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1 INTRODUCTION

The primary purpose of most simulation studies is the approximation of prescribed system
parameters with the objective of identifying parameter values that optimize some system
performance measures. If some of the input processes driving a simulation are random,
then the output data are also random and runs of the simulation result in estimates of
performance measures. Unfortunately, a simulation run does not usually produce indepen-
dent, identically distributed observations; therefore \classical" statistical techniques are not
directly applicable to the analysis of simulation output.

A simulation study consists of several steps such as data collection, coding and veri�-
cation, model validation, experimental design, output data analysis, and implementation.
This chapter focuses on statistical methods for computing con�dence intervals for system
performance measures from output data. Several aspects of output analysis, such as com-
parison of systems, design of simulation experiments, and variance reduction methods, will
not be discussed. These subjects are treated in other chapters of this handbook and in
several texts including Bratley, Fox, and Schrage (1987), Fishman (1978b, 1996), Kleijnen
(1974, 1975), and Law and Kelton (1991).

The reader is assumed to be comfortable with probability theory and statistics at the
level of Hogg and Craig (1978), and stochastic processes at the level of Ross (1993). A
reader who is only interested in computational methods can skip the technical parts of
this chapter. Sections 1.1 and 1.2 review de�nitions and results that are essential for the
study of this chapter. Section 2 discusses methods for analyzing output from �nite-horizon
simulations. Sections 3 and 4 present techniques for point and interval estimation of steady-
state parameters.

1.1 Limit Theorems and Their Statistical Implications

This section reviews the tools needed to establish asymptotic (as the sample size increases)
properties of estimators and to obtain con�dence intervals. Consider the following three
forms of convergence for sequences of random variables on the same probability space: The
�rst form is the strongest while the last form is the weakest (and easiest to establish). For
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additional forms of convergence as well as the relationships between the forms, see Chapter
5 of Karr (1993).

Almost sure convergence. The sequence X1; X2; : : : converges to the random variable X

almost surely (or with probability 1) (we write Xn

a:s:�! X) if P (Xn ! X as n!1) = 1.
Convergence in probability. The sequence X1; X2; : : : converges to X in probability (we

write Xn

P�! X) if for every � > 0,

P (jXn �Xj � �)! 1 as n!1.

Convergence in distribution. The sequence X1;X2; : : : converges to X in distribution

(we write Xn

D�! X) if

P (Xn � x)! P (X � x) as n!1

at all points x where the cumulative distribution function P (X � x) is continuous.

Now suppose that the random variables X1;X2; : : : are from some distribution with an
unknown parameter � and the objective is to estimate a function g(�). For �xed n, let
�n = �n(X1; : : : ;Xn) be an estimator of g(�). If E(�n) = g(�), �n is called an unbiased

estimator. Furthermore, �n is said to be a consistent (respectively, strongly consistent)

estimator of g(�) if �n
P�! g(�) (respectively, �n

a:s:�! g(�)). If �n is unbiased for each n and
Var(�n)! 0 as n!1, then �n is also consistent (Lehmann 1991, pp. 331{333).

The remainder of this subsection illustrates the above concepts with a few classical re-
sults. Suppose that X1;X2; : : : ;Xn are independent, identically distributed (i.i.d.) random
variables with �nite mean � and variance �2. Let

Xn =
1

n

nX
i=1

Xi

be the sample mean of the Xi's. Since E(Xn) = �, Xn is an unbiased estimator of �. Xn

is also a strongly consistent estimator of � by the strong law of large numbers

Xn

a:s:�! � as n!1

(Karr 1993, pp. 188{189).
If 0 < �2 <1, the central limit theorem (Karr 1993, p. 174) states that

Xn � �

�=
p
n

D�! N(0; 1) as n!1;

where N(0; 1) denotes a normal random variable with mean 0 and variance 1. In other
words,

P

 
Xn � �

�=
p
n
� z

!
! �(z) as n!1; (1)

where � is the distribution function of the standard normal random variable.
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The central limit theorem remains valid when the potentially unknown parameter �2 is
replaced by its unbiased and consistent estimator

S2
n(X) =

1

n� 1

nX
i=1

(Xi �Xn)
2:

Therefore, for su�ciently large n,

P

 
jXn � �j
Sn(X)=

p
n
� z1��=2

!
� 1� �; (2)

where z1��=2 denotes the 1� �=2 quantile of N(0; 1).

Now suppose that the mean � is unknown. Solving the inequality on the l.h.s. of (2) for
�, one has the well-known approximate (two-sided) 1� � con�dence interval

Xn � z1��=2
Sn(X)
p
n

: (3)

The l.h.s. of (2) is the probability that the con�dence interval (3) contains the true mean �.
Denote this probability by pn;� and call it the \coverage probability" of (3). One interprets
this con�dence interval as follows: Suppose that a large number of independent trials is
performed; in each trial, n observations are collected and a con�dence interval for � is
computed using (3). As the number of trials grows, the proportion of con�dence intervals
that contain � approaches 1� �.

The number of observations n required for pn;� � 1 � � depends on the symmetry of
the distribution of Xi. The more skewed (asymmetric) the density/probability function
of Xi, the larger n required. To reduce undercoverage problems (pn;� < 1 � �) for small
n, one may replace the normal quantile z1��=2 by the larger quantile tn�1;1��=2 of the t
distribution with n� 1 degrees of freedom. This choice for degrees of freedom is due to the
fact that for i.i.d. normally distributed Xi,

Xn � �

Sn(X)=
p
n
� tn�1 ;

where the notation X � Y is used to indicate that the random variables X and Y have the
same distribution.

1.2 Stochastic Processes

Simulation output data are realizations (or sample paths) of stochastic processes. A stochas-
tic process is a probabilistic model of a system that evolves randomly. More formally, a
stochastic process is a collection X = fX(u); u 2 Tg of random variables indexed by a
parameter u taking values in the set T . The random variables X(u) take values in a set
S, called the state space of the process X. Throughout this chapter, u will represent time,
and we will encounter the following two cases: (a) T = f0; 1; 2; : : :g, for which the notation
X = fXi; i � 0g will be used. For example, Xi may represent the price of a stock at the
end of day i or the time in queue of the ith customer at a post o�ce. (b) T = [0;1). In
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this case, the notation X = fX(t); t � 0g will be used. Some examples of X(t) would be
the number of failed machines in a shop at time t, the throughput of a shop at time t, or
the price of a stock at time t.

One way to describe a stochastic process is to specify the joint distribution of
X(t1);X(t2); : : : ;X(tn) for each set of times t1 < t2 < � � � < tn and each n. This approach
is typically too complicated to be attempted in practice. An alternative, and simpler ap-
proach, is to specify the �rst and second moment functions of the process. These functions
are the mean function �(t) = E[X(t)], the variance function �2(t) = Var[X(t)], and the
autocovariance function

C(t1; t2) = Cov[X(t1); X(t2)]; t1 � t2:

Notice that C(t1; t2) = C(t2; t1) and C(t; t) = �2(t). (For a discrete-time process, the
notation �t, �

2
t , and Ct1;t2 will be used.)

In order to analyze a simulation output process, one must make some structural as-
sumptions. The following are the two most frequently used assumptions.

Strict Stationarity

The process X is called (strictly) stationary if the joint distribution of
X(t1);X(t2); : : : ;X(tn) is the same as the joint distribution of X(t1 + s);X(t2 +
s); : : : ; X(tn + s) for all t1; t2; : : : ; tn, and s. In simpler terms, shifting the time origin from
zero to any other value s, has no e�ect on the joint distributions. An immediate result is
that the joint distribution of X(t1);X(t2); : : : ;X(tn) depends only on the intervals between
t1; t2; : : : ; tn.

Example 1 (The M/M/1 queue) Consider an M/M/1 queueing system with i.i.d. in-
terarrival times Ai, i � 1, from the exponential distribution with rate � and i.i.d. service
times Si, i � 1, from the exponential distribution with rate ! (� < !). The ratio � = �=! is
called tra�c intensity or (long-run) server utilization. Suppose that the service discipline is
�rst-come, �rst-served. Let Di be the delay time in queue of the ith customer and assume
that the system starts empty. The �rst of Lindley's recursive equations (Lindley 1952)

D1 = 0

Di+1 = maxfDi + Si �Ai+1; 0g; i � 1 (4)

implies E(D1) = 0 whereas P (D2 > 0) = P (S1 > A2) = �=(� + !) > 0 implies E(D2) > 0.
Therefore the delay process fDi; i � 1g is not stationary. Using queueing theory (Ross
1993, Chapter 8) one has

lim
i!1

P (Di � x) = 1� � + �(1� e�(!��)x); x � 0; (5)

� = lim
i!1

E(Di) =
�

(1� �)!
; and �2 = lim

i!1
Var(Di) =

�(2� �)

!2(1� �)2
:

Equation (5) suggests that the delay process becomes asymptotically stationary. Indeed, if
D1 has the distribution on the r.h.s. of (5), equations (4) imply (after some work) that all
Di have the same distribution and the delay process is stationary.
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Weak Stationarity

In practice it is often necessary to consider a less restricted form of stationarity. The process
X is said to be weakly stationary if its mean and variance functions are constant (equal to
� and �2 respectively) and its autocovariance function satis�es

Cov[X(t);X(t + s)] = C(s); t � 0; s � 0;

that is, it depends only on the lag s. In this case, the autocorrelation function is de�ned by

�(s) = Corr[X(t); X(t + s)] = C(s)=�2; s � 0:

Example 2 (A stationary M/M/1 queue) The autocorrelation function of the delay
process fDig in a stationary M/M/1 queueing system is given by (Blomqvist 1967)

�j =
(1� �)3(1 + �)

(2� �)�3

1X
k=j+3

�
�

(� + 2)2

�k (2k � 3)!

k!(k � 2)!
(k � j � 1)(k � j � 2); j = 0; 1; : : :

This function is monotone decreasing with a very long tail that increases as the server
utilization � increases (for instance, �200 � 0:30 when � = 0:9). This makes the M/M/1
system a good test bed for evaluating simulation methodologies.

Example 3 (Moving average process) A well-studied example of a discrete-time weakly
stationary process is the moving average process of order q (often abbreviated to MA(q))

Xi = �0Zi + �1Zi�1 + � � �+ �qZi�q; i � 0;

where the coe�cients �i's are constants and fZi; i = 0;�1;�2; : : :g are i.i.d. random vari-
ables with mean zero and �nite variance a2. MA processes have applications in several
areas, particularly econometrics (Chat�eld 1989).

Clearly

E(Xi) = 0; Var(Xi) = a2
qX

i=0

�2i

while some algebra yields the autocovariace function

Cj =

�
a2
Pq�j

i=0 �i�i+j j = 0; 1; : : : ; q

0 j > q

which \cuts o�" at lag q. If in addition the Zi's are normally distributed, then the MA(q)
process is stationary.

Now suppose one observes the portion X1; : : : ; Xn of a discrete-time weakly stationary
process for the purpose of estimating the mean �. Clearly, Xn is an unbiased estimator of
� while some algebra yields

Var(Xn) =
�2

n

2
41 + 2

n�1X
j=1

(1� j=n)�j

3
5 � �2

n
(1 + 
n): (6)
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In order for Xn to be a consistent estimator of �, we require that limn!1Var(Xn) = 0.

The last condition holds if limn!1 nVar(Xn) <1 or, equivalently,

lim
n!1


n <1: (7)

For (7) to hold, limj!1Cj = 0 is necessary but not su�cient. A necessary and su�cient
condition is

lim
n!1

n�1X
j=�(n�1)

Cj =

1X
j=�1

Cj <1: (8)

In simple terms, the covariance between Xi and Xi+j must dissipate su�ciently fast so that
the summation in (8) remains bounded.

Example 4 (First-order autoregressive process) Another well-known stationary pro-
cess is the autoregressive process of order one, denoted by AR(1), and often called the
Markov process in the time series literature,

Xi = �+ �(Xi�1 � �) + Zi; i � 1;

where j�j < 1, X0 � N(�; 1), and the Zi's are i.i.d. N(0; 1 � �2) (see Figure 1).
The autocorrelation function of this process

�j = �j ; j � 0

is monotone decreasing if � > 0 with a tail that becomes longer as � increases, and exhibits
damped harmonic behavior around the zero axis if � < 0.

Applying equation (6) one has

nVar(Xn) = 1 + 2

n�1X
j=1

(1� j=n)�j !
1 + �

1� �
as n!1.

Hence Xn is a consistent estimator of the mean � = E(Xi). The limit (1 + �)=(1 � �) is
often called the time-average process variance.

Brownian Motion and Brownian Bridge

A continuous-time stochastic process with frequent use in simulation output analysis (see
Section 3.4) is the standard Brownian motion fW (t); t � 0g. This process has the following
properties: (i) W (0) = 0; (ii) W has independent increments, that is, for 0 � t0 � t1 � � � �
tn,

P [W (tj)�W (tj�1) � wj ; 1 � j � n] =
nY

j=1

P [W (tj)�W (tj�1) � wj];

(iii) For 0 � s < t, the increment W (t)�W (s) has the N(0; t� s) distribution.
A well-known function of the Brownian motion is the (standard) Brownian bridge process

de�ned by
B(t) =W (t)� tW (1); 0 � t � 1:

Figures 2 and 3 depict sample paths of W (t) and B(t) in the interval [0; 1]. Notice that
B(0) = B(1) = 0.
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Figure 1: Sample path of the stationary AR(1) process Xi = 2 + 0:8(Xi�1 � 2) + Zi
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Figure 2: Sample path of a standard Brownian motion in [0; 1]
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Figure 3: The respective Brownian bridge for the Brownian motion in Figure 2
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1.3 Types of Simulations

There are two types of simulations with regard to output analysis:

1. Finite-horizon simulations. In this case the simulation starts in a speci�c state, such
as the empty and idle state, and is run until some terminating event occurs. The output
process is not expected to achieve any steady-state behavior and any parameter estimated
from the output data will be transient in the sense that its value will depend upon the
initial conditions. An example is the simulation of a computer network, starting empty,
until n jobs are completed. One might wish to estimate the mean time to complete n jobs,
or the mean of the average waiting time for the n jobs.

2. Steady-state simulations. The purpose of a steady-state simulation is the study of
the long-run behavior of the system of interest. A performance measure of a system is called
a steady-state parameter if it is a characteristic of the equilibrium distribution of an output
stochastic process (Law and Kelton 1991). An example is the simulation of a continuously
operating communication system where the objective is the computation of the mean delay
of a data packet.

2 FINITE-HORIZON SIMULATIONS

Suppose that one starts in a speci�c state and simulates a system until n output data
X1;X2; : : : ;Xn are collected with the objective of estimating f(X1; : : : ;Xn), where f is a
\nice"1 function of the data. For example, Xi may be the transit time of unit i through a
network of queues or the total time station i is busy during the ith hour and f(X1; : : : ;Xn) =

Xn =
1
n

P
n

i=1Xi is the average transit time for the n jobs.

2.1 Estimation of the Mean via Independent Replications

This subsection focuses on the estimation of � = E(Xn). By de�nition, Xn is an unbiased
estimator for �. Unfortunately, the Xi's are generally dependent random variables which
makes the estimation of the variance Var(Xn) a nontrivial problem. In many queueing
systems the Xi's are positively correlated. When this is the case, the familiar estimator

S2
n(X)

n
=

1

n(n� 1)

nX
i=1

(Xi �Xn)
2

is a highly biased estimator of Var(Xn).

Example 5 Consider a stationary M/M/1 queueing system (see Examples 1 and 2) with
service rate ! = 1 and server utilization � = 0:9. Using the formulas for �j, one can show
that

E

"
S2
10(D)

10

#
= 0:033�2;

1Formally, f must be a measurable function. In practice, all functions encountered in simulation output

analysis are measurable.
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where �2 = Var(Di) = 99. As a result, the 1 � � con�dence interval D10 �
t9;1��=2S10(D)=

p
10 for the mean delay � = 0:9=(1�0:9) = 9 computed from 10 consecutive

delay observations from a single replication will likely be unacceptably narrow.

To overcome this problem, one can run k independent replications of the system simu-
lation. Each replication starts in the same state and uses a portion of the random number
stream that is di�erent from the portions used to run the other replications. Assume that
replication i produces the output data Xi1;Xi2; : : : ;Xin. Then the sample means

Yi =
1

n

nX
j=1

Xij ; i = 1; : : : ; k;

are i.i.d. random variables,

Y k =
1

k

kX
i=1

Yi

is also an unbiased estimator of �, and the sample variance of the Yi's

S2
k(Y ) =

1

k � 1

kX
i=1

(Yi � Y k)
2

is an unbiased estimator of Var(Xn). If, in addition, n and k are su�ciently large, an
approximate 1� � con�dence interval for � is

Y k � tk�1;1��=2
Sk(Y )p

k
: (9)

Denote the halfwidth of the interval (9) by �(k; �) = tk�1;1��=2Sk(Y )=
p
k.

2.2 Sequential Estimation

A fundamental problem is the estimation of � within a tolerance � d, where d is user-
speci�ed. More formally, one would like to make k runs so that

P (Y k � d � � � Y k + d) � 1� �; (10)

where � 2 (0; 1). The sequential procedure of Chow and Robbins (1965) (see also Nadas
1969) is to run one replication at a time and stop at run k� such that

k� = min

2
64k : k � 2; �(k; �) �

vuut k

k � 1
d2 �

t2
k�1;1��=2

k(k � 1)

3
75 : (11)

The stopping rule (11) is based on the limiting result

lim
d!0

P (Y k� � d � � � Y k� + d) = 1� �: (12)
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Equation (12) indicates that as the tolerance d decreases, the probability that the interval

Y k� � d contains � converges to 1 � �. Notice that as k increases, the r.h.s. of the last
inequality in (11) approaches d.

Now suppose that Y1; : : : ; Yk are normally distributed. Starr (1966) showed that the
stopping rule

k� = min [k : k � 3; k odd; �(k; �) � d ]

yields

P (Y k� � d � � � Y k� + d) �
�
0:928 if � = 0:05

0:985 if � = 0:01.

The last inequalities indicate little loss in the con�dence level for arbitrary d. Based on
Starr's result and (12), Fishman (1978b) recommended the simpler and more intuitive
stopping rule

k� = min [k : k � 2; �(k; �) � d ] :

An alternative two-stage approach for computing a con�dence interval for � with
halfwidth at most d works as follows: The �rst stage uses k0 replications to compute a
variance estimate S2

k0
(Y ) and a con�dence interval with halfwidth �(k0; �). Assume that

the estimate S2
k0
(Y ) does not change signi�cantly as k0 increases. If �(k0; �) � d, the pro-

cedure terminates. Otherwise, an estimate of the total number of replications required to
obtain a halfwidth of at most d is computed from

k̂ = min
h
k : k � k0; tk�1;1��=2Sk0(Y )=

p
k � d

i
:

The e�cacy of this method depends on the closeness of S2
k0
(Y ) to the unknown Var(Yi). If

S2
k0
(Y ) underestimates Var(Yi), then k̂ will be smaller than actually needed. Conversely, if

S2
k0
(Y ) overestimates Var(Yi), then unnecessary replications will have to be made.

Example 6 Table 1 summarizes the results of experiments that were run to estimate the
mean number of customers that complete service during the �rst hour in an M/M/1 queueing
system with arrival rate 0.9 per hour, service rate 1, and empty initial state. The sequential
procedure was implemented with the stopping rule

k� = min [k : k � k0; �(k; �) � d ]

and initial sample sizes k0 = 2; 3; 4; 5. The two-stage procedure used initial samples of size
4, 5 and 10. For each experiment, 100 independent replications were run.

Based on Table 1, the sequential procedure with an initial sample of at least 5 replications
appears to outperform the two-stage procedure. The advantages of the sequential procedure
are: (a) The resulting con�dence interval halfwidth is always less than or equal to the
target value; (b) The variation in the �nal sample sizes and con�dence interval halfwidths
is substantially smaller.

An alternative problem is the computation of an estimate for � with relative error
jY k � �j=j�j � c, where c is a positive constant. Formally, one requests

P (jY k � �j=j�j � c) � 1� �:

12
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Using some algebra, one can show

P

 
jY k � �j
j�j

� c0
!
� P

 
jY k � �j
j�j

�
�(k; �)

jY kj

!
;

where c0 = c=(1 + c). Based on these observations, one can use the following stopping rule:

k� = min

"
k : k � k0;

�(k; �)

jY kj
� c0

#
: (13)

Law, Kelton, and Koenig (1981) showed that when c is close to 0, the coverage of the

con�dence interval Y k � �(k; �) can be arbitrarily close to 1 � �. They recommend that
(13) be used with c � 0:15 and k0 � 10.

2.3 Quantile Estimation

The method of replications can also be used to implement nonparametric methods for
estimating performance measures other than means. For example, suppose that we want to
estimate the p-quantile (0 < p < 1), say �p, of the maximum queue size Y in a single-server
queueing system during a �xed time window. Let F (y) = P (Y � y) be the cumulative
distribution function of Y . Then �p is de�ned as

�p = inf[y : F (y) � p]:

If the distribution F of Y is monotone increasing, then �p is the unique solution to the
equation P (Y � y) = p. Let Y1; : : : ; Yk be a random sample from F obtained by per-
forming k independent replications, and let Y(1) < Y(2) < � � � < Y(k) be the order statistics
corresponding to the Yi's. Then a point estimator for �p is

�̂p =

�
Y(kp) if kp is integer

Y(bkp+1c) otherwise,

where bxc is the greatest integer that is less than or equal to x.
Now the event Y(i) < �p < Y(j) has the binomial probability

P (Y(i) < �p < Y(j)) =

j�1X
`=i

 
k

`

!
p`(1� p)k�`

� �

 
j � 1� kpp
kp(1� p)

!
� �

 
i� 1� kpp
kp(1� p)

!
;

where the normal approximation is recommended for kp � 5 (see Hogg and Craig 1978, pp.
196{198). To compute a 1 � � con�dence interval for �p, one identi�es indices i < j such
that P (Y(i) < �p < Y(j)) � 1 � �. Then (Y(i); Y(j)) is the required interval. Notice that
several index pairs can satisfy the last inequality. Normally, one would choose a symmetric
range of indices. In this case, the indices would be

i =

�
kp+ 1� ��1(1� �=2)

q
kp(1� p)

�
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and

j =

�
kp+ 1 + ��1(1� �=2)

q
kp(1� p)

�
:

It should be noted that quantile estimation is more di�cult than estimation of the
mean because point estimates for quantiles are biased and signi�cantly larger sample sizes
are required to obtain reasonably tight con�dence intervals. These problems are much more
severe for more extreme quantiles, i.e., for p closer to 1. An introduction to nonparametric
interval estimation methods is given in Hogg and Craig (1978, pp. 304{311).

3 STEADY-STATE ANALYSIS

Several methods have been developed for the estimation of steady-state system param-
eters. In this section we review these methods and provide the interested reader with
an extensive list of references. We primarily consider the estimation of the steady-state
mean � of a discrete-time output process fXi : i � 1g. Analogous methods for analyzing
continuous-time output data are described in a variety of texts (Bratley, Fox, and Schrage
1987; Fishman 1978b; Law and Kelton 1991).

3.1 Removal of Initialization Bias

One of the hardest problems in steady-state simulations is the removal of the initialization
bias. Let I be the set of initial conditions for the simulation model and assume that, as
n ! 1, P (Xn � xjI) ! P (X � x), where X is the corresponding steady-state random
variable. The steady-state mean of the process fXig is � = limn!1E(XnjI). The problem
with the use of the estimator Xn for a �nite n is that E(XnjI) 6= � (and thus E(XnjI) 6= �).

The most commonly used method for reducing the bias of Xn involves identifying an
index l, 1 � l � n� 1, and truncating the observations X1; : : : ;Xl. Then the estimator

Xn;l =
1

n� l

nX
i=l+1

Xi

is generally less biased than Xn because the initial conditions primarily a�ect data at the
beginning of a run. Several procedures have been proposed for the detection of a cuto�
index l (see Fishman 1972; Gafarian, Ancker, and Morisaku 1978; Kelton and Law 1983;
Schruben 1982; Schruben, Singh, and Tierney 1983; Wilson and Pritsker 1978a,b). The
procedure of Kelton (1989) uses a pilot run to estimate the steady-state distribution and
starts a production run by sampling from the estimated distribution. More sophisticated
truncation rules and initialization bias tests have recently been proposed by Chance and
Schruben (1992), Goldsman, Schruben, and Swain (1994), and Ockerman (1995).

The graphical procedure of Welch (1981, 1983) is popular due to its generality and ease
of implementation. Another graphical method has been proposed by Fishman (1978a,b)
in conjunction with the batch means method (see Remark 1 in Section 3.4). Welch's
method uses k independent replications with the ith replication producing observations
Xi1; Xi2; : : : ;Xin and computes the averages

Xj =
1

k

kX
i=1

Xij ; j = 1; : : : ; n: (14)
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Then for a given time window w, the procedure plots the moving averages

Xj(w) =

(
1

2w+1

P
w

m=�wXj+m w + 1 � j � n� w
1

2j�1

Pj�1
m=�j+1Xj+m 1 � j � w

against j. For example, when w = 2,

X1(2) = X1

X2(2) =
1

3
(X1 +X2 +X3)

X3(2) =
1

5
(X1 +X2 +X3 +X4 +X5)

...

Xn�2(2) =
1

5
(Xn�4 +Xn�3 +Xn�2 +Xn�1 +Xn):

If the plot is reasonably smooth, then l is chosen to be the value of j beyond which the
sequence of moving averages converges. Otherwise, a di�erent time window is chosen and
a new plot is drawn. The choice of w is similar to the choice of an interval width for a
histogram. Since the truncation index is selected visually, the user will generally have to
try several window sizes.

Example 7 (The M/M/1 queue revisited) Consider an M/M/1 queueing system with
interarrival rate � = 0:09 and service rate ! = 0:1. The limiting mean customer delay is
� = 90. Assume that the system starts empty. 50 independent replications of the �rst
5000 delays were run by using equation (4). Figure 4 depicts the plot of the averages Dj ,
1 � j � 5000, computed as in (14).

Figures 5 and 6 show the plots of the moving averages Dj(w), 1 � w � 5000 � w, for

window sizes w = 100 and 500. The transient period is long as the plots of Dj(w) �rst
exceed � for j � 250. Notice that a large window is required to get a reasonably smooth
moving average plot for this system. In the absence of the horizontal line � = 90, one would
hesitate to choose a truncation index l � 2000 as all Dj(500), j � 2500, are smaller than

D2000(500) giving the impression that the actual mean is less than 90. Similarly, the plot of

Dj(100) is asymmetric with respect to � with more observations smaller than 90. It should
be noted that the method of Welch may be di�cult to apply in congested systems with
output time series having autocorrelation functions with very long tails.

3.2 The Replication/Deletion Approach

This approach runs k independent replications, each of length n observations, and uses the
method of Welch (1981, 1983) or some other method to discard the �rst l observations from
each run. One then uses the i.i.d. sample means

Yi =
1

n� l

nX
j=l+1

Xij

15
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Table 1: Comparisons between sequential and two-stage con�dence interval procedures

Final Sample Size Interval Halfwidth

Initial Standard Standard

Procedure Sample Size Mean Deviation Mean Deviation

Sequential 2 91.7 35.0 0.945 0.198

Sequential 3 94.7 26.5 0.981 0.077

Sequential 4 99.0 16.8 0.996 0.005

Sequential 5 97.2 19.6 0.995 0.006

Two-stage 4 88.0 83.9 1.362 0.685

Two-stage 5 92.1 57.7 1.200 0.425

Two-stage 10 101.9 48.5 1.060 0.226

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0
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40

60

80

100

120

140

j

Figure 4: Average delay times Dj for the �rst 5000 customers in an M/M/1 queue from 50

independent replications
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Figure 5: Moving averages with window w = 100
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Figure 6: Moving averages with window w = 500
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to compute point and interval estimators for the steady-state mean � (see Section 2). The
method is characterized by its simplicity and generality. The following list contains impor-
tant observations about l, n and k.

1. As l increases for �xed n, the \systematic" error in each Yi due to the initial conditions
decreases. However, the sampling error increases because of the smaller number of
observations (the variance of Yi is proportional to 1=(n� l)).

2. As n increases for �xed l, the systematic and sampling errors in Yi decrease.

3. The systematic error in the sample means Yi cannot be reduced by increasing the
number of replications k.

Overall, one must be aware that the replication/deletion approach can require a sub-
stantial amount of e�ort to �nd a \good" truncation index l (as evidenced by Example 7)
as well as a large sample size n and a large number of replications to obtain a con�dence
interval with the required coverage. This approach is also potentially wasteful of data as the
truncated portion is removed from each replication. The regenerative method (Section 3.3)
and the batch means method (Section 3.4) seek to overcome these disadvantages. The graph
of the batch means (see Remark 1) provides an easy means to assess the e�ect of the initial
conditions at a small incremental cost.

3.3 The Regenerative Method

This method assumes the identi�cation of time indices at which the process fXig probabilis-
tically starts over and uses these regeneration epochs for obtaining i.i.d. random variables
that can be used to compute point and interval estimates for the mean �. As a result, it
eliminates the need to detect the length of the initial transient period. The method was
proposed by Crane and Iglehart (1974a, 1974b, 1975, 1978) and Fishman (1973, 1974). (For
a complete treatment, see Crane and Lemoine 1977.)

More precisely, assume that there are (random) time indices 1 � T1 < T2 < � � � such
that the portion fXTi+j; j � 0g has the same distribution for each i and is independent of
the portion prior to time Ti. The portion of the process between two successive regeneration

epochs is called a cycle. Let Yi =
PTi+1�1

j=Ti
Xj and Zi = Ti+1�Ti for i = 1; 2; : : : and assume

that E(Zi) <1. Then the mean � is given by

� =
E(Y1)

E(Z1)
:

In addition, the long-run fraction of time the process spends in a set of states E is equal to

lim
n!1

P (Xn 2 E) =
E(total time the process X spends in E during a cycle)

E(Z1)
:

Example 8 (An (s; S) inventory system) The demand for an item on day i at a store is
a nonnegative integer random variable Li with positive mean. The store uses the following
inventory management policy: If the inventory at the end of the day (after the demand is
met) is at least s (s � 0), the store takes no action. If, however, the inventory is less than
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s, the store orders enough to bring the inventory at the beginning of the next day to level
S (S > s).

Assume that the inventory is replenished instantaneously (overnight) and let Xi be
the level of inventory at the start of day i (before demands occur but after inventory
replenishment). Then fXi; i � 1g is a regenerative process with return state S. If Ti is the
day of the ith return to state S (T1 = 1), the steady-state probability of stockout can be
computed by

lim
n!1

P (Xn < 0) =
E(total time stockout occurs during a cycle)

E(Z1)
=

P (XT2�1 < LT2�1)

E(Z1)
:

3.3.1 Estimation of the Mean

Suppose that one simulates the process fXig over k cycles and collects the observations
Y1; : : : ; Yk and Z1; : : : ; Zk. Then

�̂ =
Y k

Zk

is a strongly consistent, although typically biased for �nite k, estimator of �.
Con�dence intervals for � can be constructed by using the random variables Vi = Yi �

�Zi; i = 1; : : : ; k, and the central limit theorem. Indeed, E(Vi) = 0 and

�2 = Var(Vi) = Var(Yi)� 2�Cov(Yi; Zi) + �2Var(Zi):

By the central limit theorem V k=
q
Var(V k) asymptotically has the standard normal distri-

bution and for large k

P

 p
kjV kj
�

� z1��=2

!
� 1� � :

The classical, and most commonly used, approach estimates �2 by

S2
k(V ) = S2

k(Y )� 2�̂Sk(Y;Z) + �̂2S2
k(Z);

where

Sk(Y;Z) =
1

k � 1

kX
i=1

(Yi � Y k)(Zi � Zk)

is the sample covariance of Yi and Zi, to produce the approximate 1�� con�dence interval

�̂� z1��=2
Sk(V )

Zk

p
k
:

For a small sample size k, Iglehart (1975) showed that the approximate con�dence
interval

�̂J � z1��=2
SJp
k
;

where

�̂J =
1

k

kX
i=1

�i ;

20



Output Data Analysis Alexopoulos and Seila

�i = k
Y k

Zk

� (k � 1)

P
j 6=i YjP
j 6=i Zj

;

is a jackknife estimator of � (with smaller bias than �̂) and

S2
J =

1

k � 1

kX
i=1

(�i � �̂J)
2;

often provides better coverage than the classical regenerative con�dence interval. However,
its evaluation requires substantial bookkeeping in addition to O(n2) operations, making its
use costly for large sample sizes. The jackknife method also generally increases the width of
the con�dence interval. A comprehensive review of the jackknife method is given by Efron
(1982).

For small sample sizes and bounded Yi and Zi, one can also compute the con�dence
interval in Alexopoulos (1993) which provides superior coverage over con�dence intervals
based on the central limit theorem at the expense of increased width.

The regenerative method is di�cult to apply in practice in simulations that have either
no regenerative points or very long cycle lengths. Two classes of systems the regenerative
method has successfully been applied to are inventory systems and highly reliable commu-
nications systems with repairs.

3.3.2 Quantile Estimation

Iglehart (1976), Moore (1980) and Seila (1982a,b) have proposed methods for computing
con�dence intervals for quantiles when the output process is regenerative. Seila's method
will be presented because it is somewhat simpler to apply than the other methods and
has been shown to produce intervals that are as reliable. The method will be illustrated
by describing the estimation of the p-quantile, say �, of the steady-state customer delay
distribution in an M/M/1 queueing system that starts empty. In this case, the regeneration
epochs are the times the system returns to the empty state.

The method begins by simulating a total of r �m cycles and then partitions the data
into r contiguous \batches" with m cycles per batch. For example, the ith batch contains
the delay times from the cycles (i � 1)m + 1; : : : ; im. Denote the delay times in this cycle
by Di1; : : : ;DiMi

and notice that Mi is generally a random variable.
Now

�̂i =

�
Di;(Mip) if Mip is integer

Di;(bMip+1c) otherwise

is the quantile estimator for this batch and the overall estimator for q is

� =
1

r

rX
i=1

�̂i:

To reduce the bias of the estimators �̂i, one can use the jackknife method by forming
the estimators

�̂J;i = 2�̂i �
�̂
(1)
i

+ �̂
(2)
i

2
;
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where �̂
(1)
i

(respectively, �̂
(2)
i
) is the sample quantile computed from the �rst (respectively,

second) half of the m cycles in the ith batch. Then the overall jackknife estimator for � is

�J =
1

r

rX
i=1

�̂J;i

and, for large m and r,
�J � q

Sr(�̂J)=
p
r
� tr�1;

where S2
r (�̂J) is the sample variance of the sample quantiles �̂J;i. The resulting approximate

1� � con�dence interval for � is

�J � tr�1;1��=2
Sr(�̂J)p

r
: (15)

Experiments in Seila (1982a,b) indicate that the con�dence interval (15) has better coverage

than the con�dence interval resulting from the estimator �.
The selection of m and r is an open research problem. Based on practical experience,

m should be large enough so that E(Mi) � 100 and that r � 10. The mean E(Mi) can be

estimated by the sample mean M r of the Mi's.

3.4 The Batch Means Method

The method of batch means is frequently used to estimate the steady-state mean � or the
Var(Xn) and owes its popularity to its simplicity and e�ectiveness. Original accounts on
the method were given by Conway (1963), Fishman (1978a,b), and Law and Carson (1979).

The classical approach divides the output X1; : : : ; Xn of a long simulation run into a
number of contiguous batches and uses the sample means of these batches (or batch means)
to produce point and interval estimators.

To motivate the method, assume temporarily that the process fXig is weakly station-

ary with limn!1 nVar(Xn) < 1 and split the data into k batches, each consisting of b
observations. (Assume n = kb.) The ith batch consists of the observations

X(i�1)b+1;X(i�1)b+2; : : : ; Xib

for i = 1; 2; : : : ; k and the ith batch mean is given by

Yi(b) =
1

b

bX
j=1

X(i�1)b+j :

For �xed m, let �2m = Var(Xm). Since the batch means process fYi(b)g is also weakly
stationary, some algebra yields

�2n = Var(Xn) =
�2
b

k
+

1

k2

X
i6=j

Cov[Yi(b); Yj(b)] =
�2
b

k

 
1 +

n�2n � b�2
b

b�2
b

!
:
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Since n � b, (n�2n � b�2
b
)=(n�2

b
) ! 0 as �rst n ! 1 and then b ! 1. As a result, �2

b
=k

approximates �2n with error that diminishes as b and n approach in�nity. Equivalently, the
correlation among the batch means diminishes as b and n approach in�nity.

To use the last limiting property, one forms the grand batch mean

Y k = Xn =
1

k

kX
i=1

Yi(b);

estimates the �2
b
by

V̂B(n; k) =
1

k � 1

kX
i=1

(Yi(b)� Y k)
2; (16)

and computes the approximate 1� � con�dence interval for �

Y k � tk�1;1��=2

q
V̂B(n; k)=k : (17)

The main problem with the application of the batch means method in practice is the
choice of the batch size b. If b is small, the batch means Yi(b) can be highly correlated
and the resulting con�dence interval will frequently have coverage below the user-speci�ed
nominal coverage 1��. Alternatively, a large batch size can result in very few batches and
potential problems with the application of the central limit theorem to obtain (17).

The method of Fishman (1978) selects the smallest batch size from the set
f1; 2; 4; : : : ; n=8g that passes the test of independence based on von Neumann's statistic (see
Section 3.4.3). A variant of this method was proposed by Schriber and Andrews (1979).
Mechanic and McKay (1966) choose a batch size from the set f16b1; 64b1; 256b1; : : : ; n=25g
(usually b1 = 1) and select the batch size that passes an alternative test for independence.
The procedure of Law and Carson (1979) starts with 400 batches of size 2. Then it considers
sample sizes that double every two iterations until an estimate for lag-1 correlation among
400 batch means becomes smaller than 0.4 and larger than the estimated lag-1 correlation
among 200 batch means. The procedure stops when the con�dence interval (17) computed
with 40 batches satis�es a relative width criterion. Schmeiser (1982) reviews the above
procedures and concludes that selecting between 10 and 30 batches should su�ce for most
simulation experiments. The major drawback of these methods is their inability to yield a
consistent variance estimator.

Remark 1 For �xed sample size, a plot of the batch means is a very useful tool for checking
the e�ects of initial conditions, non-normality of batch means, and existence of correlation
between batch means. For example, consider the M/M/1 queueing system in Example 7.
A sample of 100,000 customer delays was generated by means of (4) starting with an empty
system. Figure 7 shows the plot of the batch means Y1(2000); : : : ; Y50(2000) for batch size
b = 2000. The �rst batch mean is small but not the smallest, relaxing one's worries about
the e�ect of the initial transient period. This also hints that l = 2000 is a reasonable
truncation index for Welch's method. Had the �rst batch mean been smaller than the other
batch means, one can assess the e�ect of the initial conditions by removing the �rst batch
and comparing the new grand batch mean with the old. Although the plot does not indicate
the presence of serious autocorrelation among the batch means, the asymmetric dispersion
of the means about the actual mean should make the experimenter concerned about the
coverage of the con�dence interval (17).
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Figure 7: Batch means for delay times in an M/M/1 queue
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Example 9 shows how an asymptotically optimal batch size can be obtained in special
cases.

Example 9 For the AR(1) process in Example 4, Carlstein (1986) showed that

Bias[V̂B(n; k)] = �
2�

(1� �)3(1 + �)

1

b
+ o

�
1

b

�
(18)

and

Var[V̂B(n; k)] =
2

(1� �)4
b

n
+ o

�
b

n

�
;

where o(h) is a function such that limh!0 o(h)=h = 0. Then the batch size that min-

imizes the asymptotic (as n ! 1 and k ! 1) mean squared error MSE[V̂B(n; k)] =

Bias2[V̂B(n; k)] + Var[V̂B(n; k)] is

b0 =

�
2j�j
1� �2

�2=3
n1=3: (19)

Clearly, the optimal batch size increases with the absolute value of the correlation � between
successive observations.

The reader should keep in mind that the optimal batch size may di�er substantially from
(19) for a �nite sample size (e.g., Song and Schmeiser 1995), and the model generally does
not apply to the analysis of data from queueing systems. Furthermore, it is not evident that
this strategy for batch size selection allows the space and time complexities achievable by
the LBATCH and ABATCH strategies in Sections 3.4.2{3.4.4 for generating an assessment
of the stability of the variance of the sample mean.

3.4.1 Consistent Estimation Batch Means Methods

Consistent estimation batch means methods assume the existence of a parameter �21 (the
time-average variance of the process fXig), such that a central limit theorem holds

p
n(Xn � �)

D�! �1N(0; 1) as n!1 (20)

and aim at constructing a consistent estimator for �21 and an asymptotically valid con�dence
interval for �. [Notice that the Xi's in (20) need not be i.i.d.] Consistent estimation methods
are often preferable to methods that \cancel" �21 (see Glynn and Iglehart 1990) because:
(a) The expectation and variance of the halfwidth of the con�dence interval resulting from
(20) is asymptotically smaller for consistent estimation methods; and (b) Under reasonable

assumptions nVar(Xn)! �21 as n!1.

Example 10 The delay process fDig of a stationary M/M/1 system has

�21 =
�

!2(1� �)4
(�3 � 4�2 + 5� + 2)

(Blomqvist 1967) whereas a stationary AR(1) process has �21 = (1 + �)=(1 � �).
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Chien, Goldsman, and Melamed (1997) considered stationary processes and, under quite
general moment and sample path conditions, showed that as both b ! 1 and k ! 1,

E[bV̂B(n; k)] ! �21, kVar[V̂B(n; k)] ! 2�21, and MSE[bV̂B(n; k)] ! 0. Notice that the last

limiting property of bV̂B(n; k) di�ers from consistency.
The limiting result (20) is implied under the following two assumptions.

Assumption of Weak Approximation (AWA). There exist �nite constants � and �1 >
0 such that

n(Xn � �)

�1

D�! W (n) as n!1.

Assumption of Strong Approximation (ASA). There exist �nite constants �, �1 > 0,
� 2 (0; 1=2], and a �nite random variable C such that, with probability one,

jn(Xn � �)� �1W (n)j � Cn1=2�� as n!1.

Both AWA and ASA state that the process fn(Xn � �)=�1g is close to a standard
Brownian motion. However the stronger ASA addresses the convergence rate of (20).

The ASA is not restrictive as it holds under relatively weak assumptions for a variety of
stochastic processes including Markov chains, regenerative processes and certain queueing
systems (see Damerdji 1994a for details). The constant � is closer to 1=2 for processes having
little autocorrelation while it is closer to zero for processes with high autocorrelation. In
the former case the \distance" between the processes fn(Xn � �)=�1g and fW (n)g \does
not grow" as n increases.

3.4.2 Batching Rules

Fishman and Yarberry (1997) and Fishman (1996, Chapter 6) present a thorough discus-
sion of batching rules. Our account in this section and in Section 3.4.4 parallels their
development. Both references contain detailed instructions for obtaining FORTRAN, C,
and SIMSCRIPT II.5 implementations for various platforms via anonymous ftp from the
site ftp.or.unc.edu.

The discussion prior to the derivation of (17) suggests that �xing the number of batches
and letting the batch size grow as n ! 1 ensures that �2

b
=k ! �2n. This motivates the

following rule.

The Fixed Number of Batches (FNB) Rule. Fix the number of batches at k. For
sample size n, use batch size bn = bn=kc.

The FNB rule along with AWA lead to the following result.

Theorem 1 (Glynn and Iglehart 1990) If fXig satis�es AWA, then as n!1, Xn

P�! �
and (20) holds. Furthermore, if k is constant and fbn; n � 1g is a sequence of batch sizes
such that bn !1 as n!1, then

Xn � �q
V̂B(n; k)=k

D�! tk�1 as n!1.
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The primary implication of Theorem 1 is that (17) is an asymptotically valid con�dence

interval for �. Unfortunately, the FNB rule has two major limitations: (a) bnV̂B(n; k) is
not a consistent estimator of �21. Therefore the con�dence interval (17) tends to be wider
than the interval a consistent estimation method would produce; (b) After some algebra
(see Fishman 1996, Chapter 6) one has

lim
n!1

Var

�q
V̂B(n; k)=k

�
Var(Xn)

=
1

2(k � 1)
�

1

8(k � 1)2
�

1

16(k � 1)3
� � � �

so that statistical 
uctuations in the halfwidth of the con�dence interval (17) do not diminish
relative to statistical 
uctuation in the sample mean.

The following theorem proposes batching assumptions which along with ASA yield a
strongly consistent estimator for �21.

Theorem 2 (Damerdji 1994a) If fXig satis�es ASA, then Xn

a:s:�! � as n!1. Further-
more suppose that f(bn; kn); n � 1g is a batching sequence satisfying

(A.1) bn !1 and kn !1 monotonically as n!1

(A.2) b�1n n1�2� lnn! 0 as n!1

(A.3) there exists a �nite positive integer m such that

1X
n=1

(bn=n)
m <1:

Then, as n!1,

bnV̂B(n; kn)
a:s:�! �21 (21)

and

Zkn =
Xn � �q

V̂B(n; kn)=kn

D�! N(0; 1): (22)

The last display implies that

Xn � tkn�1;1��=2

q
V̂B(n; kn)=kn

is an asymptotically valid 1� � con�dence interval for �.
Theorem 2 motivates the consideration of batch sizes of the form bn = bn�c, 0 < � < 1.

In this case one can show that the conditions (A.1){(A.3) are met if � 2 (1 � 2�; 1). In
particular, the assignment � = 1=2 and the SQRT rule below are valid if 1=4 < � < 1=2.
Notice that the last inequality is violated by processes having high autocorrelation (� � 0).

The Square Root (SQRT) Rule. For sample size n, use batch size bn = b
p
nc and

number of batches kn = b
p
nc.

Under some additional moment conditions, Chien (1989) showed that the convergence
of Zkn to the N(0; 1) distribution is fastest if bn and kn grow proportionally to

p
n. Unfor-

tunately, in practice the SQRT rule tends to seriously underestimate the Var(Xn) for �xed
n.
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Example 11 (The M/M/1 queue revisited) Consider an M/M/1 queueing system with
interarrival rate � = 0:9 and service rate ! = 1, and assume that the system starts empty.
Table 2 contains performance statistics for 0:95 con�dence intervals for the steady-state
mean customer delay � = 0:9=[1 � (1 � 0:9)] = 9. The con�dence intervals resulted from
500 independent replications. Within each replication, the delays were generated by means
of (4). The FNB rule used 16 batches and batch sizes 2m, m � 0. The SQRT rule started
with batch size b1 = 1 and number of batches k1 = 8, and computed con�dence intervals
with batch sizes

bl = 2(l�1)=2 �
�
b1 if l is odd

3=(2
p
2) otherwise

and numbers of batches

kl = 2(l�1)=2 �
�
k1 if l is odd

11=
p
2 otherwise.

The resulting sample sizes nl = klbl are roughly powers of 2 (see Section 3.4.4 for details).
Columns 2 and 4 contain the estimated coverage probabilities of the con�dence intervals

produced by the FNB rule and the SQRT rule, respectively. Columns 3 and 5 display the
respective average interval halfwidths. Speci�cally, for sample size n � 217 = 131,072,
roughly 94 percent of the con�dence intervals resulting from the FNB rule contained �
whereas only 78 percent of the con�dence intervals resulting from the SQRT rule contained
�. However, the latter intervals were 43 percent narrower. Experiments by Fishman and
Yarberry showed that the disparity in coverage between the two rules grows with increasing
tra�c intensity � = �=!.

Table 2: Performance statistics for the FNB and SQRT rules on 0:95 con�dence intervals

for the mean customer delay in an M/M/1 queue with utilization � = 0:9

FNB Rule SQRT Rule

Average Average

log2 n Coverage Halfwidth Coverage Halfwidth

10 0.544 3.244 0.326 1.694

11 0.640 3.506 0.366 1.665

12 0.746 3.304 0.414 1.437

13 0.798 2.963 0.466 1.271

14 0.838 2.435 0.498 1.063

15 0.880 1.901 0.604 0.904

16 0.912 1.437 0.664 0.738

17 0.944 1.053 0.778 0.599

18 0.934 0.756 0.810 0.471

19 0.950 0.541 0.854 0.369

20 0.940 0.385 0.858 0.283
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With the contrasts between the FNB and SQRT rules in mind, Fishman and Yarberry
proposed two strategies that dynamically shift between the two rules. Both strategies
perform \interim reviews" and compute con�dence intervals at times nl � n12

l�1; l =
1; 2; : : :.

The LBATCH Strategy. At time nl, if a hypothesis test detects autocorrelation between
the batch means, the batching for the next review is determined by the FNB rule. If the
test fails to detect correlation, all future reviews omit the test and employ the SQRT rule.

The ABATCH Strategy. If at time nl the hypothesis test detects correlation between the
batch means, the next review employs the FNB rule. If the test fails to detect correlation,
the next review employs the SQRT rule.

Both strategies LBATCH and ABATCH yield random sequences of batch sizes. Under
relatively mild assumptions, these sequences imply convergence results analogous to (21)
and (22) (see Fishman and Yarberry 1997 and Fishman 1996).

3.4.3 Test for Correlation

This subsection reviews a test for the hypothesis

H0 : the batch means Y1(b); : : : ; Yk(b) are uncorrelated.

The test is due to von Neumann (1941) and is very e�ective when the number of batches k
is small.

Assume that the process fXig is weakly stationary and let

�l(b) = Corr[Yi(b); Yi+l(b)]; l = 0; 1; : : :

be the autocorrelation function of the batch means process. The von Neumann test statistic
for H0 is

�k =

s
k2 � 1

k � 2

"
�̂1(b) +

(Y1(b)�Xn)
2 + (Yk(b)�Xn)

2

2
P

k

i=1(Yi(b)�Xn)2

#
; (23)

where

�̂1(b) =

P
k�1
i=1 (Yi(b)�Xn)(Yi+1(b)�Xn)P

k

i=1(Yi(b)�Xn)2

is an estimator for the lag-1 autocorrelation �1(b). The rightmost ratio in equation (23)
carries more weight when k is small but it approaches zero as k !1.

Suppose that H0 is true. If the batch means are i.i.d. normal, then the distribution of
�k is very close to N(0; 1) for as few as k = 8 batches (von Neumann 1941; Young 1941,
Table 1). On the other hand, if the batch means are i.i.d. but non-normal, the �rst four
cumulants of �k converge to the respective cumulants of the N(0; 1) distribution as k !1.
This discussion suggests the approximation

�k � N(0; 1)

for large b (the batch means become approximately normal) or large k (by the central limit
theorem).
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If fXig has a monotone decreasing autocorrelation function (e.g., the delay process for
an M/M/1 queueing system), the batch means process also has a monotone decreasing
autocorrelation function. As a result, one rejects H0 at level � if

�k > z1�� :

Alternatively, if fXig has an autocorrelation function with damped harmonic behavior
around the zero axis (e.g., the AR(1) process with � < 0), the test can lead to erroneous
conclusions. In this case, repeated testing under the ABATCH strategy reduces this possi-
bility.

The p{value of the test, 1 � �(�k), is the largest value of the type I error � =
P (reject H0 j H0 is true) for which H0 is rejected given the observed value of �k. Equiva-
lently, H0 is accepted if the p{value is larger than �. Hence, a p{value close to zero implies
low credibility for H0. The plot of the p{value versus the batch size is a useful graphical
device.

3.4.4 Implementing the ABATCH Strategy

This subsection presents a pseudo-code for implementing the ABATCH strategy. The im-
plementation of the LBATCH strategy is discussed in short after the pseudo-code.

To understand the role of the hypothesis test in the LBATCH and ABATCH algorithms,
de�ne the random variables

Rl =

�
1 if H0 is rejected on review l

0 otherwise

and

Rl = (R1 + � � � +Rl)=l

= fraction of rejected tests for H0 on reviews 1; : : : ; l.

A su�cient condition for strong consistency (equation 21) and asymptotic normality

(equation 22) is �0 > 1 � 4� (or � > (1 � �0)=4), where �0 = liml!1Rl is the long-run
fraction of rejections. In practice, �0 di�ers from but is expected to be close to the type I
error �. Clearly, � > 1=4 guarantees (21) and (22) regardless of �0. However, �0 plays a
role when � � 1=4. Speci�cally, for �0 equal to 0:05 or 0:10, the lower bound (1 � �0)=4
becomes 0:2375 or 0:2225, respectively, a small reduction from 1=4.

On review l, the ABATCH strategy induces batch size

bl = 2(l�1)(1+Rl�1)=2 �
�
b1 if (l � 1)(1 +Rl�1) is even
~b1=
p
2 otherwise,

where

~b1 =

�
3=2 if b1 = 1

b
p
2 b1 + 0:5c if b1 > 1,

and number of batches

kl = 2(l�1)(1�Rl�1)=2 �
�
k1 if (l � 1)(1 �Rl�1) is even
~k1=
p
2 otherwise,
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where ~k1 = b
p
2 k1 + 0:5c.

The resulting sample sizes are

nl = klbl =

�
2l�1k1b1 if (l � 1)(1 +Rl�1) is even

2l�2~k1~b1 otherwise

and the de�nitions for ~b1 and ~k1 guarantee that if H0 is never rejected, then both bl and kl
grow approximately as

p
2 with l (i.e., they follow the SQRT rule).

Suppose L+1 reviews are performed. The �nal implementation issue for the ABATCH
strategy is the relative di�erence between the potential terminal sample sizes

�(b1; k1) =
j2Lk1b1 � 2L�1~k1~b1j

2Lk1b1
=
j2k1b1 � ~k1~b1j

2k1b1
:

This quantity is minimized (i.e., the �nal sample size is deterministic) when 2k1b1 = ~k1~b1.
Pairs (b1; k1), with small b1, satisfying the last equality are (1; 3), (1; 6), (2; 3), and (2; 6).

Unfortunately, the condition 2k1b1 = ~k1~b1 excludes several practical choices for b1 and k1,
such as b1 = 1 (to test the original sample for independence) and 8 � k1 � 105. Overall,
�(b1; k1) remains small for numerous choices of b1 and k1. For instance, b1 = 1 and
8 � k1 � 32 ensure �(b1; k1) � 0:078.

Algorithm ABATCH
Source: Fishman and Yarberry (1997) and Fishman (1996, Chapter 6). Minor notational
changes have been made.
Input: Minimal number of batches k1, minimal batch size b1, desired sample size n = 2Lk1b1
(L is a positive integer), and con�dence level 1� �.
Output: Sequences of point estimates and con�dence intervals for sample sizes N � n.
Method:

1. b b1 and k  k1.
2. If b1 = 1, ~b1  3=2; otherwise ~b1  b

p
2 b1 + 0:5c.

3. ~k1  b
p
2 k1 + 0:5c.

4. g  ~b1=b1 and f  ~k1=k1.
5. i 0.
6. ~n 2L�1~k1~b1.

Until N = n or N = ~n:

7. N  kb.

8. Randomly generate Xi+1; : : : ;XN .

Compute:

9. The batch means Y1(b); : : : ; Yk(b).

10. XN as a point estimate of �.

11. The sample variance V̂B of the batch means.

12. The halfwidth � = tk�1;1��=2

q
V̂B=k of the con�dence interval (17).

13. Print N , k, b, XN , XN � �, XN + �, V̂B .

14. i N .
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15. Test H0 : Y1(b); : : : ; Yk(b) are uncorrelated. Print the p-value of this test.

16. If H0 is rejected, b 2b. (FNB rule)

If H0 is accepted:

17. If b = 1, b 2. (FNB rule)

Otherwise: (SQRT rule)

18. b bg and k  kf .

19. If g = ~b1=b1, g  2b1=~b1 and f  2k1=~k1; otherwise g  ~b1=b1 and

f  ~k1=k1.

Remark 2 Algorithm ABATCH requires O(n) time and O(log2 n) space. For details, see
Chapter 5 of Yarberry (1993).

Remark 3 The implementation of strategy LBATCH is simpler. Once H0 is accepted in
step 15, the steps 17{19 are ignored for the remainder of the execution.

3.4.5 Tests for the Batching Rules

The experiments in Examples 12{14 compare the FNB rule and the LBATCH and ABATCH
strategies by means of three queueing systems with tra�c intensity � = 0:9. Each system
starts empty and has a �rst-come, �rst-served discipline. Each experiment computed 0:95
con�dence intervals for the long-run mean customer delay from 500 independent replications.
The FNB rule relied on 16 batches whereas the LBATCH and ABATCH strategies started
with k1 = 8 batches of size b1 = 1 and used type I error � = 0:1 for H0.

Example 12 (Example 11 continued) The entries of Tables 2 and 3 indicate that the
ABATCH strategy comes closer to the FNB rule's superior coverage with shorter con�dence
intervals.

Example 13 (An M/G/1 queue) Consider an M/G/1 queueing system with i.i.d. in-
terarrival times from the exponential distribution with parameter � = 0:9 and i.i.d. service
times Si from the hyperexponential distribution with density function

f(x) = 0:9

�
1

0:5
e�x=0:5

�
+ 0:1

�
1

5:5
e�x=5:5

�
; x � 0:

This distribution applies when customers are classi�ed into two types, 1 and 2, with respec-
tive probabilities 0.9 and 0.1; type 1 customers have exponential service times with mean 0:5,
and type 2 customers have exponential service times with mean 5:5. The service times have
mean E(S) = 0:9(0:5)+0:1(5:5) = 1, second moment E(S2) = 0:9�2(0:52)+0:1�2(5:52) =
6:5, and coe�cient of variation p

Var(S)

E(S)
= 2:739;

which is larger than 1, the coe�cient of variation of the exponential distribution. Then the
tra�c intensity is � = �E(S) = 0:9.
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The long-run mean delay time in queue is given by the Pollaczek-Khintchine formula
(Ross 1993, Chapter 8)

� = lim
i!1

E(Di) =
�E(S2)

2(1� �)
= 29:25: (24)

Notice that the M/M/1 system in Example 11 with the same arrival rate and tra�c intensity
has much smaller long-run mean delay time.

Table 4 displays the results of this experiment. As n increases, the conservative
ABATCH strategy produces 0:95 con�dence intervals for � that are roughly 50 to 100
percent wider than the respective con�dence intervals produced by the LBATCH strategy
but have coverage rates that are acceptably close to 0:95 for substantially smaller sample
sizes (as small as 217 = 131,072).

Example 14 (An M/D/1 queue) Consider an M/G/1 queueing system with i.i.d. in-
terarrival times from the exponential distribution with parameter � = 0:9 and �xed unit
service times. Then, by (24), the long-run mean delay time in queue is � = 4:5.

The results of this experiment are contained in Table 5. As in Examples 12 and 13,
the performance of the ABATCH strategy makes it an attractive compromise between the
\extreme" FNB and SQRT rules.

Example 15 tests the FNB, LBATCH and ABATCH methods by means of an AR(1)
process.

Example 15 (The AR(1) process revisited) Consider the stationary AR(1) process
Xi = �0:9Xi�1 + Zi with mean 0 (see Example 4). The autocorrelation function �j =

(�0:9)j , j � 0, of this process oscillates around the zero axis and the time-average process
variance is �21 = (1� 0:9)=(1 + 0:9) = 0:053.

The entries of Table 6 were obtained from 500 independent replications. The FNB rule
used 16 batches and the type I error for H0 was � = 0:1. The 0:95 con�dence intervals for
� produced by the three methods have roughly equal halfwidths and coverages. In fact,
almost all coverage estimates are greater than the nominal coverage 0:95. This behavior

is due to the fact that bVar(V̂B(n; k)) tends to overestimate �21 (the coe�cient of 1=b in
equation (18) is 2:624 > 0).

From equation (19), the batch size that minimizes MSE(V̂B(n; k)) is b0 = 113:71. 500
independent replications with 144 batches of size 114 (sample size 16416) produced 0:95
con�dence intervals with estimated coverage 0:958 and average halfwidth 0:0016 | not
a substantial improvement over the statistics in the last row of Table 6 (for sample size
roughly equal to 214 = 16384).

Based on Examples 12{14 (Tables 3{5), the ABATCH strategy appears to provide ap-
proximately 10 percent reduction in con�dence interval width for sample sizes large enough
to achieve the nominal coverage probability.

3.4.6 Overlapping Batch Means

An interesting variation of the traditional batch means method is the method of overlapping
batch means (OBM) proposed by Meketon and Schmeiser (1984). For given batch size b,
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Table 3: Performance statistics for the LBATCH and ABATCH strategies on 0:95 con�dence

intervals for the mean customer delay in an M/M/1 queue with utilization � = 0:9

LBATCH Strategy ABATCH Strategy

Average Rejection Average

log2 n Coverage Halfwidth Proportion Coverage Halfwidth

10 0.398 2.085 0.622 0.562 3.384

11 0.420 1.992 0.552 0.632 3.450

12 0.464 1.693 0.458 0.712 3.100

13 0.518 1.477 0.394 0.760 2.686

14 0.562 1.227 0.340 0.816 2.168

15 0.652 1.029 0.266 0.850 1.708

16 0.714 0.834 0.206 0.902 1.296

17 0.808 0.663 0.200 0.932 0.955

18 0.852 0.513 0.176 0.938 0.688

19 0.866 0.395 0.154 0.930 0.493

20 0.876 0.298 0.156 0.936 0.353

Table 4: Performance statistics for the FNB, LBATCH and ABATCH algorithms on 0:95

con�dence intervals for the mean customer delay in an M/G/1 queue with hyperexponential

service times and utilization � = 0:9

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average

log2 n Coverage Halfwidth Coverage Halfwidth Proportion Coverage Halfwidth

10 0.324 9.251 0.204 5.865 0.742 0.356 10.305

11 0.420 10.756 0.254 5.962 0.724 0.436 11.426

12 0.560 11.482 0.294 5.552 0.614 0.566 11.635

13 0.688 11.711 0.354 5.083 0.584 0.652 11.166

14 0.774 11.021 0.392 4.418 0.502 0.746 10.147

15 0.832 9.715 0.452 3.863 0.386 0.794 8.658

16 0.886 8.053 0.540 3.215 0.344 0.856 7.057

17 0.908 6.208 0.620 2.678 0.300 0.898 5.483

18 0.900 4.542 0.632 2.178 0.202 0.896 4.090

19 0.914 3.262 0.694 1.761 0.148 0.900 2.997

20 0.934 2.339 0.748 1.387 0.134 0.924 2.145

21 0.942 1.669 0.806 1.083 0.118 0.926 1.525
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Table 5: Performance statistics for the FNB, LBATCH and ABATCH algorithms on 0:95

con�dence intervals for the mean customer delay in an M/D/1 queue with unit service times

and utilization � = 0:9

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average

log2 n Coverage Halfwidth Coverage Halfwidth Proportion Coverage Halfwidth

10 0.618 1.626 0.460 1.062 0.552 0.616 1.631

11 0.740 1.620 0.548 0.962 0.504 0.720 1.538

12 0.826 1.529 0.598 0.842 0.396 0.788 1.391

13 0.858 1.222 0.648 0.686 0.334 0.842 1.101

14 0.878 0.946 0.696 0.556 0.274 0.858 0.852

15 0.908 0.707 0.794 0.445 0.220 0.884 0.632

16 0.920 0.517 0.808 0.351 0.222 0.924 0.472

17 0.946 0.375 0.862 0.271 0.140 0.942 0.343

Table 6: Performance statistics for the FNB, LBATCH and ABATCH algorithms on 0:95

con�dence intervals for the mean � = 0 of the stationary AR(1) process Xi = �0:9Xi�1+Zi

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average

log2 n Coverage Halfwidth Coverage Halfwidth Proportion Coverage Halfwidth

5 0.954 0.0515 1.000 0.1217 0.020 1.000 0.1153

6 0.978 0.0364 0.978 0.0364 0.102 0.980 0.0367

7 0.980 0.0248 0.980 0.0244 0.060 0.980 0.0246

8 0.974 0.0164 0.982 0.0166 0.038 0.980 0.0167

9 0.960 0.0108 0.972 0.0111 0.018 0.966 0.0111

10 0.966 0.0071 0.984 0.0076 0.022 0.980 0.0075

11 0.944 0.0048 0.976 0.0051 0.012 0.978 0.0050

12 0.962 0.0034 0.982 0.0035 0.014 0.984 0.0035

13 0.938 0.0023 0.964 0.0024 0.012 0.962 0.0023

14 0.942 0.0017 0.960 0.0016 0.020 0.962 0.0016
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this method uses all n � b + 1 overlapping batches to estimate � and Var(Xn). The �rst
batch consists of observations X1; : : : ;Xb, the second batch consists of X2; : : : ;Xb+1, etc.
The OBM estimator of � is

Y O =
1

n� b+ 1

n�b+1X
i=1

Yi(b);

where

Yi(b) =
1

b

i+b�1X
j=i

Xj ; i = 1; : : : ; n� b+ 1

are the respective batch means, and has sample variance

V̂O =
1

n� b

n�b+1X
i=1

(Yi(b)� Y O)
2:

The following list contains properties of the estimators Y O and V̂O:

(i) The OBM estimator is a weighted average of non-overlapping batch means estimators.

(ii) Asymptotically (as n; b ! 1 and b=n ! 0), the OBM variance estimator V̂O and

the non-overlapping batch means variance estimator V̂B � V̂B(n; k) have the same
expectation. Furthermore,

Var(V̂O)

Var(V̂B)
!

2

3
:

In words, the asymptotic ratio of the mean squared error of Var(V̂O) to the mean

squared error of Var(V̂B) is equal to 2=3 (Meketon and Schmeiser 1984).

(iii) The behavior of Var(V̂O) appears to be less sensitive to the choice of the batch size

than the behavior of Var(V̂B) (Song and Schmeiser 1995, Table 1).

(iv) If fXig satis�es ASA and f(bn; kn); n � 1g is a sequence that satis�es the assumptions
(A.1){(A.3) in Theorem 2 and

b2n
n
! 0 as n!1,

then (Damerdji 1994a)

bnV̂O
a:s:�! �21:

Pedrosa and Schmeiser (1994) and Song (1996) considered weakly stationary processes
with 
m =

P1
j=�1 jmCj < 1 for m = 0; 1 and studied batch means variance estimators

with

Bias(V̂ ) = �cb
1
1

b
+ o

�
1

b

�
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and

Var(V̂ ) = cv

2
0

b

n
+ o

�
b

n

�
:

The constants cb and cv depend on the amount of overlapping between the batches. In

particular, the estimator V̂B has cb = 1 and cv = 2, while V̂O has cb = 1 and cv = 4=3.

Then the asymptotic batch size that minimizes MSE(V̂ ) = Bias2(V̂ ) + Var(V̂ ) is

b� =

 
2c2

b

21

cv

2
0

!1=3

n1=3: (25)

Song (1996) developed methods for estimating the ratio (
1=
0)
2 for a variety of processes,

including moving average processes and autoregressive processes. Then one can obtain
an estimator for b� by plugging the ratio estimator into equation (25). Sherman (1995)
proposed a method that does not rely on the estimation of (
1=
0)

2.
Welch (1987) noted that both traditional batch means and overlapping batch means are

special cases of spectral estimation (see Section 3.6) at frequency 0 and, more importantly,
suggested that overlapping batch means yield near-optimal variance reduction when one
forms sub-batches within each batch and applies the method to the sub-batches. For exam-
ple, a batch of size 64 is split into 4 sub-batches and the �rst (overlapping) batch consists
of observations X1; : : : ;X64, the second consists of observations X17; : : : ; X80, etc.

3.5 The Standardized Time Series Method

This method was proposed by Schruben (1983). The standardized time series is de�ned by

Tn(t) =
bntc(Xn �Xbntc)

�1
p
n

; 0 � t � 1

and, under some mild assumptions (e.g., stationarity and �-mixing),

(
p
n(Xn � �); �1Tn)

D�! (�1W (1); �1B);

where fB(t) : t � 0g is the Brownian bridge process (see Billingsley 1968). Informally, fXig
is �-mixing if Xi and Xi+j are approximately independent for large j. Figure 8 shows the
standardized time series for the AR(1) sample path in Figure 1.

If A =
R 1
0 �1B(t) dt is the area under B, then the identity

E(A2) = �21=12

implies that �21 can be estimated by multiplying an estimator of E(A2) by 12. Suppose
that the data X1; : : : ;Xn are divided into k (contiguous) batches, each of size b. Then for
su�ciently large n the random variables

Ai =

bX
j=1

[(n+ 1)=2 � j]X(i�1)b+j ; i = 1; : : : ; k
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Figure 8: The standardized time series for the AR(1) sample path in Figure 1

become approximately i.i.d. normal and an estimator of E(A2) is

Ê(A2) =
1

(b3 � b)k

kX
i=1

A2
i :

Hence an (approximate) 1� � con�dence interval for � is

Y k � tk;1��=2

q
V̂T =n;

where
V̂T = 12Ê(A2):

The standardized time series method is easy to implement and has asymptotic ad-
vantages over the batch means method (see Goldsman and Schruben 1984). However, in
practice it can require prohibitively long runs as noted by Sargent, Kang, and Goldsman
(1992). Some useful theoretical foundations of the method are given in Glynn and Iglehart
(1990). Additional developments on the method, as well as other standardized time se-
ries estimators, are contained in Goldsman, Meketon, and Schruben (1990) and Goldsman
and Schruben (1984, 1990). Finally, Damerdji (1994a) shows that under the assumption of

38



Output Data Analysis Alexopoulos and Seila

strong approximation in Section 3.4, batching sequences satisfying assumptions (A.1){(A.3)
yield consistent estimators for the process variance �21.

3.6 The Spectral Estimation Method

This method also assumes that the process fXig is weakly stationary. Under this assump-

tion, the variance of Xn is given by (6). The name of the method is due to the fact that ifP1
j=�1 jCjj <1, then nVar(Xn) ! 2�g(0) as n !1, where g(�) is the spectrum of the

process at frequency � and is de�ned by

g(�) =
1

2�

1X
j=�1

Cje
�i�j ; j�j � �;

where i =
p
�1. Therefore, for large n the estimation of Var(Xn) can be viewed as that of

estimating g(0). Estimators of this variance have the form

V̂S =
1

n

0
@Ĉ0 + 2

p�1X
j=1

wjĈj

1
A ;

where p and the weights wj are chosen to improve the properties of the variance estimator

V̂S . The selection of these parameters is discussed in Fishman (1978b) and Law and Kel-
ton (1984). Further discussions of spectral methods are given in Heidelberger and Welch
(1981a,b, 1983) and Damerdji (1991).

3.7 Quantile Estimation from Stationary Output Data

Heidelberger and Lewis (1984) proposed three methods for computing con�dence intervals
for quantiles when the output process is stationary but not regenerative. Only the aver-
age group quantile method will be presented because it is simpler to implement than the
competitors and has performed as well or better than the others in terms of the width of
con�dence intervals and the coverage probabilities. This method makes use of the maximum

transform.

3.7.1 The Maximum Transform

The purpose of the maximum transform is to convert the problem of computing an extreme
quantile to one of computing a quantile close to the median. The transform works as
follows: Let X1;X2; : : : ;Xv be i.i.d. random variables with p-quantile equal to �, and let
Y = maxfX1;X2; : : : ; Xvg. Then

P (Y � �) = FY (�) = P (X1 � �; : : : ;Xv � �) = [FX(�)]
v = pv � p0:

Thus, the p0-quantile of Y is the pv-quantile of X. The idea is to choose v such that pv � 0:5
since estimators for the median will generally have smaller bias and variance than estimators
for more extreme quantiles. For example, if p = 0:99, then v � ln(0:5)= ln(0:99) = 6:58. So,
choosing v = 7 gives p0 = 0:997 = 0:48. Notice that by choosing groups of 7 observations and
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applying the maximum transform, the amount of data that must be processed is reduced
by a factor of 7.

Applying the maximum transform generally results in an in
ation of the variance by a
factor of approximately 1.4 (see Heidelberger and Lewis 1984). It is also possible to use
other schemes such as the next-to-maximum. The maximum transform is clearly applicable
to quantile estimation via independent replications (see Section 3.3.2). For processes that
are stationary but not i.i.d., Heidelberger and Lewis apply the maximum transform to
observations at least m positions apart, where m = n=v, n is the sample size of the output,
and v is an integer such that pv � 0:5.

3.7.2 The Average Group Quantile Method

This method works as follows: First, determine a v so that pv � 0:5, i.e., v � bln(0:5)= ln(p)c.
Then form k contiguous batches of m � v observations each. Within each batch, form m
sub-batches of v observations. The �rst sub-batch consists of observations 1;m + 1; 2m +
1; : : : ; (v�1)m+1, the second of observations 2;m+2; 2m+2; : : : ; (v�1)m+2, and so on.
All of the observations in each sub-batch are m positions apart. The maximum transform is
applied within each sub-batch, producingm maximum transformed observations within the
sub-batch. The p0-quantile is then computed from these observations, producing a quantile

from each batch. Denote these batch quantiles by �̂1; �̂2; : : : ; �̂k. Then the overall quantile
estimate is the sample mean of these batch quantiles, and an approximate 1�� con�dence

interval for � is computed by treating �̂1; �̂2; : : : ; �̂k as a set of i.i.d. observations and applying
the usual con�dence interval estimator for the mean

� � tk�1;�=2
Sk(�̂)p

k
:

Heidelberger and Lewis compared this estimator to two competitors, one based on es-
timation of the spectral density of a binary process and another based on nested group
quantiles. The average group quantile method performed well relative to the other meth-
ods, was not dominated by any of the other methods, and has the advantage that it is the
easiest method to implement. The performance of the method depends upon the choice of
the quantities m and k. While Heidelberger and Lewis do not provide a speci�c method or
speci�c guidelines for choosing these parameters, they do recommend making m as large as
possible to assure that the observations used in the maximum transform have a maximum
distance between them and make the spaced observations approximately independent.

4 Multivariate Estimation

Frequently the output from a single simulation run is used to estimate several system
parameters. The estimators of these parameters are typically correlated. As an example,
one might wish to simultaneously estimate the average delays for customers at three stations
in a queueing network.

Let � = (�1; �2; : : : ; �h) be a vector of h parameters that will be estimated using sim-
ulation output data. Two types of multivariate interval estimation procedures are gener-
ally used: simultaneous con�dence intervals and con�dence regions. The set of intervals
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fIi = (�̂il; �̂iu); i = 1; 2; : : : ; hg is said to be a set of 1� � simultaneous con�dence intervals
for � if

P
�
\hi=1f�i 2 Iig

�
= 1� �:

A region � � IRh is said to be a 1 � � con�dence region for � if P (� 2 �) = 1 � �.

Note that simultaneous con�dence intervals form a rectangular region in IRh. In general, a
con�dence region will not be rectangular but will have smaller volume.

There are many articles in the literature concerning multivariate estimation in gen-
eral and multivariate methods for simulation in particular. For a general introduction to
multivariate statistical methods, see Anderson (1984). Seila (1984) and Charnes (1995)
survey multivariate methods for simulation, primarily methods for estimating the mean,
and provide extensive lists of references.

4.1 Bonferroni Intervals

Bonferroni's inequality provides a means for computing a lower bound on the simultaneous
con�dence coe�cient for any set of con�dence intervals. Let E1; E2; : : : ; Eh be any set of
events. Bonferroni's inequality states that

P (E1 \E2 \ � � � \Eh) � 1�
hX

j=1

(1� P (Ej)):

To apply this inequality to a set of con�dence intervals, let Ij be a 1��j con�dence interval
for �j ; j = 1; 2; : : : ; h, and let Ej represent the event �j 2 Ij. Then, P (Ej) = 1 � �j. By
Bonferroni's inequality, the simultaneous con�dence coe�cient is

1� � = P (E1 \E2 \ � � � \Eh) � 1�
hX

j=1

�j: (26)

Bonferroni's inequality applies in very general circumstances. No conditions or restric-
tions are placed on the population, the parameters, or the methods of computing the inter-
vals I1; I2; : : : ; Ih. Normally, to apply this approach one would compute a 1��=h con�dence
interval for each parameter �i. Then by (26) the simultaneous con�dence coe�cient is at
least 1 � �. The correctness of this simultaneous con�dence coe�cient depends upon the
correctness of the individual con�dence coe�cients for the individual intervals, however.
See the last paragraph in Section 4.2.

4.2 Multivariate Inference for the Mean Using Independent Replications

Suppose that the simulation run consists of n identical, independent replications, and that
replication i produces output data vector Xi = (Xi1; Xi2; : : : ;Xih), where Xij is an observa-
tion that will be used to estimate �j. Thus, the output of the entire simulation experiment
consists of n i.i.d. vectors of observations X1;X2; : : : ;Xn. Let � = E(Xi) be the vector of
population means, and � = E[(Xi��)(Xi��)0] be the variance-covariance matrix for each
Xi with components �jk = Cov(Xij ; Xik). The point estimator for � is the multivariate
sample mean

�̂ = Xn =
1

n

nX
i=1

Xi;
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with components

�̂j = Xnj =
1

n

nX
i=1

Xij ; j = 1; 2; : : : ; h

and the estimator of � is

S =
1

n� 1

nX
i=1

(Xi �Xn)(Xi �Xn)
0:

HereXn and� are the basic sample statistics that are used for multivariate inference for the
mean �. If X1;X2; : : : ;Xn have a multivariate normal distribution, then a 1�� con�dence
region for � is given by all vectors x for which

n(Xn � x)0S�1(Xn � x) �
(n� 1)h

n� h
Fh;n�h;1��;

where Fh;n�h;1�� is the 1 � � quantile of the F distribution with h and n � h degrees of
freedom in the numerator and denominator, respectively. More generally, if �1; : : : ;�d are
h-dimensional non-null vectors of constants, then a 1�� con�dence region for (�1; : : : ; �d)
with

�l = �0l� =
lX

j=1

�lj�j; l = 1; 2; : : : ; d;

is given by all vectors x 2 IRd such that

n(�̂� x)0[�0S�]�1(�̂� x) �
(n� 1)r

n� r
Fr;n�r;1��;

where �̂l = �0
l
�̂ is the estimator for �l. If the data X1;X2; : : : ;Xn are not multivariate

normal but are approximately multivariate normal, the above regions may be used as ap-
proximate 1 � � con�dence regions for �. This would be the case, for example, if Xi were
the sample mean for a sequence of observations and conditions for a central limit theorem
were met.

Two methods are available for computing simultaneous con�dence intervals for the mean.
The approach using Bonferroni's inequality has already been discussed. A second method,
which was originally proposed by Roy and Bose (1953) and Sche��e (1953), computes the
intervals

Xnj � Th;n�h;1��=2
Sjjp
n
; j = 1; 2; : : : ; h;

where Th;n�h;1��=2 is the 1 � �=2 quantile of Hotelling's T 2 distribution with h and n� h

degrees of freedom in the numerator and denominator, respectively (see Hotelling 1931 or
Anderson 1984, Chapter 5).

Bonferroni's inequality is rather tight; Sche��e intervals are very conservative. Therefore,
Bonferroni intervals will normally be shorter than Sche��e intervals. However, if the true
con�dence coe�cients of the individual intervals are less than the nominal values, Sche��e
intervals may be preferred in order to protect against an unacceptably small simultaneous
con�dence coe�cient. For example, suppose that h = 5 parameters are to be estimated us-
ing simultaneous con�dence intervals with simultaneous con�dence coe�cient 1�� = 0:95.
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To use Bonferroni's inequality, one would compute a 0.99 con�dence interval for each pa-
rameter. If, in fact, the parameter estimators were independent, then the true simultaneous
con�dence coe�cient would be 0:995 = 0:951. However, if the true coverage probability for
each con�dence interval were actually 0:98 instead of 0:99, then the simultaneous con�dence
coe�cient would be only 0:985 = 0:904, considerably below the desired value of 0:95.

4.3 Multivariate Inference for the Mean Using Stationary Data

Methods for computing simultaneous con�dence intervals and con�dence regions for the
mean have been developed when output data are stationary. As in the case with univariate
inference, the initial transient portion must be identi�ed and removed, leaving observa-
tions that are approximately stationary. One option is to run a series of n independent
replications, compute the mean from each replication and use the methods of Section 4.2
to compute either approximate simultaneous con�dence intervals or an approximate con-
�dence region for �. This approach, like the replication/deletion approach for univariate
inference in Section 3.2, is wasteful of data and will result in a biased point estimator if
the initial transient portion is judged too short. Bias in the point estimator of the mean or
variance will reduce the coverage probability of the intervals or regions.

4.3.1 Multivariate Batch Means

An alternative to independent replications is to apply a generalization of the univariate
batch means method. As in the univariate batch means procedure, this method divides a
long run into batches of multivariate observations. These vectors could be produced because
the output process is naturally in the form of a vector. Such a process would result, for
example, in a queueing network if an observation is produced each time a customer leaves
the system, and Xij is the time required by customer i to travel path j in the network.
Vector observations could also be produced by sampling continuous-time processes. More
generally, if only means for continuous-time processes are to be estimated, then batches
could be formed using continuous data accumulated every t time units.

It should be noted that for certain combinations of parameters, one can encounter
synchronization problems. Suppose, for example, that a queueing system has two classes
of customers, A and B, and suppose that 90 percent of the customers are of class A while
the remaining 10 percent are of class B. The objective is to simultaneously estimate the
mean waiting times for each class, say �A and �B. Then, if the batch size is set to 100, for
example, the amount of simulation time required to collect a batch of 100 observations for
class B customers will be approximately 9 times that for class A customers. One can easily
see that the batches for class A customers will be completed long before those for class B
customers, and the relationship between batches for classes A and B customers will change
over time. In the following, the observation processes are assumed to be synchronous, in
the sense that for any batch size the statistical relationship among batch means does not
change.

The multivariate batch means method is applied analogously to the univariate batch
means procedure. Suppose that a stationary multivariate output process is divided into k
batches of b vectors each and let Y1; : : : ;Yk be the sequence of batch means. If

1X
l=�1

Cov(Xij ;Xi+l;j) <1 for all j = 0; 1; : : : ; h;
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then the vectors Y1; : : : ;Yk are asymptotically uncorrelated and their sample mean vector
is a consistent estimator of the steady-state mean vector �. The multivariate batch means
method then treats Y1; : : : ;Yk as a sequence of i.i.d. random vectors and applies the meth-
ods of Section 4.2 to compute a con�dence region or simultaneous con�dence intervals. One
is left with the problem of determining the appropriate batch size and number of batches.
This problem is complicated by the fact that since the batch means are vectors, the au-
tocorrelation function will be a sequence of correlation matrices. Chen and Seila (1987)
developed a procedure that is based upon �tting a �rst-order autoregressive process to the
sequence of batch means to test for autocorrelation and determine the batch size. This
procedure has been shown to work well in a variety of systems.
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