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Abstract

Effective collaboration between a robot and a person requires
natural communication. When a robot travels with a human
companion, the robot should be able to explain its naviga-
tion behavior in natural language. This paper explains how a
cognitively-based, autonomous robot navigation system pro-
duces informative, intuitive explanations for its decisions.
Language generation here is based upon the robot’s common-
sense, its qualitative reasoning, and its learned spatial model.
This approach produces natural explanations in real time for a
robot as it navigates in a large, complex indoor environment.

Introduction

Successful human-robot collaboration requires natural ex-
planations, human-friendly descriptions of the robot’s rea-
soning in natural language. In collaborative navigation, a
person and an autonomous robot travel together to some des-
tination. The thesis of this paper is that natural explanations
for collaborative navigation emerge when a robot controller
(autonomous navigation system) is cognitively based. This
paper introduces WHY, an approach that accesses and con-
veys the robot’s reasoning to provide its human companion
with insight into its behavior. The principal results presented
here are natural explanations from an indoor robot navigator.

Even in unfamiliar, complex spatial environments
(worlds), people travel without a map to reach their goals
successfully (Conlin 2009). Efficient human navigators rea-
son over a mental model that incorporates commonsense,
spatial knowledge, and multiple heuristics (Golledge 1999).
They then use the same model to explain their chosen path
and their reasons for decisions along the way. Our research
goal is an autonomous robot navigator that communicates
with its human companions much the way people do.

WHY explains a navigation decision in natural language.
It anticipates three likely questions from a human compan-
ion: “Why did you decide to do that?” “Why not do some-
thing else?” and “How sure are you that this is the right
decision?” WHY generates its answers with SemaFORR, a
robot controller that learns a spatial model from sensor data
as it travels through a partially-observable world without a
map (Epstein et al. 2015). SemaFORR’s cognitively-based
reasoning and spatial model facilitate natural explanations.
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WHY is an interpreter; it uses SemaFORR’s cognitive
foundation to bridge the perceptual and representational gap
between human and robot navigators. WHY and SemaFORR
could accompany any robot controller to provide natural
explanations. More broadly, WHY can be readily adapted
to explain decisions for other applications of FORR, Se-
maFORR’s underlying cognitive architecture.

The next section of this paper reviews related work. Sub-
sequent sections describe SemaFORR and formalize WHY.
Finally, we evaluate WHY-generated explanations and give
examples of them as our mobile robot navigates through a
large, complex, indoor world.

Related Work

When a robot represents and reasons about space similarly
to the way people do, it facilitates human-robot collabora-
tion (Kennedy et al. 2007). Communication with a robot al-
lows people to build a mental model of how it perceives and
reasons, and thereby helps to establish trust (Kulesza et al.
2013; Bussone, Stumpf, and O’Sullivan 2015). A recent ap-
proach grounded perceived objects between the robot and a
person to build a mutual mental model, and then generated
natural language descriptions from it (Chai et al. 2016). Al-
though that supported natural dialogue, it did not explain the
reasoning that produced the robot’s behavior.

Despite much work on how a robot might understand nat-
ural language from a human navigator (Boularias et al. 2016;
Duvallet et al. 2016; Thomason et al. 2015), natural expla-
nations from a robot navigator to a person remain an im-
portant open problem. Such work has thus far required de-
tailed logs of the robot’s experience, which only trained re-
searchers could understand (Landsiedel et al. 2017; Scalise,
Rosenthal, and Srinivasa 2017). It is unreasonable, however,
to expect people to decipher robot logs.

Natural language descriptions of a robot’s travelled path
have addressed abstraction, specificity, and locality (Rosen-
thal, Selvaraj, and Veloso 2016; Perera et al. 2016). A sim-
ilar approach generated path descriptions to improve sen-
tence correctness, completeness, and conciseness (Barrett et
al. 2017). Those approaches, however, used a labeled map to
generate descriptions and did not explain the robot’s reason-
ing. Other work visually interpreted natural-language nav-
igation commands with a semantic map that showed the
robot’s resulting action (Oh et al. 2016). Although a person



might eventually unpack the robot’s reasoning process this
way, no natural language explanation was provided.

Researchers have generated navigation instructions in nat-
ural language from metric, topological, and semantic infor-
mation about the world (Daniele, Bansal, and Walter 2016)
or rules extracted from human-generated instructions (Dale,
Geldof, and Prost 2005). Other work has focused on human
spatial cognition (Look 2008), or on simplicity and under-
standability (Richter and Duckham 2008). None of these ap-
proaches, however, can explain how the instructions were
generated, nor can they justify a particular instruction.

More generally, researchers have sought human-friendly
explanations for systems that learn. Trust in and understand-
ing of a learning system improved when people received an
explanation of why a system behaved one way and not an-
other (Lim, Dey, and Avrahami 2009). Several approaches
to sequential tasks have explained Markov decision pro-
cesses, but the resultant language was not human-friendly
and was not based on human reasoning (Ramakrishnan and
Shah 2016; Dodson et al. 2013; Khan et al. 2011). In sum-
mary, although intelligent systems should be able to provide
natural explanations during collaborative navigation, to the
best of our knowledge no work has focused on explanations
for the robot’s decisions. WHY addresses that gap.

SemaFORR

SemaFORR is a robot controller implemented in ROS, the
state-of-the-art Robot Operating System. SemaFORR se-
lects one action at a time to move the robot to its target loca-
tion. Instead of a world map, SemaFORR uses local sensor
data, learned knowledge, and reactive, heuristic reasoning to
contend with any obstacles and reach its target. The resultant
behavior is satisficing and human-like rather than optimal.

A decision state records the robot’s current sensor data
and its pose (z,y, 0), where (x,y) is its location and € is its
orientation with respect to an allocentric, two-dimensional
coordinate system. As the robot travels, its path to a target is
recorded as a finite sequence of decision states. SemaFORR
makes decisions based on a hierarchical reasoning frame-
work and a spatial model that it learns while it navigates.
WHY uses them both to generate its explanations.

Spatial Model

SemaFORR learns its compact, approximate spatial model
from experience. The model captures many of the features
of a cognitive map, the representation that people construct
as they navigate (Foo et al. 2005). Instead of a metric map,
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Figure 1: Examples of affordances in a simple world (a) a
region (b) a path and its trail (c) conveyors

SemaFORR’s model is a set of spatial affordances, abstract
representations that preserve salient details and facilitate
movement. As the robot travels or once it reaches its target,
it learns spatial affordances from local sensor readings and
stores them as episodic memory. Figure 1 gives examples.

A region is an unobstructed area where the robot can
move freely, represented as a circle. A region’s center is the
robot’s location in a decision state; its radius is the minimum
distance sensed from the center to any obstacle. An exit is a
point that affords access to and from a region, learned as a
point where the robot crossed the region’s circumference .

A trail refines a path the robot has taken. It is an ordered
list of trail markers, decision states selected from the robot’s
path. The first and last trail markers are the initial and final
decision states on the path. Trail learning works backward
from the end of the path; it creates a new trail marker for the
earliest decision state that could have sensed the current trail
marker. The resultant trail is usually shorter than the original
path and provides a more direct route to the target.

A conveyor is a small area that facilitates travel. It is rep-
resented in a grid superimposed on the world, where each
cell tallies the frequency with which trails pass through it.
High-count cells in the grid are conveyors.

The spatial model combines affordances to produce more
powerful representations. For example, a door generalizes
over the exits of a region. It is represented as an arc along
the region’s circumference. The door-learning algorithm in-
troduces a door when the length of the arc between two exits
is within some small e. Once generated, a door incorporates
additional exits if they are within € of it. Another example is
the skeleton, a graph that captures global connectivity with
a node for each region. An edge in the skeleton joins two
nodes if a path has ever moved between their corresponding
regions. Along with commonsense qualitative reasoning, af-
fordances are used to select the robot’s next action.

Reasoning Framework

SemaFORR is an application of FORR, a cognitive architec-
ture for learning and problem solving (Epstein 1994). FORR
is both reactive and deliberative. Reactivity supports flexibil-
ity and robustness, and is similar to how people experience
and move through space (Spiers and Maguire 2008). Delib-
eration makes plans that capitalize on the robot’s experience;
it is the focus of current work (Aroor and Epstein, in press).

The crux of any FORR-based system is that good deci-
sions in complex domains are best made reactively, by a
mixture of good reasons. FORR represents each good rea-
son by a procedure called an Advisor. Given a decision state
and a discrete set of possible actions, an Advisor expresses
its opinions on possible actions as comments. In a decision
cycle, SemaFORR uses those comments to select an action.
Possible actions are alternately a set of forward moves of
various lengths or a set of turns in place of various rotations.
A move with distance 0 is equivalent to a pause. Thus, in any
given decision state, SemaFORR chooses only the intensity
level of its next move or turn. The resultant action sequence
is expected to move the robot to its target.

SemaFORR’s Advisors are organized into a three-tier hi-
erarchy, with rules in tier 1 and commonsense, qualitative



heuristics in tier 3. Tier 1 invokes its Advisors in a prede-
termined order; each of them can either mandate or veto an
action. If no action is mandated, the remaining, unvetoed ac-
tions are forwarded to tier 3. (Natural explanations for tier
2, SemaFORR’s deliberative layer, are a focus of current
work.) Table 1 lists the Advisors’ rationales by tier.

Each tier-3 Advisor constructs its comments on the re-
maining possible actions with its own commonsense ratio-
nale. Comments assign a strength in [0,10] to each available
action. Strengths near 10 indicate actions that are in close
agreement with the Advisor’s rationale; strengths near O in-
dicate direct opposition to it. For n Advisors, m actions, and
comment strength ¢;; of Advisor i on action j, SemaFORR
selects the action with the highest total comment strength:

n
argmaxj@n E Cij-
i=1

Because ties are broken at random, tier 3 introduces un-
certainty into action selection. For further details on Se-
maFORR, see (Epstein et al. 2015).

Approach

This section describes how WHY exploits SemaFORR to
generate natural explanations. Each of the three questions
below focuses on a different aspect of a robot controller. The
result is a rich, varied set of natural explanations.

Why did you do that?

The first question asks why the robot chose a particular ac-
tion. WHY constructs its answer from the rationales and
comments of the Advisors responsible for that choice, with
templates to translate actions, comments, and decisions into
natural language. Given the robot’s current pose, WHY maps
each possible action onto a descriptive phrase for use in any
[action] field. Examples include “wait” for a forward move

Tier 1, in order

VICTORY Go toward an unobstructed target
AVOIDWALLS Do not go within € of an obstacle
NOTOPPOSITE Do not return to the last orientation
Tier 3

Based on commonsense reasoning
BIGSTEP Take a long step
ELBOWROOM Get far away from obstacles
EXPLORER Go to unfamiliar locations
GOAROUND Turn away from nearby obstacles
GREEDY Get close to the target

Based on the spatial model

ACCESS Go to a region with many doors
CONVEY Go to frequent, distant conveyors
ENTER Go into the target’s region
ExiT Leave a region without the target
TRAILER Use a trail segment to approach the target
UNLIKELY Avoid dead-end regions

Table 1: SemaFORR’s Advisors and their rationales. Tier 2
is outside the scope of this paper.

of 0.0 m, “inch forward” for a forward move of 0.2 m, and
“shift right a bit” for a turn in place of 0.25 rad.

Algorithm 1 is pseudocode for WHY’s responses. WHY
takes as input the current decision state, target location,
and spatial model, and then calculates its response based
on the comments from SemaFORR’s Advisors. There are
three possibilities: tier 1 chose the action, tier 1 left only
one unvetoed action, or tier 3 chose the action. SemaFORR
only makes a decision in tier 1 if VICTORY mandates it or
AVOIDWALLS has vetoed all actions but the pause. The ap-
plicable templates in those cases are “I could see our target
and [action] would get us closer to it” and “I decided to wait
because there’s not enough room to move forward.”

The inherent uncertainty and complexity of a tier-3 de-
cision, however, requires a more nuanced explanation. For a
set of m actions, assume tier-3 Advisor D; outputs comment
with strengths ¢;1, . .., ¢im € [0,10]. D;’s t-support for ac-
tion ay, is the t-statistic t;x = (c;x — ¢;)/0; where ¢; is the
mean strength of D;’s comments in the current decision state
and o; is their standard deviation. (This is not a z-score be-
cause sampled values replace the unavailable true population
mean and standard deviation.) WHY can compare different
Advisors’ t-supports because they have common mean 0 and
standard deviation 1. If |¢;| is large, Advisor D; has a strong
opinion about action ay, relative to the other actions: support-
ive for ¢;; > 0 and opposed for ¢;;, < 0.

Table 2 provides a running example. It shows the origi-
nal comment strengths from four Advisors on four actions,
and the total strength C}, for each action ay. Tier 3 chooses
action a4 because it has maximum support. While D; and
Dy support ay with equal strength, the z-support values tell
a different story: D; prefers a4, much more (14 = 1.49)
than D5 does (to4 = 0.71). Moreover, D3 and D, actually
oppose a4 (—0.34 and —0.78, respectively).

For each measure, we partitioned the real numbers into
three intervals and assigned a descriptive natural language
phrase to each one, as shown in Table 3. This partitioning
allows WHY to hedge in its responses, much the way people
explain their reasoning when they are uncertain (Markkanen
and Schroder 1997). WHY maps the #-support values into

Algorithm 1: WHY’s Explanation Procedure

Input: decision state, target location, spatial model
Output: explanation
switch mode(decision) do
case tier I decides action
| explanation < sentence based on VICTORY
case only 1 unvetoed action remains after tier 1
\ explanation < sentence based on vetoes
otherwise
Compute ¢-statistics for tier-3 Advisors’ strengths
Categorize the support level for the chosen action
Complete template for each Advisor with its support
level and rationale
explanation < combined completed templates
endsw
endsw
return explanation




these intervals. For a4, D;’s t-support of 1.49 is translated
as “want” and D,’s -0.78 is translated as “don’t want”. WHY
then completes the clause template “I [phrase] to [rationale]”
for each Advisor based on Table 1 and less model-specific
language from Table 3. For example, if D; were GREEDY,
then the completed clause template for a4 would be “I want
to get close to the target.”

Finally, WHY combines completed clause templates into
the final tier-3 explanation, but omits language from Advi-
sors with #-support values in (-0.75, 0.75] because they con-
tribute relatively little to the decision. WHY concatenates the
remaining language with appropriate punctuation and con-
junctions to produce its tier-3 explanation: “(Although [lan-
guage from opposed Advisors], ) I decided to [action] be-
cause [language from supporting Advisors]”. The portion in
parentheses is omitted if no opposition qualifies. If the Advi-
sors in the running example were GREEDY, ELBOWROOM,
CONVEY, and EXPLORER, in that order, and a, were move
forward 1.6 m, then the natural explanation is “Although I
don’t want to go somewhere I’ve been, I decided to move
forward a lot because I want to get close to our target.” (Note
that D5’s support fails the -0.75 filter and so is excluded.)

This approach can also respond to “What action would
you take if you were in another context?” Given the decision
state and the target location, WHY would reuse its current
spatial model, generate hypothetical comments, and process
them in the same way. The sentence template would substi-
tute “I would [action]” for “I decided to [action].”

How sure are you that this is the right decision?

The second question from a human collaborator is about
the robot’s confidence in its decision, that is, how much
it trusts that its decision will help reach the target. Again,
WHY responds based on the tier that selected the action. Tier
1’s rule-based choices are by definition highly confident. If
VICTORY chose the action then the response is “Highly con-
fident, since our target is in sensor range and this would get
us closer to it.” If AVOIDWALLS vetoed all forward moves
except the pause, then the explanation is “Highly confident,
since there is not enough room to move forward.”

Again, tier-3’s uncertainty and complexity require more
nuanced language, this time with two measures: level of
agreement and overall support. The extent to which the tier-3
Advisors agree indicates how strongly the robot would like
to take the action. WHY measures the level of that agree-
ment with Gini impurity, where values near O indicate a high
level of agreement and values near 0.5 indicate disagree-

Cik tik
ai az as a4 ai az as a4
Dy 0 1 1 10 -0.64 -043 -043 1.49
Do 0 8 9 10 -1.48 0.27 0.49 0.71
Ds 2 0 10 2 -034 -0.79 147 -0.34
Dy 3 10 1 0 -0.11 144 -0.55 -0.78
Ck 5 19 21 22

Table 2: Example of comments from tier-3 Advisors D; on
actions ag, where c;i, is strength and ¢;;, is #-support

ment (Hastie, Tibshirani, and Friedman 2009). For n tier-3
Advisors and maximum comment strength 10, the level of
agreement (g3, € [0,0.5] on action ay, is defined as

_ D i Cik Diei Cik
Gi =2 { 10n ! 0n |-

In the example of Table 2, the level of agreement on ay is
Gy =2 [%] . [ — %] ~ 0.50. This indicates considerable
disagreement among the Advisors in Table 2.

The second confidence measure is SemaFORR’s overall
support for its chosen action compared to other possibilities,
defined as a t-statistic across all tier-3 comments. Let ;1 be
the mean total strength of all actions C under consideration
by tier 3, and o be their standard deviation. We define the
overall support for action ay, as Ty, = (Cx — uc)/oc. Tk
indicates how much more the Advisors as a group would like
to perform ay, than the other actions. In Table 2, the overall
support T} for ay is 0.66, which indicates only some support
for a4 over the other actions.

WHY weights level of agreement and overall support
equally to gauge the robot’s confidence in a tier-3 decision
with confidence level L, = (0.5 — Gy,) - T}, for ay. It then
maps each of Ly, Gy, and T} to one of three intervals and
then to natural language, as in Table 3, with implicit labels
low < medium < high in order for each statistic. Two statis-
tics agree if they have the same label; one statistic is lower
than the other if its label precedes the other’s in the ordering.

All responses to this question use a template that begins
“I'm [Ly, adverb] sure because....” If G, and T} both agree
with L, the template continues “[G, phrase]. [T} phrase].”
For example, “I'm really sure about my decision because
I've got many reasons for it. I really want to do this the
most.” If only one agrees with L, the template continues
“[phrase for whichever of G, or T}, agrees].” For example,
“I’'m not sure about my decision because my reasons con-
flict.” Finally, if neither agrees with Ly, it concludes “even
though [phrase for whichever of Gy, or T, is lower than L],
[G}. phrase or T}, phrase that is higher than Lj].” For exam-
ple, “I am only somewhat sure about my decision because,

t-support (—o0, —1.5] really don’t want
tie < 0: (—=1.5,—0.75] don’t want
opposed (—0.75,0] somewhat don’t want
t-support (0,0.75] somewhat want
tix > 0: (0.75,1.5] want
supportive (1.5, 400) really want
Level of (0.45,0.5] My reasons conflict
agreement G (0.25,0.45] I’ve only got a few reasons
[0,0.25] I've got many reasons
(—00,0.75] don’t really want
glver(z)lﬂ T (0.75,1.5] somewhat want
PP k (1.5, 400) really want
(—00,0.0375]  not
lcc:/rellﬁ %ence (0.0375,0.375] only somewhat
k (0.375,400)  really
Difference in (0,0.75] slightly more
overall support  (0.75,1.5] more
-1 (1.5, 400) much more

Table 3: Phrase mappings from value intervals to language



even though I’ve got many reasons, I don’t really want to do
this the most.” For a4 in Table 2, L, is near 0, G4 = 0.50,
and Ty = 0.66. This produces the natural explanation “I’m
not sure about my decision because my reasons conflict. I
don’t really want to do this more than anything else.”

Why not do something else?

A human collaborator makes decisions with her own men-
tal model of the world. When her decision conflicts with
another team member’s, she tries to understand why they
made a different decision. WHY’s approach explains Se-
maFORR’s preference for action ay over an alternative a;.
If tier 1 chose ay, the explanation uses VICTORY s rationale:
“I decided not to [action;] because I sense our goal and an-
other action would get us closer to it.” If AVOIDWALLS or
NOTOPPOSITE vetoed a;, then the natural explanation is “I
decided not to [action] because [rationale from Advisor that
vetoed it].”

The other possibility is that a; had lower total strength
in tier 3 than a; did. In this case, WHY generates a natu-
ral explanation with the tier-3 Advisors that, by their com-
ment strengths, discriminated most between the two actions.
WHY calculates ¢;, — t;; for each Advisor D;. If the result
lies in [-1, 1] then D;’s support is similar for a; and a;;
otherwise D; displays a clear preference. The natural expla-
nation includes only those Advisors with clear preferences.

The explanation template is “I thought about [action;]
(because it would let us [rationales from Advisors that prefer
action;]), but I felt [phrase] strongly about [actiony] since it
lets us [rationales from Advisors that prefer actiony].” The
[phrase] is the extent to which SemaFORR prefers ay, to a;.
It is selected based on T}, — Tj, the difference in the ac-
tions’ overall support, and mapped into intervals as in Table
3. The portion in parentheses is only included if any Advi-
sors showed a clear preference for action;.

For “Why didn’t you take action a»?” on our running ex-
ample, WHY calculates the difference in overall support be-
tween a4 and as at 0.38, which maps to “slightly more.”
The differences in ¢-support between a4 and as are 1.92,
0.44, 0.45, and -2.22. Thus, if D, is GREEDY and prefers
a4, while Dy is EXPLORER and prefers ao, the natural ex-
planation is “I thought about ay because it would let us go
somewhere new, but I felt slightly more strongly about ay
since it lets us get closer to our target.”
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Figure 2: Tenth floor of Hunter College’s North Building

Results

Implemented as a ROS package, WHY explains Sema-
FORR’s decisions in real time. We evaluated WHY in sim-
ulation for a real-world robot (Fetch Robotics’ Freight).
When the robot navigated to 230 destinations in the complex
60m x90m office world of Figure 2, WHY averaged less than
3 msec per explanation.

WHY’s many distinct natural explanations simulate peo-
ple’s ability to vary their explanations based on their con-
text (Malle 1999). Table 4 provides further details. The
Coleman-Liau index measures text readability; it gauged
WHY’s explanations over all three questions at approxi-
mately a 6th-grade level (Coleman and Liau 1975), which
should make them readily understandable to a layperson.

For action aj, chosen in tier 3 and every possible alterna-
tive a;, Table 5 shows how often the values of Gy, T}, Ly,
tix —t;5, and Ty, — T} fell in their respective Table 3 intervals.
The Advisors disagreed (G > 0.45) on 67.15% of deci-
sions. Strong overall support (7}, > 1.5) made SemaFORR
strongly confident in 2.44% of its decisions (L > 0.375)
and somewhat confident in 42.64% of them. When asked
about an alternative, individual Advisors clearly preferred
(tr, —t; > 1) the original decision 39.50% of the time; Se-
maFORR itself declared a strong preference (13, —1% > 1.5)
between the two actions 61.13% of the time.

Table 6 illustrates WHY’s robust ability to provide nu-
anced explanations for tier-3 decisions. The target appears
as an asterisk and the black box and arrow show the robot’s
pose. Decision 1 was made when the robot had not yet
learned any spatial affordances; decision 2 was made later,
when the spatial model was more mature. In decision 3, the
Advisors strongly disagreed, while in decision 4 the spa-
tial model-based Advisors disagreed with a commonsense-
based Advisor.

Tier where made 1 3 All
Number of decisions 22,982 84,920 107,902
Avg. computation time (ms) 0.45 3.08 2.52
Unique phrasings

Why? 14 31,896 31,910
Confidence? 2 11 13
Something else? 19 124,086 124,105
Total 35 155,993 156,028
Average readability

Why? 8.18 5.02 5.70
Confidence? 10.39 7.63 8.22
Something else? 3.91 6.44 5.96
Overall 5.36 6.41 6.21

Table 4: Empirical explanations

Low Medium High

G 67.15% | 30.41% 2.44%
Ty 2.34% | 60.09% | 37.57%
Ly, 54.92% | 42.64% 2.44%
tik —ti; | 16.09% | 44.41% | 39.50%
T, —T; | 18.48% | 20.40% | 61.13%

Table 5: Metric distributions by interval in tier-3 decisions
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Why did you do that?

Although I don’t want to go
close to that wall, I decided to
bear right because I really want
to take a big step.

Although I don’t want to turn
towards this wall, I decided to
turn right because I want to go
somewhere familiar, I want to
get close to our target, and I
want to follow a familiar route
that gets me closer to our target.

Although I really don’t want to
go close to that wall and I really
don’t want to get farther from
our target, I decided to move
forward a lot because I really
want to go to an area I’ve been
to a lot, I really want to take a
big step, and I really want to go
somewhere new.

Although I don’t want to get
farther from our target, I de-
cided to bear left because I re-
ally want to go somewhere fa-
miliar and I want to leave since
our target isn’t here.

How sure are you?

I’'m not sure because my rea-
sons conflict.

I'm only somewhat sure be-
cause, even though my reasons
conflict, I really want to do this
most.

I’'m not sure because my rea-
sons conflict.

I’'m only somewhat sure in my
decision because I've only got
a few reasons. I somewhat want
to do this most.

Why not do something else?

I thought about turning left be-
cause it would let us stay away
from that wall and get close
to our target, but I felt more
strongly about bearing right
since it lets us take a big step

I thought about shifting left a
bit because it would let us get
around this wall, but I felt much
more strongly about turning
right since it lets us go some-
where familiar and get close to

I decided not to move far for-
ward because the wall was in
the way.

I thought about turning hard
right because it would let us
get close to our target, but I
felt much more strongly about
bearing left since it lets us
go somewhere familiar, leave

and get around this wall. our target.

since our target isn’t here,
go somewhere new, and get
around this wall.

Table 6: Explanations for decision states and any current spatial model, enlarged from Figure 2

Discussion

WHY is applicable more broadly than we have indicated
thus far. Any robot controller could have SemaFORR learn
the spatial model in parallel, and use it with WHY to pro-
duce transparent, cognitively-plausible explanations. If the
alternative controller were to select action a; when Se-
maFORR selected aj, WHY could still explain a; with any
Advisors that supported it, and offer an explanation for ay
as well. Furthermore, once equipped with Advisor phrases
and possibly with new mappings, any FORR-based sys-
tem could use WHY to produce explanations. For example,
Hoyle is a FORR-based system that learns to play many
two-person finite-board games expertly (Epstein 2001). For
Hoyle, WHY could explain “Although I don’t want to make
a move that once led to a loss, I decided to do it because I re-
ally want to get closer to winning and I want to do something
I’ve seen an expert do.”

Because SemaFORR’s spatial model is approximate and
its Advisors are heuristic, precise natural language inter-
pretations for numeric values are ad hoc. For Table 3, we
inspected thousands of decisions, and then partitioned the
computed values as appeared appropriate. We intend to fine-
tune both intervals and phrasing with empirical assessment
by human subjects. Because natural explanations have im-

proved people’s trust and understanding of other automated
systems, we will then evaluate WHY with human subjects.

SemaFORR and WHY are both ongoing work. As heuris-
tic planners for tier 2 are developed, we will extend WHY to
incorporate plans in its explanations. We also anticipate revi-
sions in WHY’s phrasing to reflect changes in SemaFORR’s
possible action set. Finally, WHY could be incorporated into
a more general dialogue system that would facilitate part of
a broader conversation between a human collaborator and a
robot. A FORR-based system for human-computer dialogue,
could prove helpful there (Epstein et al. 2011).

In summary, WHY produces natural explanations for a
robot’s navigation decisions as it travels through a complex
world. These explanations are essential for collaborative
navigation and are made possible by the robot controller’s
cognitively-based reasoning. The approach presented here
generates explanations that gauge the robot’s confidence and
give reasons to take an action or to prefer one action over
another. As a result, a human companion receives informa-
tive, user-friendly explanations from a robot as they travel
together through a large, complex world in real time.
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