
Collaborative Learning for Constraint Solving

Susan L. Epstein1 and Eugene Freuder2

1 Department of Computer Science, Hunter College and The Graduate School of
The City University of New York, New York, NY 10021, USA

susan.epstein@hunter.cuny.edu
2 Cork Constraint Computation Centre, University College Cork, Cork, Ireland*

e.freuder@4c.ucc.ie

Abstract. Although constraint programming offers a wealth of strong, general-
purpose methods, in practice a complex, real application demands a person who
selects, combines, and refines various available techniques for constraint satis-
faction and optimization. Although such tuning produces efficient code, the scar-
city of human experts slows commercialization. The necessary expertise is of two
forms: constraint programming expertise and problem-domain expertise. The
former is in short supply, and even experts can be reduced to trial and error pro-
totyping; the latter is difficult to extract. The project described here seeks to
automate both the application of constraint programming expertise and the ex-
traction of domain-specific expertise. It applies FORR, an architecture for learn-
ing and problem-solving, to constraint solving. FORR develops expertise from
multiple heuristics. A successful case study is presented on coloring problems.

1 Introduction

Difficult constraint programming problems require human experts to select, combine
and refine the various techniques currently available for constraint satisfaction and op-
timization. These people “tune” the solver to fit the problems efficiently, but the scar-
city of such experts slows commercialization of this successful technology. The few
initial efforts to automate the production of specialized software have thus far focused
on choosing among methods or constructing special purpose algorithms [1-4].

Although a properly-touted advantage of constraint programming is its wealth of
good, general-purpose methods, at some point complex, real applications require hu-
man expertise to produce a practical program. This expertise is of two forms: constraint
programming expertise and problem domain expertise. The former is in short supply,
and even experts can be reduced to trial and error prototyping; the latter is difficult to
extract. This project seeks to automate both the application of constraint programming
expertise and the extraction of domain-specific expertise.

Our goal is to automate the construction of problem-specific or problem-class-
specific constraint solvers with a system called ACE (Adaptive Constraint Engine).
ACE is intended to support the automated construction of such constraint solvers in a

* This work was performed while this author was at the University of New Hampshire.

number of different problem domains. Each solver will incorporate a learned, collabo-
rative “community” of heuristics appropriate for their problem or problem class. Both
the way in which they collaborate and some of the heuristics themselves will be
learned.

This paper reports initial steps toward that goal in the form of a case study that ap-
plies FORR, a well-tested, collaborative, problem-solving architecture, to a subset of
constraint programming: graph coloring. The FORR architecture permits swift estab-
lishment of a well-provisioned base camp from which to explore this research frontier
more deeply. Section 2 presents some minimal background, including a description of
FORR. Section 3 presents the initial, successful case study. Section 4 outlines further
opportunities and challenges. Section 5 is a brief conclusion.

2 The Problem

We provide here some minimal background information on CSP’s and on the FORR
(FOr the Right Reasons) architecture. Further details will be provided on a need-to-
know basis during our description of the case study.

2.1 CSP

Constraint satisfaction problems involve a set of variables, a domain of values for each
variable, and a set of constraints that specify which combinations of values are allowed
[5-8]. A solution is a value for each variable, such that all the constraints are satisfied.
For example, graph coloring problems are CSP’s: the variables are the graph vertices,
the values are the available colors, and the constraints specify that neighboring vertices
cannot have the same color. The basic CSP paradigm can be extended in various direc-
tions, for example to encompass optimization or uncertainty. Solution methods gener-
ally involve some form of search, often interleaved with some form of inference.

Many practical problems – such as resource allocation, scheduling, configuration,
design, and diagnosis – can be modeled as constraint satisfaction problems. The tech-
nology has been widely commercialized, in Europe even more so than in the U.S. This
is, of course, an NP-hard problem area, but there are powerful methods for solving dif-
ficult problems. Artificial intelligence, operations research, and algorithmics all have
made contributions. There is considerable interest in constraint programming lan-
guages. Although we take an artificial intelligence approach, we expect our results to
have implications for constraint programming generally.

Constraint satisfaction problem classes can be defined by “structural” or “semantic”
features of the problem. These parameterize the problem and establish a multidimen-
sional problem space. We will seek to synthesize specialized solvers that operate effi-
ciently in different portions of that space.

2.2 FORR

FORR is a problem-solving and learning architecture for the development of expertise
from multiple heuristics. It is a mixture of experts decision maker, a system that com-
bines the opinions of a set of procedures called experts to make a decision [9, 10]. This
approach is supported by evidence that people integrate a variety of strategies to ac-
complish problem solving [11-13].

A FORR-based artifact is constructed for a particular set of related tasks called a
domain, such as path finding in mazes [14] or game playing [15]. A FORR-based pro-
gram develops expertise during repeated solution attempts within a problem class, a set
of problems in its domain (e.g., contests at the same game or trips with different start-
ing and ending points in the same maze).

FORR-based applications have produced expert-level results after as few as 20 ex-
periences in a problem class. Learning is relatively fast because a FORR-based appli-
cation begins with prespecified, domain-specific knowledge. To some extent, a FORR-
based application resembles a person who already has substantial general expertise in a
domain, and then develops expertise for a new problem class. Such a person is already
aware of general principles that may support expert behavior, and also recognizes what
is important to learn about a new class, how to acquire that information, and how to
apply it. In FORR, that information is called useful knowledge, and the decision princi-
ples are called Advisors. FORR learns weights to reflect the reliability and utility of
Advisors.

Useful knowledge is knowledge that is possibly reusable and probably correct. In
path finding, for example, a dead-end is a particular kind of useful knowledge, an item.
Each item of useful knowledge is expected to be relevant to every class in the domain.
The values for a particular useful knowledge item, however, are not known in advance;
dead-ends, for example, must be learned, and they will vary from one maze to another.
This is what is meant by problem-class-specific useful knowledge.

A FORR-based program learns when it attempts to solve a problem, or when it ob-
serves an external expert solve one. The program is provided in advance with a set of
useful knowledge items. Each item has a name (e.g., “dead-end”), a learning algorithm
(e.g., “detect backing out”), and a trigger (e.g., “learn after each trip”). A learning trig-
ger may be set for after a decision, after a solution attempt, or after a sequence of solu-
tion attempts. When a useful knowledge item triggers, its learning algorithm executes,
and the program acquires problem-class-specific useful knowledge. Note that there is
no uniform learning method for useful knowledge items — in this sense, FORR truly
supports multi-strategy learning.

FORR organizes Advisors into a hierarchy of tiers (see Figure 1), based upon their
correctness and the nature of their response. A FORR-based program begins with a set
of prespecified Advisors intended to be problem-class-independent, that is, relevant to
most classes in the domain. Each Advisor represents some domain-specific principle
likely to support expert behavior.

Each Advisor is represented as a time-limited procedure that accepts as input the
current problem-solving state, the legal actions from that state, and any useful knowl-
edge that the program has acquired about the problem class. Each Advisor produces as
output its opinion on any number of the current legal actions. An opinion is represented
as a comment, of the form <strength, action, Advisor> where strength is an integer in

[0, 10]. A comment expresses an Advisor’s support for (strength > 5), or opposition to
(strength < 5), a particular action. Comments may vary in their strength, but an Advisor
may not comment more than once on any action in the current state.

Our work applies FORR to CSP. To apply FORR to a particular application domain,
one codes definitions of problem classes and useful knowledge items, along with algo-
rithms to learn the useful knowledge. In addition, one postulates Advisors, assigns
them to tiers, and codes them as well. Effective application of the architecture requires
a domain expert to provide such insights. The feasibility study of the next section was
generated relatively quickly, within the framework of Figure 1. The future work out-
lined in Section 4, however, is expected to require substantial changes to FORR.

Tier 1: Reaction from
perfect knowledge

Tier 2: Search and
inference triggered by
situation recognition

Decision ?

Decision ?

current state legal
actions

acquired useful knowledge

yes

no

execute
decision

yes

no

Voting

A1

Ak

Am

Ak+1

Am+1 Am+2 An

wm+1 wm+2 wn

Tier 3: Heuristic
reactions

Fig. 1. How the FORR architecture organizes and manages Advisors to make a decision. PWL
produces the weights applied for voting.

3. Case Study

This case study on graph coloring is provided to introduce the basic approach we are
pursuing, and to demonstrate its potential. We understand that there is a vast literature
on graph coloring; we do not wish to give the erroneous impression that we believe that
this study makes a serious contribution to it.

3.1 GC, the Graph Colorer

Graph Colorer (GC) is a FORR-based program for the specific CSP problem domain
of graph coloring. We developed it as a proof of concept demonstration that the FORR
architecture is a suitable basis for a research program aimed at learning collaborative
algorithms attuned to classes of similar problems. GC includes only a few Advisors and
learns only weights, but its results are quite promising. For GC, a problem class is the
number of vertices and edges in a c-colorable graph, and a problem is an instance of
such a graph. For example, a problem class might be specified as 4-colorable on 20
vertices with 10% edge density. (“Percentage edge density” here actually refers to per-
centage of possible edges above a minimal n-1, in this case 10% edge density means 19
+ 17 = 36 edges.) A problem in that class would be a particular 4-colorable graph on 20
vertices with 36 edges. Problems are randomly generated, and are guaranteed to have at
least one solution. There are, of course, a great many potential graphs in any given
problem class.

GC basically simulates a standard CSP algorithm, forward checking. A world state
for GC is a legally, partially (or fully) colored graph. On each iteration, GC either se-
lects a vertex to color or, if a vertex has already been selected, colors it. Color selection
is random. Our objective was to have GC learn an efficient way to select the vertices.
In CSP terms, we wanted to acquire an efficient variable ordering heuristic [16-19].
After a color is chosen for a vertex, that color is removed from the domain of neigh-
boring vertices. If after a coloring iteration, some vertex is left without any legal colors,
then the state is automatically transformed by retracting that coloring and removing it
from the legal colors that vertex may subsequently assume. If necessary, vertices can
be “uncolored” to simulate backtracking. Thus, given enough time and space, GC is
complete, that is, is capable of finding a solution.

Figure 2 shows how FORR has been applied to produce GC. GC has two tier-1 Ad-
visors. In tier 1, FORR maintains a presequenced list of prespecified, always correct
Advisors, denoted by A1… Ak in Figure 1. A FORR-based artifact begins the decision
making process there, with the current position, the legal actions from it, and any useful
knowledge thus far acquired about the problem class. When a tier-1 Advisor comments
positively on an action, no subsequent Advisors are consulted, and the action is exe-
cuted. When a tier-1 Advisor comments negatively on an action, that action is elimi-
nated from consideration, and no subsequent Advisor may support it. If the set of pos-
sible actions is thereby reduced to a single action, that action is executed.

GC’s two tier-1 Advisors are Victory and Later. If only a single vertex remains un-
colored and that vertex has been selected and has at least one legal coloring, Victory
colors it. If an iteration is for vertex selection, Later opposes coloring any vertex whose
degree is less than the number of colors that could legally be applied to it, on the theory

that consideration of such a vertex can be delayed. Typically with FORR, the first tier
does not identify an action, and control passes to tier 2, denoted by Ak+1…Am in Figure
1. Tier-2 Advisors plan, and may recommend sequences of actions, instead of a single
action. GC does not yet incorporate tier-2 Advisors.

If neither the first nor the second tier produces a decision, control passes to tier 3,
denoted by Am+1…An in Figure 1. In FORR, all tier-3 Advisors are heuristic and con-
sulted in parallel. A decision is reached by combining their comments in a process
called voting. When control resorts to tier 3, the action that receives the most support
during voting is executed, with ties broken at random. Originally, voting was simply a
tally of the comment strengths. Because that process makes tacit assumptions that are
not always correct, voting can also be weighted.

GC has nine tier-3 Advisors, eight of which encapsulate a single primitive, naive
approach to selecting a vertex. Random Color is the only coloring Advisor, so GC al-
ways selects a legal color for a selected vertex at random. Each of the remaining tier-3
Advisors simply tries to minimize or maximize a basic vertex property. Min Degree
supports the selection of uncolored vertices in increasing degree order with comment
strengths from 10 down. Max Degree is its dual, rating in decreasing degree order. Min
Domain supports the selection of uncolored vertices in increasing order of the number
of their current legal colors, again with strengths descending from 10. Max Domain is
its dual. Min Forward Degree supports the selection of uncolored vertices in increasing
order of their fewest uncolored neighbors, with strengths from 10 down. Max Forward
Degree is its dual. Min Backward Degree supports the selection of uncolored vertices
in increasing order of their fewest colored neighbors, with strengths from 10 down.
Max Backward Degree is its dual. The use of such heuristic, rather than absolutely cor-

Fig. 2. GC’s decision structure is a version of Figure 1. Additional tier-3 Advisors may be
added where indicated.

rect, rationales in decision making is supported by evidence that people satisfice, that
is, they make decisions that are good enough [20]. Although satisficing solutions are
not always optimal, they can achieve a high level of expertise. See, for example, [21].

Arguably these eight properties are simply the most obvious properties one could
ascribe to vertices during the coloring process, making it all the more remarkable that
the experiments we carried out were able to use them to such good effect. They also
correspond naturally to properties of the “constraint graph” and “search tree” associ-
ated with general CSP’s, providing additional resonance to the case study. Of course, a
skeptical reader might be concerned that, consciously or not, we have “biased” our set
of Advisors here. Even if that were so, we would respond that it is still up to FORR to
learn how to use the Advisors appropriately, and that the ability to incorporate our ex-
pertise into the FORR architecture by specifying appropriate Advisors is a feature, not
a bug.

Although a FORR-based program begins with a set of problem-class-independent,
tier-3 Advisors, there is no reason to believe that they are all of equal significance or
reliability in a particular problem class. Therefore, FORR uses a weight-learning algo-
rithm called PWL (Probabilistic Weight Learning) to learn problem-class-specific
weights for its tier-3 Advisors. The premise behind PWL is that the past reliability of
an Advisor is predictive of its future reliability.

Initially, every Advisor has a weight of .05 and a discount factor of .1. Each time an
Advisor comments, its discount factor is increased by .1, until, after 10 sets of com-
ments, the discount factor reaches 1.0, where it remains. Early in an Advisor’s use, its
weight is the product of its learned weight and its discount factor; after 10 sets of
comments, its learned weight alone is referenced. In tier 3 with PWL, a FORR-based
program chooses the action with the greatest support:

argmax

j
ω iwisij∑

i
 where

d = number of opinions i has generated

ω i =
0.1*d if d < 10

1 otherwise
If an Advisor is correct, its wisdom will gradually be incorporated. If an Advisor is

incorrect, its weight will diminish as its opinions are gradually introduced, so that it has
little negative impact in a dynamic environment.

During testing, PWL drops Advisors whose weights are no better than random
guessing. This threshold is provided by a non-voting tier-3 Advisor called Anything.
Anything comments only for weight learning, that is, it never actually participates in a
decision. Anything comments on one action 50% of the time, on two actions 25% of

the time, and in general on n actions (0.5)
n
% of the time. Each of Anything’s comments

has a randomly-generated strength in {0, 1, 2, 3, 4, 6, 7, 8, 9, 10}. An Advisor’s weight
must be at least .01 greater than Anything’s weight to be consulted during testing.
During testing, provisional status is also eliminated (i.e., ωi is set to 1), to permit infre-
quently applicable but correct Advisors to comment at full strength. In summary, PWL
fits a FORR-based program to correct decisions, learning to what extent each of its tier-
3 Advisors reflects expertise. Because problem-class-specific Advisors can also be ac-
quired during learning, PWL is essential to robust performance.

To get some sense of how GC behaves, consider the partially 3-colored graph in
Figure 3(a). (The graph was used in a different context in [22].) Six of the vertices are
colored, and the next vertex should now be selected for coloring. Since vertex 6 has no
legal color, however, the most recently selected vertex will be uncolored. Now consider
the partially colored graph in Figure 3(b). Since the number of possible colors for ver-
tex 12 is 2, Later will eliminate vertex 12 as an immediate choice for coloring, and the
remaining uncolored vertices will be considered by tier 3. For example, Min Degree
would support the selection of vertex 11 with a strength of 10, and the selection of ver-
tices 9 and 10 with a strength of 9. Similarly, Max Backward Degree would support the
selection of vertices 9 and 10 with a strength of 10, and vertices 6 and 11 with a
strength of 9. When the comments from all the tier-3 Advisors are tallied without
weights, vertices 6 and 11 would receive maximum support, so GC would choose one
of them at random to color. If GC were using PWL, however, the strengths would be
multiplied by the weights learned for the Advisors before tallying them.

3.2 Experimental Design and Results

Performance in an experiment with GC was averaged over 10 runs. Each run consisted
of a learning phase and a testing phase. In the learning phase, GC learned weights
while it attempted to color each of 100 problems from the specified problem class. In
the testing phase, weight-learning was turned off, and GC tried to color 10 additional
graphs from the same class. Multiple runs were used because GC learning can get stuck
in a “blind alley,” where there are no successes from which to learn. Thus a fair
evaluation averages behavior over several runs. This is actually conservative, as we ar-
gue below that one could reasonably utilize the best result from multiple runs.

Problems were generated at random, for both learning and testing. Although there is
no guarantee that any particular set of graphs was distinct, given the size of the prob-

12

11

6

5

3

2

4

10

7

1

8

9

Key
red
blue
green

12

11

6

5

3

2

4

10

7

1

8

9

(a) (b)

Fig 3. Two partially 3-colored graphs.

lem classes the probability that a testing problem was also a training problem is ex-
tremely small. The fact that the training set varied from one run to another is, as we
shall see, an advantage.

We ran experiments on five different problem classes: 4-colorable graphs on 20 ver-
tices with edge densities of 10%, 20%, and 30%, and 4-colorable graphs on 50 vertices
with edge densities of 10% and 20%. (Edge densities were kept relatively low so that
enough 4-colorable graphs could be readily produced by our CSP problem generator.
Those classes contain 36, 53, 70, 167, and 285 undirected edges, respectively.) To
speed data collection, during both learning and testing, GC was permitted no more than
1000 task steps for the 20-vertex graphs, and 2000 task steps for the 50-vertex graphs.
(A task step is either the selection of a vertex, the selection of a color, or the retraction
of a color.)

We evaluated GC on the percentage of testing problems it was able to solve, and on
the time it required to solve them. As a baseline, we also had GC attempt to color 100
graphs in each problem class without weight-learning. These results appear in Table 1
as “no learning.” As Table 1 shows, weight learning (“yes” in Table 1) substantially
improved GC’s performance in all but the largest graphs. With weight learning, GC
solved more problems and generally solved them faster. With weight learning, the pro-
gram also did far less backtracking and required 32%-72% fewer steps per task.

An unanticipated difficulty was that, in the 50-vertex-20%-density class, GC was
unable to solve any problem within the 2000-step limit, and therefore could not train its
weights and improve. We therefore adapted the program so that it could learn in two
other environments. With transfer learning, GC learned on small graphs but tested on
larger graphs of the same density. With bootstrap learning, GC learned first on 50
small graphs of a given density, then learned on 50 larger graphs of the same density,
and then tested on the larger graphs. Table 1 reports the result of both bootstrap learn-

Table 1. A comparison of GC’s performance, averaged over 10 runs. Time is in seconds per
solved problem; retractions is number of backtracking steps per solved or unsolved problem.

Vertices Edges Learning Solutions Time Retractions
20 10% no 95% 0.22 22.28
20 10% yes 100% 0.11 0.00

20 20% no 35% 1.11 418.16
20 20% yes 83% 0.48 79.63

20 30% no 12% 1.40 631.60
20 30% yes 41% 1.43 427.05

50 10% no 1% 3.23 815.82
50 10% yes 46% 1.02 414.29
50 10% transfer 32% 4.16 428.54
50 10% bootstrap 40% 3.62 382.18

50 20% no 0% — —
50 20% yes 0% — —
50 20% transfer 26% 5.09 486.61

50 20% bootstrap 20% 4.51 519.89

ing and transfer learning between 20-vertex and 50-vertex-classes of the same density
(e.g., from 20-vertex-20%-density to 50-vertex-20%-density).

3.3 Discussion

The most interesting results from our case study are reflected in the resultant learned
weights. In the 20-vertex-10%-density experiment, where every test graph was colored
correctly, on every run only the Advisors Max Degree, Min Domain, and Min Back-
ward Degree had weights high enough to qualify them for use during testing. Inspec-
tion indicated that in the remaining experiments, runs were either successful (able to
color correctly at least 5 of the 10 test graphs), or unsuccessful (able to color correctly
no more than 2 test graphs). The 8 successful runs in the 20-vertex 20%-density ex-
periment solved 95% of their test problems. In the 20-vertex-30%-density experiment,
the 6 successful runs solved 65% of their test problems. On the 50-vertex-10%-density
graphs, the 6 successful runs colored 76.7% of their test graphs. Inspection indicates
that a run either starts well and goes on to succeed, or goes off in a futile direction.
Rather than wait for learning to recover, multiple runs are an effective alternative. As
used here then, GC can be thought of as a restart algorithm: if one run does not result in
an effective algorithm for the problem class, another is likely to do so.

For each problem class, the Advisors on which GC relied during testing in success-
ful runs appear in Table 2. Together with their weights, these Advisors constitute an al-
gorithm for vertex selection while coloring in the problem class. Observe that different
classes succeed with different weights; most significantly the sparsest graphs prefer the
opposite Backward Degree heuristic to that preferred by the others.

The differences among ordinary GC learning on 50-vertex-10%-density graphs, and
transfer and bootstrap learning from them with 20-vertex-10%-density graphs, are sta-
tistically significant at the 95% confidence level: ordinary learning produces the best
results, followed by bootstrap learning (where weights learned for the smaller graphs
are tuned), followed by transfer learning (where weights for the smaller graphs are
simply used). This further indicates that 20-vertex-10%-density graphs and 50-vertex-
10%-density graphs lie in different classes with regard to appropriate heuristics. Al-
though solution of 50-vertex-20%-density graphs was only possible with with transfer
or bootstrap learning, these are not our only recourses. We could also extend the num-
ber of steps permitted during a solution attempt substantially, on the theory that we can
afford to devote extended training time to produce efficient “production” algorithms.

In this study, we attempted to “seed” GC with an “impartial” set of alternative ver-
tex characteristics. Two factors previously considered individually by constraint re-
searchers in a general CSP context as variable ordering heuristics, minimal domain size

Table 2. Learned weights for those GC vertex-selection Advisors active during testing, averaged
across successful runs in five different experiments. 50-vertex values are from bootstrap learning.

Advisor 20-10% 20-20% 20-30% 50-10% 50-20%
Max Degree 0.678 0.678 0.743 0.547 0.678
Min Domain 0.931 0.841 0.713 0.841 0.723
Min Backward Degree 0.943 — — — —
Max Backward Degree — 0.862 0.724 0.852 0.716

and maximal degree, were selected in all successful runs. Moreover, the combination of
the two is consistent with the evidence presented in [23] that minimizing domain-
size/degree is a superior CSP ordering heuristic to either minimizing domain size or
maximizing degree alone. Given the relatively recent vintage of this insight, its “redis-
covery” by FORR is impressive. Min Backward Degree corresponds to the “minimal
width” CSP variable ordering heuristic, and again FORR was arguably insightful in
weighting this so heavily for the 20-10 case, since it can guarantee a backtrack-free
search for tree-structured problems [24]. The success of Max Backward Degree for the
other classes may well reflect its correlation with both Min Domain (the domain will be
reduced for each differently colored neighbor) and Max Degree.

In a final experiment we implemented the classic Brelaz heuristic for graph coloring
within FORR by simply eliminating any vertex that does not have minimum domain in
tier 1 and then voting for vertices with maximum forward degree in tier 3. Table 3
shows the results. Note that GC, learning from experience, does considerably better.

4. Future Work

GC is a feasibility study for our planned Adaptive Constraint Engine (ACE). ACE will
support the automated construction of problem-class-specific constraint solvers in a
number of different problem domains. Automating constraint solving as a learned col-
laboration among heuristics presents a number of specific opportunities and challenges.
FORR offers a concrete approach to these opportunities and challenges; in turn, ACE
provides new opportunities and challenges to extend the FORR architecture.

4.1 Opportunities

We anticipate a range of opportunities along four dimensions:
• Algorithms: Algorithmic devices known to the CSP community can be specified as
individual Advisors for ACE. Advisors can represent varying degrees of local search or
different search methods (e.g., backjumping), and they can represent heuristic devices
for variable ordering or color selection. ACE could be modified to employ other search
paradigms, including stochastic search.
• Domains: ACE will facilitate the addition of domain-specific expertise at varying de-
grees of generality, and in various fields. For example, we might discover variable or-
dering heuristics for a class of graphs or general graphs, for employee scheduling

Table 3. A performance comparison of GC with the Brelaz heuristic. “GC best” is the top-
performing runs with GC. Brelaz comment frequencies are provided for Min Domain (MD) and
Max Forward Degree (MFD).

Number of solutions Time in seconds Comment frequency
Vertices Density Brelaz GC GC best Brelaz GC MD MFD

20 10% 86% 100% 100.0% 0.33 0.11 15.99 34.01
20 20% 26% 83% 95.0% 1.19 0.48 3.77 64.41
50 10% 0% 46% 76.7% 1.71 1.23 11.27 13.11

problems or general scheduling problems.
• Change: We will begin by learning good algorithms for a static problem or problem
class, that is, good weights for a set of prespecified Advisors. In practice, however,
problems change. For example, a product configuration problem changes when a new
product model is introduced. ACE will offer opportunities to adapt to such change.
Furthermore, ACE should be able to adapt to changing conditions during a single
problem-solving episode. (The FORR architecture has proved resilient in other dy-
namic domains.)
• Discovery: We can select among standard techniques, for example, minimal domain
variable ordering. We can combine these techniques, through a variety of weighting
and voting schemes. Most exciting, we can learn new techniques, in the form of useful
knowledge and new Advisors. These will include planners at the tier-2 level. Some
preliminary work on learning new Advisors based on relative values of graph proper-
ties (Later is an example of such an Advisor, albeit prespecified here) has shown both
improved solution rates and considerable speedup.

4.2 Challenges

Exploring these opportunities will require progress in several areas. Basically, we need
to provide the elements of a collaborative learning environment. FORR permits us to
begin addressing this challenge quickly and concretely.
• Advice: Many interesting issues arise in appropriately combining advice. With vari-
able ordering heuristics, for example, we can now move beyond using secondary heu-
ristics to break ties, or combining heuristics in crude mathematical combinations. Or-
dering advice can be considered in a more flexible and subtle manner. The challenge
lies in using this new power intelligently and appropriately. In particular, this may re-
quire new voting schemes, such as partitioning FORR’s tier 3 into prioritized subsets.
Such higher order control could be learned.
• Reinforcement: Opportunities to learn can come from experience or from expert ad-
vice. ACE will provide a mechanism to generalize experience computed from exhaus-
tive analysis or random testing. It will also provide a mechanism for knowledge acqui-
sition from constraint programming experts and domain experts. In particular, we ex-
pect that ACE will be able to extract, from domain expert decisions, knowledge that the
experts could not impart directly in a realizable form, thereby addressing the knowl-
edge acquisition problem for constraint programming. Specific reinforcement schemes,
analysis, and experimental protocols are required to accomplish this. For example,
what is the proper definition of an “optimal” variable ordering choice, and what forms
of experiment or experience will come closest to modeling optimality?
• Modeling: We need languages for expressing general constraint solving knowledge
and domain specific expertise. Such languages will support discovery of useful knowl-
edge and new Advisors. They will enable us to learn the context in which tools are to
be brought to bear. For example, a grammar has been formulated for a language that
compares relative values (e.g., <, =) of vertex properties (e.g., degree, number of col-
ored neighbors); this grammar can be used to formulate learned Advisors.

Modeling constraint solving and domain knowledge to facilitate discovery presents
perhaps the most exciting combination of opportunity and challenge. The feasibility

study already gives us a glimpse of this capability. The features we used, involving
domain size and degree, are basic features of a constraint graph model of a problem,
and of the coloring domain in particular. We simply described possible variations on
those features, and let GC “discover” which ones most effectively contributed to con-
trol of variable ordering during search.

More broadly, we envision modeling constraint satisfaction search as movement
through a space of sets of potential solutions (the power set of the Cartesian product of
the variable domains). Conventional algorithms may be viewed as special cases of
movement through that space. Backtrack search operates by fixing one value at a time
and moving to the Cartesian product of the remaining (pruned) domains. Hill climbing
operates by moving from one singleton set to another. ACE can explore the vast realm
of intermediate algorithms. We envision expanding FORR to operate with sets of pos-
sible states, an extension of the architecture that would facilitate exploration of algo-
rithms modeled in this manner.

In FORR, not all Advisors are prespecified. Given a language from which to de-
velop them, and a learning method, a FORR-based program can acquire and integrate
new, problem-class-specific Advisors into tier 3. For example, Hoyle, the FORR-based
game player, has learned two different kinds of game-specific Advisors from percep-
tual data [25]. The Advisors Hoyle learns provide insight into the nature of a game,
extend its representational ability, and substantially improve the program’s perform-
ance. The mechanism for learning new Advisors is sketched in [26] and detailed in
[25].

This work will motivate numerous enhancements to FORR. For example, we hope
to learn to sequence the tier-1 Advisors, rather than prespecify their order. We will also
work on collaborative planning in tier 2. We intend to add some generic, resource-
bounded versions of forward search. We will partition tier 3 based upon learned
weights, and then prioritize the allocation of resources accordingly. Finally, we expect
to explore weight-learning algorithms that are more domain-specific. In that context,
we expect to consider non-linear voting algorithms, including pairs of Advisors as in
WINNOW [27].

5 Conclusions

The combination of constraint programming and Advisor-based collaborative
learning is an innovative approach toward making constraint software more effective
and more widely available. Our Adaptive Constraint Engine will provide a comprehen-
sive architecture for acquiring and controlling collaborative and adaptive constraint
solving methods.

The FORR architecture supports this frontier CSP research by transforming amor-
phous objectives (“reinforce success”) into concrete ones (“reward Advisors”). The
CSP research will in turn motivate major extensions of FORR facilities. A case study
has demonstrated the potential of our project; it constructed different algorithms for
different classes of graphs, “rediscovered” some constraint solving insights, and out-
performed the Brelaz heuristic.

Acknowledgements

This work was supported in part by NSF grant IIS-9907385 and by NASA. We thank
Richard Wallace for his assistance in generating test problems, and the referees for
their constructive comments. A preliminary version of this paper appeared in the
working notes of the workshop on Modeling an Solving Problems with Constraints at
IJCAI-2001. Professor Freuder is supported by a Principal Investigator Award from
Science Foundation Ireland.

References

1. Borrett, J., Tsang, E.P.K., Walsh, N.R. Adaptive constraint satisfaction: the quickest
first principle. In Proceedings of the 12th European Conference on AI. Budapest,
Hungary. (1996) 160-164

2. Caseau, Y., Laburthe, F., Silverstein, G.: A Meta-Heuristic Factory for Vehicle
Routing Problems. Principles and Practice of Constraint Programming – CP’99.
Springer, Berlin (1999)

3. Minton, S., Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Constraints. 1 (1996)

4. Smith, D.R.: KIDS: A Knowledge-based Software Development System. In: M.R.
Lowry and R.D. McCartney (eds.): Automating Software Design. AAAI Press
(1991)

5. Saraswat, V.J., Van Hentenryck, P., Constraint Programming. ACM Computing
Surveys, Special Issue on Strategic Directions in Computing Research. 28 (1996)

6. Freuder, E., Wallace, M., eds.): Special Issue on Constraints. IEEE Intelligent Sys-
tems, ed. Series , 15:1 (2000)

7. Freuder, E., Mackworth, A., eds.): Constraint-Based Reasoning. , ed. Series . MIT
Press, Cambridge, MA (1992)

8. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London
(1993)

9. Chatterjee, S., Chatterjee, S., On Combining Expert Opinions. American journal of
Mathematical and Management Sciences. 7 (1987) 271-295

10. Jacobs, R.A., Methods for Combining Experts' Probability Assessments. Neural
Computation. 7 (1995) 867-888

11. Biswas, G., Goldman, S., Fisher, D., Bhuva, B., Glewwe, G.: Assessing Design
Activity in Complex CMOS Circuit Design. In: P. Nichols, S. Chipman, and R.
Brennan (eds.): Cognitively Diagnostic Assessment. Lawrence Erlbaum, Hillsdale,
NJ (1995)

12. Crowley, K., Siegler, R.S., Flexible Strategy Use in Young Children's Tic-Tac-Toe.
Cognitive Science. 17 (1993) 531-561

13. Ratterman, M.J., Epstein, S.L. Skilled like a Person: A Comparison of Human and
Computer Game Playing. In Proceedings of the Seventeenth Annual Conference of
the Cognitive Science Society. Pittsburgh: Lawrence Erlbaum Associates. (1995)
709-714

14. Epstein, S.L. On Heuristic Reasoning, Reactivity, and Search. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence. Montreal:
Morgan Kaufmann. (1995) 454-461

15. Epstein, S.L., Prior Knowledge Strengthens Learning to Control Search in Weak
Theory Domains. International Journal of Intelligent Systems. 7 (1992) 547-586

16. Kiziltan, Z., Flener, P., Hnich, B. Towards Inferring Labelling Heuristics for CSP
Application Domains. In Proceedings of the KI'01: Springer-Verlag. (2001)

17. Sadeh, N., Fox, M.S., Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artificial Intelligence. 86 (1996) 1-41

18. Nadel, B., Consistent labeling problems and their algorithms: expected complexi-
ties and theory-based heuristics. Artificial Intelligence. 21 (1983) 135-178

19. Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T. An empirical study of dy-
namic variable ordering heuristics for the constraint satisfaction problem. In Pro-
ceedings of the CP-96. (1996) 179-193

20. Simon, H.A.: The Sciences of the Artificial. second edn. MIT Press, Cambridge,
MA (1981)

21. Keim, G.A., Shazeer, N.M., Littman, M.L., Agarwal, S., Cheves, C.M., Fitzgerald,
J., Grosland, J., Jiang, F., Pollard, S., Weinmeister, K. PROVERB: The Probabilistic
Cruciverbalist. In Proceedings of the Sixteenth National Conference on Artificial In-
telligence. Orlando: AAAI Press. (1999) 710-717

22. Smith, B.M.: The Brélaz Heuristic and Optimal Static Orderings. Principles and
Practice of Constraint Programming – CP’99,. Springer, Berlin (1999) 405-418

23. Bessiere, C., Regin, J.-C.: MAC and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In: E.C. Freuder (ed. Principles and Practice of
Constraint Programming - CP96, LNCS 1118. Springer-Verlag (1996) 61-75

24. Freuder, E.C., A sufficient condition for backtrack-free search. Journal of the
ACM. 29 (1982) 24-32

25. Epstein, S.L., Perceptually-Supported Learning. (Submitted for publication)
26. Epstein, S.L., Gelfand, J., Lock, E.T., Learning Game-Specific Spatially-Oriented

Heuristics. Constraints. 3 (1998) 239-253
27. Littlestone, N., Warmuth, M.K., The Weighted Majority Algorithm. Information

and Computation. 108 (1994) 212-261

