

early decisions only. When this heuristic was exported to
a conventional CSP solver, it improved performance on
far more difficult problems by as much as 96% (Epstein et
al. 2002).

The aforementioned duals of popular heuristics have, in
certain stages and problem classes, proved themselves
valuable. For example, a popular CSP heuristic for se-
lecting the next variable to bind is “minimize the ratio of
the dynamic domain size of a variable to its original de-
gree in the underlying constraint graph.” In most problem
classes, ACE judges this Min-Domain/Degree heuristic to
be highly accurate. In 30-8-.05-.5 problems (a relatively
easy class), however, the Max-Domain/Degree heuristic
achieves a far higher weight during the middle of problem
solving (variables 7 through 24) than the traditional Min-
Domain/Degree.

Indeed, distinct problem classes appear to have heuristic
signatures, that is, respond best to different combinations
of heuristics. For example, on 30-8-.08-.5 problems and
30-8-.1-.5 problems, ACE identifies the same set of vari-
able-selection heuristics as accurate, but the value selec-
tion heuristics are duals of each other, that is, when a
maximizing heuristic is accurate in one class, the mini-
mizing version is accurate in the other.

Metaknowledge under Development
Work is in progress on FORR to calculate and apply a
variety of metaknowledge:
• FORR tracks which heuristics access which representa-
tions. At the moment, all representations are retained, but
as FORR winnows out heuristics, unreferenced represen-
tations will no longer be computed.
• The delineation of stages will ultimately be learned. Re-
call that, currently, stage boundaries are specified by the
user. Initial testing has indicated that multiple stages can
provide valuable guidance, but that weight learning on too
many stages may overfit the available data. For example,
with a single stage ACE learns to solve 30-8-.1-.5 prob-
lems in less than half the time that is required when it uses
30 stages. Current work includes having FORR learn
stage boundaries for the accuracy of each heuristic indi-
vidually. Those boundaries will in turn be used for the
computation of other metaknowledge. One way FORR
could generate stage boundaries would be to subdivide the
solution sequence when the quality of a heuristic varies
broadly within it. Another approach would be to begin
with many short stages and have the system coalesce ad-
jacent ones where a metric has similar reported values.
• For each tier-3 heuristic and each stage, FORR gauges
stability as the standard deviation of the heuristic’s weight
in that stage over the most recent tasks. (Current settings
are a standard deviation of less than 0.1 over the last 40
tasks.) Preliminary results indicate that terminating
learning once all heuristics reach stability shortens learn-
ing time and does not impact performance.

• FORR now collects, for each tier-3 heuristic by stage,
the full panoply of metaknowledge: accuracy, stability,
utility, influence, novelty, acuity, involvement, and risk.
Risk is currently being tested as a factor in the penalty
assignment during weight learning.

Metaknowledge for Autonomous Restructuring
Self-awareness with respect to heuristics can support
autonomous reformulation of the program’s decision-
making structure. We offer two examples from FORR
here: promotion and prioritization. Recall that the system
designer currently assigns a heuristic to a tier. A heuristic
that is known by people to be correct is placed in tier 1, a
planner is placed in tier 2, and all other heuristics are
relegated to tier 3.

Promotion is the advancement to tier 1 of a heuristic that
is nearly perfect (almost always correct) for a given stage.
(In some domains, such as game playing, promotion is
unacceptable, because even the smallest likelihood of
error is intolerable. Happily, this is not the case with
CSPs, where an incorrect choice can always be retracted.)
An example of a potentially promotion-worthy CSP heu-
ristic is Later, which opposes the selection of any variable
whose dynamic domain is larger than its degree. For
graph coloring, Later is provably correct and belongs in
tier 1. For general CSPs, however, Later is occasionally
wrong, and can impact performance dramatically. For
example, adding Later to tier 1 reduces ACE’s execution
time on 20-8-.14-.5 problems and increases its power. On
30-8-.12-.5 problems, however, Later has quite a different
effect: its presence even in tier 3 forces ACE to do more
constraint checks and to lose nearly half its power. We
intend to have ACE learn to promote heuristics in accor-
dance with metaknowledge, on a class by class basis.

Prioritization is the stratification of tier 3 into s sub-
classes for a given stage, so that the best of the ordinary
heuristics can take priority, as a group, over the others. A
diagram of tier-3 decision making under prioritization
appears in Figure 3. The number of subclasses s should be
determined by the system, as well as the grounds on
which to partition them. Currently, with prioritization,
FORR uses accuracy as the only discriminator, and retests
decision making 8 times on the same problems, with c
subclasses, where c = 1, 2,…, 8. Prioritization into 3 sub-
classes enabled ACE to solve 10-8-.1-.5 problems in less
than half the time, but more subclasses did not improve
performance. On 30-8-.1-.5 problems, however, 5 sub-
classes produced the best performance, while more than 5
subclasses weakened performance.

Discussion

There is a delicate balance to be struck here between deci-
sion speed and accuracy. Errors that are inexpensive to
calculate and retract can be tolerated, but only up to a
point. As the grounds for promotion and prioritization
become more sophisticated (incorporating risk, utility,
influence, novelty, acuity, and involvement), even greater
performance improvements are expected. Caution is ap-
propriate, however. The danger of extensive prioritization
is that too many subclasses effectively degenerate a tier 3
already pruned for accuracy into a ranked list of rules. In
such a case, the system may make individual decisions
more quickly, but it is likely to make more mistakes and
solve entire problems more slowly. For example, ACE
begins with 38 heuristics in tier 3, but in some problem
classes may retain as few as 15 of them during testing.
The resultant structure then no longer benefits from a
synergy among heuristics that work in concert, FORR’s
guiding principle. An example of this arises on a particu-
larly hard problem class: 30-8-.26-.34. Here, prioritization
into 8 subclasses (most of which are pairs of heuristics)

choices
after tier 2

Subclass 1

 Unique
decision ?

yes

top-ranked choices
from Subclass 1

Subclass 2

no

top-ranked choices
from subclass s-1

execute decision

Subclass s

 Unique
decision ?

yes

Figure 3. Restructuring tier 3 into s subclasses un-
der prioritization.

reduces solution time by about 60%. If ACE uses a
ranked list of heuristics instead (effectively placing one in
each subclass), the result is poorer performance.

Finally, the current version of FORR tabulates
metaknowledge during learning, but applies most of it
during testing. For example, heuristics are only dropped
for low accuracy after learning is completed. Ideally,
FORR would continually monitor and react to the
metaknowledge outlined here so that it learned, discarded,
promoted, and prioritized heuristics throughout the life of
the application. This winnowing would apply to repre-
sentations and learning methods as well. The result would
be a highly-sophisticated autonomous system.

Acknowledgements

This work was supported in part by NSF IIS-0328743 and
by PSC-CUNY. Thanks for their support in this work go
to Gene Freuder, Tiziana Ligorio, Anton Morozov, Rick
Wallace, CUNY’s ACE study group, and the Cork Con-
straint Computation Centre, supported by Enterprise Ire-
land and Science Foundation Ireland.

References

Cheeseman, P., B. Kanefsky and W. M. Taylor (1991).
Where the REALLY Hard Problems Are. Proceedings
of the Twelfth International Joint Conference on Artifi-
cial Intelligence pp. 331-337.

D'Andrade, R. G. (1990). Some Propositions about the
Relations between Culture and Human Cognition. In
Cultural Psychology: Essays on Comparative Human
Development, ed. by J. W. Stigler, R. A. Shweder and
G. Herdt. Cambridge, Cambridge University Press: 65-
129.

Epstein, S. L. (1994). "For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain." Cognitive
Science 18(3): 479-511.

Epstein, S. L. (1998). "Pragmatic Navigation: Reactivity,
Heuristics, and Search." Artificial Intelligence 100(1-2):
275-322.

Epstein, S. L. (2001). Learning to Play Expertly: A Tuto-
rial on Hoyle. Machines That Learn to Play Games. J.
Fürnkranz and M. Kubat. Huntington, NY, Nova Sci-
ence: 153-178.

Epstein, S. L., E. C. Freuder, R. Wallace, A. Morozov and
B. Samuels (2002). The Adaptive Constraint Engine.
Principles and Practice of Constraint Programming --
CP2002. P. Van Hentenryck. Berlin, Springer Verlag.
2470: 525-540.

Epstein, S. L. and G. Freuder (2001). Collaborative
Learning for Constraint Solving. Principles and Prac-
tice of Constraint Programming -- CP2001 . T. Walsh.
Berlin, Springer Verlag. 2239: 46-60.

Epstein, S. L., J. Gelfand and E. T. Lock (1998). "Learn-
ing Game-Specific Spatially-Oriented Heuristics." Con-
straints 3(2-3): 239-253.

Freuder, E. and A. Mackworth, Eds. (1994). Constraint-
Based Reasoning. Cambridge, MA, MIT Press.

Keim, G. A., et al. (1999). PROVERB: The Probabilistic
Cruciverbalist. Proceedings of the Sixteenth National
Conference on Artificial Intelligence, Orlando, AAAI
Press.

Nudel, B. (1983). "Consistent-labeling problems and their
algorithms: Expected-complexities and theory-based
heuristics." Artificial Intelligence 21: 135-178.

Tsang, E. P. K. (1993). Foundations of Constraint Satis-
faction. London, Academic Press.

