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Abstract 
Given a domain of related problem classes and a set 
of general decision-making procedures applicable to 
them, this paper describes AWL, an algorithm to 
filter out those procedures that prove irrelevant, self-
contradictory, or untrustworthy for a particular class. 
With an external model of expertise as its 
performance criterion, the algorithm uses a 
perceptron-like model to learn problem-class-
specific weights for its decision-making procedures. 
Learning improves both the efficiency of the 
decision-making process and the performance of the 
system. 
 

1. The Reasoning Framework 
The problem-solving and learning architecture called 
FORR (FOrr the Right Reasons) relies upon a set of 
Advisors, general purpose, heuristic rationales that make 
decisions across a set of related problem classes (Epstein 
1994). This paper describes an algorithm that learns the 
relevance of each Advisor to any particular problem class. 
In this context, relevance is the usefulness of a general-
purpose heuristic for decision making in a specific prob-
lem class.  

The thesis behind FORR is that a “general expert” in a 
domain can become a “specific expert” for some problem 
class in that domain by learning problem-class-specific 
data (useful knowledge) that is potentially applicable and 
probably correct. As it combines powerful heuristics, 
FORR simulates a synergy among good reasons as a men-
tal model for decision making.  

A background theory for a general domain is defined in 
FORR by a problem frame that delineates the nature of a 
problem class, a behavioral script that represents how an 
expert proceeds in the domain, a useful knowledge frame 
that identifies what can be learned about a problem class, 
and a set of “right reasons,” heuristic procedures 
(Advisors) that represent reasonable arguments for deci-
sion making throughout the domain. One or more learning 
methods is attached to each useful knowledge slot and 
triggered by the behavioral script. The same domain-spe-
cific Advisors, learning methods, and behavioral script 
are used on every problem class; problem-specific 
information is represented only in the data that initialize 
the problem frame and the data learned to instantiate the 

useful knowledge frame. 
Although several FORR-based programs are in devel-

opment, the most accomplished is Hoyle, for the domain 
of two-person, perfect information, finite board games 
(Epstein 1992). In Hoyle, a problem class is a game, such 
as chess or tic-tac-toe. Each game is defined by a different 
instantiation of the problem frame that describes the 
board, the playing pieces, and the rules. The behavioral 
script, for all games, describes how contestants take turns, 
make legal moves, and so on. The useful knowledge 
frame holds data worth learning, such as average contest 
length or good openings. Hoyle has 23 game-independent 
Advisors. These include one that concerns mobility, an-
other that considers material (number of pieces on the 
board), and another that monitors openings. 
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Figure 1: How Hoyle makes decisions. 
 
When the behavioral script indicates that a decision is 

to be made, Advisors receive as input the current state of 
the world, the legal actions from that state, and whatever 
useful knowledge is available about the current problem 
class. (For Hoyle, a decision must be made when it is the 
program’s turn. Input is the current game state, the legal 
moves from it, and the useful knowledge frame for the 
game.) Each Advisor then outputs any number of 



comments that support or discourage an action. A 
comment lists the Advisor’s name, the action commented 
upon, and a strength, an integer from 0 to 10 that 
measures the intensity and direction of the Advisor’s 
opinion.  

As the schematic of Figure 1 indicates, all Advisors are 
not created equal. Some are always perfectly correct, take 
precedence over others, and may have the authority to 
make a decision unilaterally or to eliminate a legal action 
from any further consideration. Initially, Hoyle always at-
tempts decisions in its first tier of seven such Advisors. 
These include one that moves to win immediately, and 
another that refuses to make a losing move. Only when 
the first tier fails to make a decision does control default 
to the 17 Advisors in Hoyle’s second tier.  

Second-tier Advisors are not necessarily independent, 
or even correct in the full context of the state space. Each 
of them epitomizes a heuristic, specialized view of reality 
that can make a valid argument for or against one or more 
actions. All of them have a resource-limited opportunity 
to comment before any decision is made. It is here that 
relevance, internal consistency, and trustworthiness be-
come issues, and that the AWL (Advisor Weight 
Learning)  
algorithm is based. 

A FORR-based program improves its performance 
within a specific problem class as it learns useful knowl-
edge and then applies it as input to the Advisors. Advisors 
do not learn, but they do make better decisions when their 
input improves. Since they epitomize many different ways 
to reason in a broad domain, however, the Advisors may 
not always provide constructive information within a spe-
cific problem class. What FORR did not do, prior to this 
paper, is learn which Advisors to consult when. 

As we have challenged Hoyle with increasingly more 
difficult games, we have incorporated several new 
Advisors. Although these Advisors were essential to 
Hoyle’s ability to learn to play some of these new games 
well, they were also irrelevant to some of the early games 
Hoyle had already learned. Tests indicated that, while 
these new Advisors did not degrade Hoyle’s ability to 
learn to play extremely well, they did slow its decision-
making time when they were given the opportunity to 
comment. In the newer and more difficult games, more 
complex issues arose. Some Advisors regularly contra-
dicted themselves, and others were actually a hindrance to 
learning, i.e., Hoyle could learn to play expertly only if 
they were not present. Hoyle needed to learn about rele-
vance. 

 
2. Learning about Relevance 

Prior to AWL, a decision in the second tier was made by 
tallying the Advisors’ comments on each legal action with 
their strengths. The action made was the one with the 
strongest support: 

maxi comment strength from Advisor A on action i!
A

 

For example, given comments:  
< Advisor-1, action-1, 6 > 
< Advisor-1, action-2, 8 > 
< Advisor-2, action-1, 7 > 
< Advisor-3, action-3, 8 > 

action-2 and action-3 each only have support 8, while ac-
tion-1 has support 13 and will be executed. This is be-
cause the comments have strengths (6, 8, 7, 8, respec-
tively) but the Advisors do not have weights, i.e., an 8 
from one Advisor is just like an 8 from another. In the 
preceding example, however, if Advisor-3 had weight 2 
and the others had weight 1, then action-3 would have had 
support 16 and have been executed instead. AWL, the al-
gorithm that learns weights for second-tier Advisors, was 
devised to exploit empirical evidence that the accuracy of 
each second-tier Advisor indeed varied with the game. 

For each game, AWL is expected, based upon experi-
ence, gradually to reduce the weights of irrelevant and 
self-contradictory Advisors to 0, and to increase the 
weights of the more reliable Advisors beyond those of the 
less reliable ones. AWL executes after every contest 
Hoyle plays against an external (human or computer) ex-
pert. The algorithm considers, one at a time, only those 
states in which it was the expert’s turn to move and 
Hoyle’s first tier would not have made a decision. For 
each such state, AWL tallies the first valid statement 
among the following f values:  

f1: the Advisor supports the expert’s recorded move 
f2: the Advisor does not support the expert’s move and 

 supports another move 
f3: the Advisor opposes the expert’s move 
f4: the Advisor does not oppose the expert’s move and 

 opposes another move 
Essentially, AWL fits Hoyle to the expert, learning to 
what extent each of its Advisors simulates expertise as 
exemplified by the expert’s moves. The learned weights 
are a modification of Littlestone’s perceptron-like algo-
rithm (Littlestone 1988). The weight for Advisor i is  
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If weights were updated during the play of the contest, j 
would be the state. Because Hoyle plays in real time and 
updating the weights during play would slow it down con-
siderably, we chose instead to “massively update” the 
weights during the postmortem at the end of each contest 
where much of the other learning occurs. 

 
3. Applying the Learned Weights 

The Advisors’ weights serve as the criterion for adapting 
the decision-making process in three different ways.  
• Weights identify irrelevant Advisors. Any Advisor 
whose f values all remain at 0 has made no comments at 



all and, after some time, can be eliminated. For example, 
the Advisor that calculates strength based upon how many 
pieces each contestant has on the board is irrelevant in tic-
tac-toe. 
• Weights identify self-contradictory Advisors. In some 
games, the same moves consistently and simultaneously 
look both good and bad to an Advisor. For example, in 
tic-tac-toe one Advisor will support every legal move be-
cause it reduces the number of options for the other con-
testant on its next turn, and oppose the same move with 
the same strength because it reduces Hoyle’s own options 
on its next turn. (In other games this Advisor behaves 
quite differently and is extremely constructive.) When f1 
= f3, an Advisor is self-contradictory and, after some 
time, can be eliminated. 
• Weights identify untrustworthy Advisors. Although some 
weights will “look better” than others, AWL uses an abso-
lute standard rather than a relative one. For this purpose, 
we introduced a dummy advisor called Anything that 
makes comments with random strengths. Because some 
Advisors make more comments than others and Anything 
is intended as a general benchmark, Anything makes i > 0 
comments for each state with probability 2-i. The Advisor 
Anything serves as benchmark for random opinion; it is 
not consulted when Hoyle plays, only when the algorithm 
learns weights after the contest is over. An Advisor that 
consistently underperforms Anything is untrustworthy 
and, after some time, can be eliminated. 

 
4. Experimental Design 

AWL has been tested with Hoyle on tic-tac-toe, lose tic-
tac-toe (played exactly like tic-tac-toe except that the first 
contestant to achieve three of the same playing piece 
along a row, column, or diagonal loses), and some morris 
games. A morris game has two contestants, black and 
white, each with an equal number of playing pieces. The 
morris boards vary from one game to the next; they are 
characterized by concentric squares connected with inter-
secting lines. Playing pieces can be located at the intersec-
tion of any pair of lines. In five men’s morris, for exam-
ple, each contestant has five playing pieces and there are 
16 possible locations for the playing pieces. Each morris 
contest has two stages: a placing stage, where initially the 
board is empty, and the contestants alternate placing one 
of their playing pieces on any empty position, and a 
sliding stage, where a turn consists of sliding one’s 
playing piece along any line drawn on the game board to 
an immediately adjacent empty position. Morris games 
offer substantial challenges: five men’s morris has about 
nine million states in its search space, nine men’s about 
143 billion. 

For the AWL runs described here, Hoyle learned to 
play a specific game against an external expert until it 
achieved 10 consecutive draws. At that point learning was 
turned off, and Hoyle was tested in a tournament of 20 
contests against each of four challengers: a perfect player, 

an expert, a novice, and a random player at the same 
game. The same α value was used for all Advisors. 
Because the external expert chooses against equally valid 
moves at random, and so does Hoyle’s second tier, no two 
learning experiences are identical. Therefore results are 
monitored over a set of runs. 

 
5. Results  

Several values were tried for α on tic-tac-toe, lose tic-tac-
toe, and five men’s morris: 1.2, 1.1, 1.05, 1.02, and finally 
1.01. The larger values narrowed Hoyle’s learning experi-
ence too fast; during testing the program then performed 
less well against the weaker challengers than without 
weight learning. This is because, with larger α’s, the 
weights were fitted so quickly that Hoyle had no time to 
acquire other items of useful knowledge that required 
more playing experience but would stand it in good stead 
against weaker competition during testing. 

AWL offered the following advantages in learning: 
• Hoyle’s reaction time improved when irrelevant 
Advisors were eliminated, without any increase in the 
number of contests required to learn or any degradation of 
the program’s ability to play. Hoyle with AWL learns to 
play tic-tac-toe in just as few contests and learns to play 
just as well as without AWL. With AWL, however, the 
program also eliminates many Advisors it would other-
wise consult, so that Hoyle with AWL now plays perfect 
tic-tac-toe more quickly.  
• Hoyle learned some games faster and more reliably, los-
ing less frequently to the less skilled challengers. Lose tic-
tac-toe has a fairly small state space (5478) but is non-
trivial for Hoyle to learn. With AWL, Hoyle not only 
learns to play the game faster, it also learns to play it 
more reliably, losing less frequently to the less skilled 
challengers.  
• Hoyle could identify and eliminate Advisors that made 
learning impossible (by offering powerful but incorrect 
advice) without forcing them to be discarded for other 
games. Although an Advisor called Shortcut is necessary 
to learn nine men’s morris, Shortcut makes learning a 
somewhat easier game, five men’s morris, impossible, 
i.e., the runs do not achieve 10 consecutive draws even 
after several hundred contests. With AWL, however, after 
10 contests Hoyle is able to identify Shortcut as worse 
than Anything, eliminate it, and go on to learn to play the 
game extremely well. In nine men’s morris, Hoyle with 
AWL does not eliminate Shortcut and goes on to learn to 
play that quite well too. 

 
6. Discussion 

The phrase “after some time [an Advisor] can be elimi-
nated” runs throughout Section 3. For now, Hoyle pauses 
every 10 contests to report its weights and to ask permis-
sion to eliminate Advisors because they are self-
contradictory or untrustworthy. This is an anomaly in a 



previously-autonomous discovery program, but when to 
take dramatic action based upon the weights themselves is 
a real concern. Usually Hoyle’s judgments are accurate, 
but occasionally an Advisor is prematurely labeled 
“untrustworthy” and, after more experience, Hoyle would 
not have attempted to eliminate it. (One example is 
Hoyle’s occasional overeagerness in lose tic-tac-toe to 
discard the Advisor that considers openings because of 
what appears to be initially poor performance. The real 
problem is that the opening Advisor needs more useful 
knowledge than has yet been acquired; once that knowl-
edge is in place it performs quite well.) For now, we have 
selectively refused permission to discard Advisors, and 
have observed that Hoyle eventually chooses to retain the 
right ones. If we increase the parameter 10, however, 
many irrelevant Advisors will continue to slow the real 
time devoted to play, and some incorrect Advisors may 
continue to delay learning. We are now exploring a vari-
ety of methods to establish the correct balance between 
efficiency and overeagerness. 

For Hoyle, AWL actually uses two new useful knowl-
edge slots for each game: one for weights in the placing 
stage and one for the weights in the sliding stage. In this 
domain the change in the rules makes the stage boundary 
obvious. In another domain, or even in more complex 
games, there might be more than two kinds of problem 
solving (here, the placing and sliding stages) that merit 
individually tabulated sets of weights. The weights iden-
tify how the Advisors’ performance differs between 
stages, but as yet we have no code to detect such stages, 
and believe that to be a non-trivial task. 

In more difficult domains or problem classes, the exter-
nal expert will not perform perfectly. (There is, for exam-
ple, no perfect-playing expert program for nine men’s 
morris.) Weight-learning there would attempt to fit 
Hoyle’s decision making to that of an imperfect, although 
strong, expert, with unpredictable results. And how would 
one learn weights in a domain without an expert model? If 
Hoyle were to learn weights while playing against itself, 
for example, the early contests would be entirely untrust-
worthy. (When one poor player beats another, there is 
likely to be little worth imitating.) Perhaps α should be 
treated like the temperature in simulated annealing, but 
increase over time or with improved performance, to re-
flect the algorithm’s increasing confidence in its own 
judgment. 

A recent application of AWL is for the validation of 
pattern-based Advisors in a new, game-dependent third 
tier (Epstein, Gelfand, & Lesniak submitted). These  
Advisors are generalizations of persistent patterns with a 
single, consistent association. Although they are based 
upon experience in play, they are inductive guesses whose

reliability and relevance merit close examination. AWL 
has proved an able filter for them. It strengthens the most 
important, eliminates the irrelevant, and disregards the in-
correct ones. 

We continue to refine AWL. The f2 and f4 values 
should be put to use. The weights also provide us with a 
clear metric on Advisor performance that could be helpful 
in the design and testing of new Advisors. Finally, AWL 
is under study with FORR-based programs in additional 
domains.  

 
7. Conclusion 

Advisors in FORR are broad, general theories about how 
to perform well in a domain of related problem classes. In 
any specific problem class, some will prove more relevant 
than others. Advisor weights are only one item of useful 
knowledge, however. It is important to allow the program 
enough time to learn other items that serve as input to the 
Advisors and allow them to make a strong contribution. 
With a good choice for α, the AWL algorithm speeds and 
improves the quality of FORR-based learning. Given a set 
of good reasons for making a decision in a broad domain, 
AWL quickly detects those that are irrelevant, self-contra-
dictory, or untrustworthy in a segment of the domain. 
When the decision makers are filtered this way, a FORR-
based program can learn the relevance of its heuristics 
and learn to perform more efficiently and more 
accurately. 
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