
This paper appeared in the 1994 AAAI Fall Symposium on Relevance.

Identifying the Right Reasons: Learning to Filter Decision Makers

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of the City University of New York
695 Park Avenue, New York, NY 10021 USA

sehhc@cunyvm.cuny.edu

Abstract
Given a domain of related problem classes and a set
of general decision-making procedures applicable to
them, this paper describes AWL, an algorithm to
filter out those procedures that prove irrelevant, self-
contradictory, or untrustworthy for a particular class.
With an external model of expertise as its
performance criterion, the algorithm uses a
perceptron-like model to learn problem-class-
specific weights for its decision-making procedures.
Learning improves both the efficiency of the
decision-making process and the performance of the
system.

1. The Reasoning Framework
The problem-solving and learning architecture called
FORR (FOrr the Right Reasons) relies upon a set of
Advisors, general purpose, heuristic rationales that make
decisions across a set of related problem classes (Epstein
1994). This paper describes an algorithm that learns the
relevance of each Advisor to any particular problem class.
In this context, relevance is the usefulness of a general-
purpose heuristic for decision making in a specific prob-
lem class.

The thesis behind FORR is that a “general expert” in a
domain can become a “specific expert” for some problem
class in that domain by learning problem-class-specific
data (useful knowledge) that is potentially applicable and
probably correct. As it combines powerful heuristics,
FORR simulates a synergy among good reasons as a men-
tal model for decision making.

A background theory for a general domain is defined in
FORR by a problem frame that delineates the nature of a
problem class, a behavioral script that represents how an
expert proceeds in the domain, a useful knowledge frame
that identifies what can be learned about a problem class,
and a set of “right reasons,” heuristic procedures
(Advisors) that represent reasonable arguments for deci-
sion making throughout the domain. One or more learning
methods is attached to each useful knowledge slot and
triggered by the behavioral script. The same domain-spe-
cific Advisors, learning methods, and behavioral script
are used on every problem class; problem-specific
information is represented only in the data that initialize
the problem frame and the data learned to instantiate the

useful knowledge frame.
Although several FORR-based programs are in devel-

opment, the most accomplished is Hoyle, for the domain
of two-person, perfect information, finite board games
(Epstein 1992). In Hoyle, a problem class is a game, such
as chess or tic-tac-toe. Each game is defined by a different
instantiation of the problem frame that describes the
board, the playing pieces, and the rules. The behavioral
script, for all games, describes how contestants take turns,
make legal moves, and so on. The useful knowledge
frame holds data worth learning, such as average contest
length or good openings. Hoyle has 23 game-independent
Advisors. These include one that concerns mobility, an-
other that considers material (number of pieces on the
board), and another that monitors openings.

current state
acquired useful knowledge

legal moves

Victory

Panic

Enough
Rope

Absolute
decision?

Coverage PatsyShortcutMaterial

Tier 1:
Shallow search and
inference based on
perfect knowledge

Tier 2:
Heuristic
opinions

yes

no

make
move

…

Blackboard

Voting

Figure 1: How Hoyle makes decisions.

When the behavioral script indicates that a decision is

to be made, Advisors receive as input the current state of
the world, the legal actions from that state, and whatever
useful knowledge is available about the current problem
class. (For Hoyle, a decision must be made when it is the
program’s turn. Input is the current game state, the legal
moves from it, and the useful knowledge frame for the
game.) Each Advisor then outputs any number of

comments that support or discourage an action. A
comment lists the Advisor’s name, the action commented
upon, and a strength, an integer from 0 to 10 that
measures the intensity and direction of the Advisor’s
opinion.

As the schematic of Figure 1 indicates, all Advisors are
not created equal. Some are always perfectly correct, take
precedence over others, and may have the authority to
make a decision unilaterally or to eliminate a legal action
from any further consideration. Initially, Hoyle always at-
tempts decisions in its first tier of seven such Advisors.
These include one that moves to win immediately, and
another that refuses to make a losing move. Only when
the first tier fails to make a decision does control default
to the 17 Advisors in Hoyle’s second tier.

Second-tier Advisors are not necessarily independent,
or even correct in the full context of the state space. Each
of them epitomizes a heuristic, specialized view of reality
that can make a valid argument for or against one or more
actions. All of them have a resource-limited opportunity
to comment before any decision is made. It is here that
relevance, internal consistency, and trustworthiness be-
come issues, and that the AWL (Advisor Weight
Learning)
algorithm is based.

A FORR-based program improves its performance
within a specific problem class as it learns useful knowl-
edge and then applies it as input to the Advisors. Advisors
do not learn, but they do make better decisions when their
input improves. Since they epitomize many different ways
to reason in a broad domain, however, the Advisors may
not always provide constructive information within a spe-
cific problem class. What FORR did not do, prior to this
paper, is learn which Advisors to consult when.

As we have challenged Hoyle with increasingly more
difficult games, we have incorporated several new
Advisors. Although these Advisors were essential to
Hoyle’s ability to learn to play some of these new games
well, they were also irrelevant to some of the early games
Hoyle had already learned. Tests indicated that, while
these new Advisors did not degrade Hoyle’s ability to
learn to play extremely well, they did slow its decision-
making time when they were given the opportunity to
comment. In the newer and more difficult games, more
complex issues arose. Some Advisors regularly contra-
dicted themselves, and others were actually a hindrance to
learning, i.e., Hoyle could learn to play expertly only if
they were not present. Hoyle needed to learn about rele-
vance.

2. Learning about Relevance

Prior to AWL, a decision in the second tier was made by
tallying the Advisors’ comments on each legal action with
their strengths. The action made was the one with the
strongest support:

maxi comment strength from Advisor A on action i!
A

For example, given comments:
< Advisor-1, action-1, 6 >
< Advisor-1, action-2, 8 >
< Advisor-2, action-1, 7 >
< Advisor-3, action-3, 8 >

action-2 and action-3 each only have support 8, while ac-
tion-1 has support 13 and will be executed. This is be-
cause the comments have strengths (6, 8, 7, 8, respec-
tively) but the Advisors do not have weights, i.e., an 8
from one Advisor is just like an 8 from another. In the
preceding example, however, if Advisor-3 had weight 2
and the others had weight 1, then action-3 would have had
support 16 and have been executed instead. AWL, the al-
gorithm that learns weights for second-tier Advisors, was
devised to exploit empirical evidence that the accuracy of
each second-tier Advisor indeed varied with the game.

For each game, AWL is expected, based upon experi-
ence, gradually to reduce the weights of irrelevant and
self-contradictory Advisors to 0, and to increase the
weights of the more reliable Advisors beyond those of the
less reliable ones. AWL executes after every contest
Hoyle plays against an external (human or computer) ex-
pert. The algorithm considers, one at a time, only those
states in which it was the expert’s turn to move and
Hoyle’s first tier would not have made a decision. For
each such state, AWL tallies the first valid statement
among the following f values:

f1: the Advisor supports the expert’s recorded move
f2: the Advisor does not support the expert’s move and

 supports another move
f3: the Advisor opposes the expert’s move
f4: the Advisor does not oppose the expert’s move and

 opposes another move
Essentially, AWL fits Hoyle to the expert, learning to
what extent each of its Advisors simulates expertise as
exemplified by the expert’s moves. The learned weights
are a modification of Littlestone’s perceptron-like algo-
rithm (Littlestone 1988). The weight for Advisor i is

!
i

cij
 "

i

cij
'
 where !i = 1

"i

, ci j = f1, and ci j
' = f3

If weights were updated during the play of the contest, j
would be the state. Because Hoyle plays in real time and
updating the weights during play would slow it down con-
siderably, we chose instead to “massively update” the
weights during the postmortem at the end of each contest
where much of the other learning occurs.

3. Applying the Learned Weights

The Advisors’ weights serve as the criterion for adapting
the decision-making process in three different ways.
• Weights identify irrelevant Advisors. Any Advisor
whose f values all remain at 0 has made no comments at

all and, after some time, can be eliminated. For example,
the Advisor that calculates strength based upon how many
pieces each contestant has on the board is irrelevant in tic-
tac-toe.
• Weights identify self-contradictory Advisors. In some
games, the same moves consistently and simultaneously
look both good and bad to an Advisor. For example, in
tic-tac-toe one Advisor will support every legal move be-
cause it reduces the number of options for the other con-
testant on its next turn, and oppose the same move with
the same strength because it reduces Hoyle’s own options
on its next turn. (In other games this Advisor behaves
quite differently and is extremely constructive.) When f1
= f3, an Advisor is self-contradictory and, after some
time, can be eliminated.
• Weights identify untrustworthy Advisors. Although some
weights will “look better” than others, AWL uses an abso-
lute standard rather than a relative one. For this purpose,
we introduced a dummy advisor called Anything that
makes comments with random strengths. Because some
Advisors make more comments than others and Anything
is intended as a general benchmark, Anything makes i > 0
comments for each state with probability 2-i. The Advisor
Anything serves as benchmark for random opinion; it is
not consulted when Hoyle plays, only when the algorithm
learns weights after the contest is over. An Advisor that
consistently underperforms Anything is untrustworthy
and, after some time, can be eliminated.

4. Experimental Design

AWL has been tested with Hoyle on tic-tac-toe, lose tic-
tac-toe (played exactly like tic-tac-toe except that the first
contestant to achieve three of the same playing piece
along a row, column, or diagonal loses), and some morris
games. A morris game has two contestants, black and
white, each with an equal number of playing pieces. The
morris boards vary from one game to the next; they are
characterized by concentric squares connected with inter-
secting lines. Playing pieces can be located at the intersec-
tion of any pair of lines. In five men’s morris, for exam-
ple, each contestant has five playing pieces and there are
16 possible locations for the playing pieces. Each morris
contest has two stages: a placing stage, where initially the
board is empty, and the contestants alternate placing one
of their playing pieces on any empty position, and a
sliding stage, where a turn consists of sliding one’s
playing piece along any line drawn on the game board to
an immediately adjacent empty position. Morris games
offer substantial challenges: five men’s morris has about
nine million states in its search space, nine men’s about
143 billion.

For the AWL runs described here, Hoyle learned to
play a specific game against an external expert until it
achieved 10 consecutive draws. At that point learning was
turned off, and Hoyle was tested in a tournament of 20
contests against each of four challengers: a perfect player,

an expert, a novice, and a random player at the same
game. The same α value was used for all Advisors.
Because the external expert chooses against equally valid
moves at random, and so does Hoyle’s second tier, no two
learning experiences are identical. Therefore results are
monitored over a set of runs.

5. Results

Several values were tried for α on tic-tac-toe, lose tic-tac-
toe, and five men’s morris: 1.2, 1.1, 1.05, 1.02, and finally
1.01. The larger values narrowed Hoyle’s learning experi-
ence too fast; during testing the program then performed
less well against the weaker challengers than without
weight learning. This is because, with larger α’s, the
weights were fitted so quickly that Hoyle had no time to
acquire other items of useful knowledge that required
more playing experience but would stand it in good stead
against weaker competition during testing.

AWL offered the following advantages in learning:
• Hoyle’s reaction time improved when irrelevant
Advisors were eliminated, without any increase in the
number of contests required to learn or any degradation of
the program’s ability to play. Hoyle with AWL learns to
play tic-tac-toe in just as few contests and learns to play
just as well as without AWL. With AWL, however, the
program also eliminates many Advisors it would other-
wise consult, so that Hoyle with AWL now plays perfect
tic-tac-toe more quickly.
• Hoyle learned some games faster and more reliably, los-
ing less frequently to the less skilled challengers. Lose tic-
tac-toe has a fairly small state space (5478) but is non-
trivial for Hoyle to learn. With AWL, Hoyle not only
learns to play the game faster, it also learns to play it
more reliably, losing less frequently to the less skilled
challengers.
• Hoyle could identify and eliminate Advisors that made
learning impossible (by offering powerful but incorrect
advice) without forcing them to be discarded for other
games. Although an Advisor called Shortcut is necessary
to learn nine men’s morris, Shortcut makes learning a
somewhat easier game, five men’s morris, impossible,
i.e., the runs do not achieve 10 consecutive draws even
after several hundred contests. With AWL, however, after
10 contests Hoyle is able to identify Shortcut as worse
than Anything, eliminate it, and go on to learn to play the
game extremely well. In nine men’s morris, Hoyle with
AWL does not eliminate Shortcut and goes on to learn to
play that quite well too.

6. Discussion

The phrase “after some time [an Advisor] can be elimi-
nated” runs throughout Section 3. For now, Hoyle pauses
every 10 contests to report its weights and to ask permis-
sion to eliminate Advisors because they are self-
contradictory or untrustworthy. This is an anomaly in a

previously-autonomous discovery program, but when to
take dramatic action based upon the weights themselves is
a real concern. Usually Hoyle’s judgments are accurate,
but occasionally an Advisor is prematurely labeled
“untrustworthy” and, after more experience, Hoyle would
not have attempted to eliminate it. (One example is
Hoyle’s occasional overeagerness in lose tic-tac-toe to
discard the Advisor that considers openings because of
what appears to be initially poor performance. The real
problem is that the opening Advisor needs more useful
knowledge than has yet been acquired; once that knowl-
edge is in place it performs quite well.) For now, we have
selectively refused permission to discard Advisors, and
have observed that Hoyle eventually chooses to retain the
right ones. If we increase the parameter 10, however,
many irrelevant Advisors will continue to slow the real
time devoted to play, and some incorrect Advisors may
continue to delay learning. We are now exploring a vari-
ety of methods to establish the correct balance between
efficiency and overeagerness.

For Hoyle, AWL actually uses two new useful knowl-
edge slots for each game: one for weights in the placing
stage and one for the weights in the sliding stage. In this
domain the change in the rules makes the stage boundary
obvious. In another domain, or even in more complex
games, there might be more than two kinds of problem
solving (here, the placing and sliding stages) that merit
individually tabulated sets of weights. The weights iden-
tify how the Advisors’ performance differs between
stages, but as yet we have no code to detect such stages,
and believe that to be a non-trivial task.

In more difficult domains or problem classes, the exter-
nal expert will not perform perfectly. (There is, for exam-
ple, no perfect-playing expert program for nine men’s
morris.) Weight-learning there would attempt to fit
Hoyle’s decision making to that of an imperfect, although
strong, expert, with unpredictable results. And how would
one learn weights in a domain without an expert model? If
Hoyle were to learn weights while playing against itself,
for example, the early contests would be entirely untrust-
worthy. (When one poor player beats another, there is
likely to be little worth imitating.) Perhaps α should be
treated like the temperature in simulated annealing, but
increase over time or with improved performance, to re-
flect the algorithm’s increasing confidence in its own
judgment.

A recent application of AWL is for the validation of
pattern-based Advisors in a new, game-dependent third
tier (Epstein, Gelfand, & Lesniak submitted). These
Advisors are generalizations of persistent patterns with a
single, consistent association. Although they are based
upon experience in play, they are inductive guesses whose

reliability and relevance merit close examination. AWL
has proved an able filter for them. It strengthens the most
important, eliminates the irrelevant, and disregards the in-
correct ones.

We continue to refine AWL. The f2 and f4 values
should be put to use. The weights also provide us with a
clear metric on Advisor performance that could be helpful
in the design and testing of new Advisors. Finally, AWL
is under study with FORR-based programs in additional
domains.

7. Conclusion

Advisors in FORR are broad, general theories about how
to perform well in a domain of related problem classes. In
any specific problem class, some will prove more relevant
than others. Advisor weights are only one item of useful
knowledge, however. It is important to allow the program
enough time to learn other items that serve as input to the
Advisors and allow them to make a strong contribution.
With a good choice for α, the AWL algorithm speeds and
improves the quality of FORR-based learning. Given a set
of good reasons for making a decision in a broad domain,
AWL quickly detects those that are irrelevant, self-contra-
dictory, or untrustworthy in a segment of the domain.
When the decision makers are filtered this way, a FORR-
based program can learn the relevance of its heuristics
and learn to perform more efficiently and more
accurately.

References

Epstein, S. L. 1992. Prior Knowledge Strengthens
Learning to Control Search in Weak Theory Domains.
International Journal of Intelligent Systems, 7: 547-
586.

Epstein, S. L. (1994). For the Right Reasons: The FORR

Architecture for Learning in a Skill Domain. Cognitive
Science, 18(3).

Epstein, S. L., Gelfand, J. & Lesniak, J. (Submitted). The

Integration of Pattern-Based Learning and Spatially-
Oriented Reasoning with a Multi-Agent, Decision-
Making Expert.

Littlestone, N. (1988). Learning Quickly when Irrelevant

Attributes Abound: A New Linear-threshold Algorithm.
Machine Learning, 2, 285-318.

