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Abstract
The current technology in stationary laser range-

scanning enables high-resolution acquisition of 3D data in

a sequential fashion. Traditionally, range scans are pro-

cessed offline after acquisition, which significantly slows

down the procedure. In this work we alleviate this limi-

tation by developing low-complexity, online detection and

classification algorithms. These algorithms are innovative

in that they classify points into 5 distinct classes (vegetation,

vertical, horizontal, car and curb regions) and robustly de-

termine the level of the ground without requiring any prior

training or parameter estimation. To construct these algo-

rithms we extract cleverly chosen summary statistics which

significantly reduce the dimensionality of the data. This

reduction enables us to contrast the different classes by

appropriately chosen Markov models and then use online

techniques to detect a transition from one Markov model to

the other. The identification of the ground level is further

achieved by taking advantage of statistical properties of the

distribution of the summary statistics. Our algorithms also

use contextual cues to verify the existence of specific classes

of objects. All our algorithms take advantage of the sequen-

tial nature of data acquisition by running in parallel and

labeling points on-the-fly. Thus, these algorithms can be

potentially integrated with the scanner’s hardware and pro-

vide the foundation for the construction of high-resolution

3D data scanners that classify data as acquired. We have

run experiments using complex urban range scans and have

evaluated the classification accuracy against ground-truth.

1. Introduction

The photorealistic modeling of large-scale scenes, such

as urban structures, has received significant attention in re-
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cent years (see for example [10]). The current state of the art

includes the collection of high-resolution point-clouds from

laser scanners. The abundance of high-resolution 3D data

opens the door for new processing algorithms. Thus, the

ability to segment and classify objects of interest in large-

scale urban scenes efficiently and accurately is of major

importance. In this work we present algorithms that al-

low online classification of objects as data is acquired by

the sensor, enabling the efficient processing of voluminous

amounts of data.

In the existing literature (see Sec. 2) point-cloud segmen-

tation and classification algorithms use all the acquired data

in order to split the scene into major surfaces. In a real-time

application though decisions have to be made instantly. In

these cases we need to classify as fast as possible. Thus, se-

quential classification techniques become relevant [2, 12].

The first attempt to achieving on-the-fly classification into

vegetation, vertical and horizontal surfaces is done in [7].

Although this classification is achieved fairly accurately, it

is only a preliminary step to identify the variety of objects

that may arise in an urban scene. In particular, the classifi-

cation of points into only three classes results in a coarse de-

piction of reality in which parts of a car, for example, maybe

classified as horizontal or vertical surfaces or in some in-

stances as vegetation.

In this paper we develop innovative online algorithms of

low-complexity that run in parallel and achieve a far more

detailed classification of objects into horizontal surfaces,

vertical surfaces, curbs, cars and vegetation. We are further

able to identify the level of the ground within the class of

horizontal surfaces. Although achieving this detail appears

as a marginal improvement from the previous classification,

this task is highly non-trivial. Cars, for instance, are char-

acterized by a level of variability and irregularity in surface

that is lesser than what determines a vegetation region and is
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more than what determines a regular surface, whether hor-

izontal or vertical. Moreover, car detection is made even

more complex because of the existence of a large number

of missing data caused by windows and metallic surfaces.

Therefore, achieving a more detailed classification requires

the extraction of more information from the point cloud of

the urban scene, such as the level of the ground and the

curbs, which serve as important contextual cues. To bemore

specific, a fire-hydrant or a newsstand sits behind a curb

while cars do not. It is important to stress that our algo-

rithms, unlike many others in our field, require no learning

or prior parameter estimation.

2. Related work

There is a variety of range image segmentation tech-

niques (for example [5]). These methods do not associate

any classes with the extracted segments and process the

data offline. There is also literature on the topic of classi-

fication of 3D point-clouds using Markov network models

[1, 4, 9, 16]. [11] concentrates specifically on the detection

of cars from range images. The paper uses spin images and

extended Gaussian images and produces very good results.

[6] also presents offline techniques for the segmentation and

detection of various types of objects. These techniques as-

sume that the data becomes available all at once, as opposed

to sequentially. They also require training. Online detection

techniques have been used in 3D computer vision mainly in

the context of a moving sensor [14, 15], as opposed to a

steady high-resolution laser-scanner. The goal is to sepa-

rate between two states: drivable vs. non-drivable terrain.

In [15] a hidden Markov model is used to achieve this goal.

Finally, [13] describes an almost (but not exactly) real-time

approach.

Our contribution with respect to earlier work is that

we are able to achieve a far more detailed classification of

data on-the-fly. This is achieved by using cleverly selected

summary statistics that arise from geometrical considera-

tions and which significantly reduce the dimensionality of

the data. These statistics are sequentially computed angles,

which are then appropriately analyzed andmodeled to make

an inference. None of the analysis carried out requires any

training as it relies either on the contrast between models

and the detection of change from one to the other or on the

subsequent estimations of the shape of distributions of the

statistics.

3. Summary Statistics and Algorithms

The scanner, placed on a steady platform, takes mea-

surements of distance to the closest surface sequentially by

emitting a laser beam. Note that it is also possible that no

distance is going to be measured when the laser hits trans-

parent or highly specular surfaces, or when the measured

point is at a distance bigger than a threshold (300 meters

in our setting). The main summary statistics used in our

analysis are (a) Signed angles and (b) Line angles.

To describe the signed angles let us denote by Xi,k =
[xik, yik, zik] the vector of 3D coordinates of the k-th point
in the i-th scanline. Knowledge of the vertical direction

(axis z) is provided by many laser scanners, or can be

easily acquired via hardware, or even computed from the

data in urban scenes (line detection and clustering) and is

thus assumed known. Most robotics application (for in-

stance [15]) make this assumption as well. We now de-

fine Di,k = Xi,k+1 − Xi,k (difference of two successive

measurements in a given scanline i), and Vik: the angle of

the vectorDi,k with the pre-determined z axis (0 to 180 de-

grees), sVik = sik∗Vik: the sign of the dot product between

the vectors Di,k and Di,k−1, multiplied by Vik (signed an-

gle). This sign is positive when the two vectors have the

same orientation and negative otherwise. These statistics

are used to achieve the coarser classification into horizon-

tal, vertical and vegetation classes. They are also used to

provide a first indication of the existence of cars in a given

scan-line.

To describe the line angles let XA = [xA, yA, zA] de-
note the position of the laser scanner and denote by θ the

angle between successive laser beams. That is, θ is the an-

gle between the vectorsXi,k−XA andXi,k+1−XA for all

k = 1, 2, . . . (θ is known). We then determine the sequence

of angles φi,k , for k = 1, 2, . . . by computing the angles be-

tween the vectors Di,k and Xi,k+1 −XA for k = 1, 2, . . ..
In particular, using the law of sines we obtain

|Xi,k+1 −XA|

|Xi,k+2 −XA|
=

sin(φi,k+1)

sin(φi,k)
. (1)

We now notice that under the assumption that Di,k and

Di,k+1 are co-linear we have φi,k+1 = φi,k−θ which leads
to

φi,k = tan−1







sin θ

cos θ −
|Xi,k+1−XA|
|Xi,k+2−XA|







, (2)

for k = 1, 2, . . .. We refer the reader to Fig. 1 for an illustra-

tion. We notice that if the assumption of co-linearity holds

between more than two consecutive vectors Di,k+n and

Di,k+1+n for all n = 0, 1, 2, . . ., then φi,k+n = φi,k − nθ.

This leads us to the the line angle summary statistics φ̂k =
φi,k+(k−1)θ for k = 1, 2, . . .within each scanline i, which
are expected to be relatively close to each other if indeed co-

linearity is to hold. Therefore, we use the statistical prop-

erties of the distribution of the line angles to determine the

level of the ground (we assume that the ground is fairly lin-

ear), which together with the coarser classification achieved

by inferential techniques developed using the signed angles

and contextual truth, lead to the detailed classification into

curbs, cars, vertical and horizontal surfaces. Our algorithms

do not require any training. In order to achieve this we use

the following contextual truth about urban scenes: 1. Car
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Figure 1. Four collinear points and line angles φi,k = φ̂k−(k−1)θ
(see text).

objects are located within a finite height from the horizontal

or inclined ground plane. 2. Cars cannot be behind curbs

or walls of buildings. 3. There is a maximum height and

length for cars and maximum height for curbs.

The online algorithms that we run in parallel are (1) the

coarse classification algorithm, (2) the ground algorithm,

(3) the curb algorithm and (4) the car algorithm. In the sec-

tions that follow we describe each of the above algorithms

in detail.

4. The coarse classification algorithm

This algorithm is used to achieve a coarse classification

into vegetation (T), horizontal surfaces (H) and vertical sur-

faces (V). It is described in full detail in [7] and is based

on the fact that scene areas which include vegetation and

trees produce a unique behavior in the sequence of measure-

ments along each scanline. In vegetation areas the signed

angle sVi,k measurements (see Sec. 3) alternate rapidly be-

tween negative (around −90◦ degrees) and positive angles,

while in horizontal and vertical surfaces they are stable on

non-negative values (around 0◦ or 90◦ degrees). The de-

tection algorithm of [7] detects vegetation by distinguish-

ing between two hidden Markov models; the first one cap-

tures slow transitions between the −90◦, 0◦ and 90◦ states

and the second one fast transitions between the same states

(each state is modeled by a Gaussian with mean −90◦, 0◦,
and 90◦ respectively). The distinction between horizontal

and vertical surfaces is achieved through an online cumula-

tive sum (CUSUM) algorithm [12] that detects a change in

the mean of the signed angles sVi,k by 90◦.

5. The ground algorithm

The ground algorithm uses the coarse classification algo-

rithm of Sec. 4 and consecutively computes angles φ̂k (see

Sec. 3) to make an inference. It is divided into two parts (a

& b) described below.

(Part a) The part that runs within each scanline i (begin
with i = 1) which consists of the following steps. This

part detects a sequence of horizontal points that could be

potentially on the ground.

1. Find the first 10 consecutive points classified as hor-

izontal H (skip missing points M ). If such points

cannot be found exit. Otherwise, calculate φ̂k for

k = 1, . . . , n. Set n = 9.

2. Apply the mean-shift algorithm [3] to determine the

number of modes in the distribution of φ̂k for k =
1, . . . , n.

3. If the number of modes from step 2 is one and the next

point is classified as H then set n = n + 1, calculate
φ̂n and go to step 2. If not, then stop and declare points

k = 1, . . . , n−1 as potential ground (PG). These n−1
points have similar φ̂k ’s, meaning that they are likely

to come from a linear surface. Also, we record the

average of the 5 smallest (since ground is on a low-

surface) z-coordinates of the points classified as (PG)

and denote it by zi. This is the estimate of the height

of the ground.

Note that the above algorithm stops at the first instance it

encounters a point of class V or T .
(Part b) The part that runs across scanlines. This part

verifies potential ground points as actual ground and com-

putes a robust estimate of the height of the ground. We start

by running the algorithm of part (a) for the first N scan-

lines (N is the number of scanlines we need to visit be-

fore we have at least 50 zi estimates). Our goal is to find

a dominant estimate of the height of the ground that we call

zg. To this end we run the mean-shift algorithm on the zi’s
(i = 1, . . . , 50) and set as zg the main mode. This is our ro-

bust estimate for the height of the ground in the beginning

of our scan. After that we do the following:

1. Start again from the first scanline (set i = 1).

2. If i > N run the algorithm of part (a) (for i <= N it

has been already executed).

3. If |zi − zg|/|zg| < 10% (i.e. zi is close to the domi-

nant estimate) we declare the potential ground points

PG as ground (G). Furthermore, starting from the last

G point, visit all successive horizontal (H) points that

are almost collinear and give to them the G label as

well (grow ground). If i > 50 update the dominant

estimate zg by calculating the main mode of the distri-

bution z1, . . . , zi. Set i = i+ 1 and go to step 2.

4. If |zi− zg|/|zg| ≥ 10% (i.e. zi is not close to the dom-

inant estimate), run the algorithm of part (a), but now

start after the last PG point (remove the PG label from

the previous PG points). If you are able to find a new

set of PG points go back to 3. If not, set i = i+ 1 and

go to step 2.

The ground algorithm generates sequentially a robust esti-

mate of the ground points (G) along with the height zg of



the ground at each scanline (for scanlines that do not contain

ground points the following algorithms use the last updated

zg for a height estimate).

6. The curb algorithm

Curbs provide an important cue for recognition and clas-

sification in urban scenes. In our setting we are using the de-

tected curbs to provide context for possible location of cars.

Our curb detection algorithm consists of two parts: a) one

part that runs within each scanline on-the-fly and provides

possible starting points for curbs, and b) a second part that

verifies the existence of a curb after the whole curb has been

sensed from the scanner. To determine possible starting

points for curbs within a scanline we just record the first ver-

tical (V) pointXi,k after the last ground point (G) (see Sec.

5 for detection of ground points) for which TestUnder(Xi,k)

is False (see Sec. 7.3 for explanation of test). We giveXi,k

the label of a possible curb point (PC). Note that we ter-

minate our search of PC points whenever the z-coordinate

exceeds a reasonable level above the ground estimate (see

threshold theight in Sec. 7.3). In order though to verify the

existence of a curb we have to look at the sequence of scan-

lines containing it. To achieve this we perform a sequen-

tial labeling region growing algorithm on only the vertical

(V) points and sequentially produce connected components

RV1, . . . , RVn of vertical points. If a completed such com-

ponent happens to include at least one point that is a pos-

sible curb (PC) then we further investigate that particular

region. We first calculate its vertical height. If it is above a

threshold tcurb it is discarded (tcurb = 0.2m in our settings)

since curbs cannot exceed a specific height. If it consists of

a significant number of scanlines (three and above in our

experiments) we accept it as a curb. Otherwise (too few

scanlines) we make sure that the median vertical curvature

of the points in the region is small and then accept the re-

gion as a curb. Our algorithm is not missing any curb in our

datasets.

7. The car algorithm

We begin by running the online detection of horizontal,

vertical and vegetation regions as described in [7]. In that

framework as each scan pointXi,k of scanline i is received
it is classified to be either horizontalH , vertical V , or veg-

etation T . Note that every point gets a classification, so for

instance a point that is in an inclined surface not on vege-

tation regions will get either an H or V classification (i.e.

mostly horizontal, or mostly vertical). One problem of the

vegetation detection algorithm in [7] is that it is very sensi-

tive and regions within car objects can be labeled as T . In
order to alleviate this problem we modified the online veg-

etation detection algorithm of [7] in order to make it less

sensitive (see Sec. 7.1). We thus add one extra class T ′

to the classification results. Each scan point Xi,k can be

classified to be in T ′, meaning that it is in vegetation re-

gion with higher probability. Note that now T ′ is missing

chunks of vegetation regions. We keep both classes T and

T ′ for each point (i.e. a point that is in both T and T ′ has

very high probability of being in vegetation region than a

point of class T only). See Fig. 2 for an example.

The car detection algorithm works as follows. At each

point in a scanline the classifiers of [7] are run in parallel

with the classifier of less sensitive vegetation T ′ (Sec. 7.1).

An online CUSUM-like statistic (see [2]) that sets off a trig-

ger at index (i, k) is used to decide whether the scanline i
may contain a car or not. If the trigger is set off then the

goal is to identify within that scanline i intervals of points
that could potentially be parts of cars. These intervals can

contain only horizontal H , vertical V , or vegetation points

T that are not of class T ′. Finally each interval may con-

tain missing points. A missing pointM is one for which the

laser was sent but no response was recorded by the sensor.

This maybe due to transparent or highly reflective surfaces

for instance.

The next step in our detection consists of seg-

menting each scanline i into a set of intervals

[t1(0), t2(0)], . . . , [t1(m − 1), t2(m − 1)], where t1(p) is

the index of the first point and t2(p) is the last point of

the p-th interval (m intervals in total). The criteria for the

dividers of each interval are explained in detail in Sec. 7.3

(see Fig. 4 for one such interval). Potential car regions

are then only to be decided upon within these intervals

according to further tests which verify the existence or not

of a car.

7.1. Less sensitive vegetation detection

As described in Sec. 4 vegetation areas can be detected

coarsely. Due to the sensitivity of this algorithm to small

non-vegetation areas (that can be unfortunately part of cars)

we now consider the difference of signed angles sDi,k =
sVi,k − sVi,k−1 between successive points on a scanline.

The new three states are modeled as Gaussians with means

of −150◦, 0◦, and 150◦. We want to detect a change be-

tween two hypotheses H0 and H1, the former correspond-

ing to a non-vegetation region and the latter to a vegetation

region, both captured by two distinct HMM models. To be

more specific, let us represent the transition matrix for each

of the two Markov models by

M =





p1 p2 1− p1 − p2
q1 q2 1− q1 − q2
r1 r2 1− r1 − r2



 (3)

Then underH0: p1 = q1 = r1 = 0.1, p2 = q2 = r2 = 0.8
[i.e. tendency to reach or stay at state 2 (mean around 0◦ -

no vegetation], and underH1: p1 = p2 = q1 = q2 = r1 =
r2 = 1

3
[i.e. tendency to fluctuate between all states]. We

thus use the same CUSUM-like algorithm as described in

[7] with threshold h = 10, but we change the input and the

mean and standard deviation (allowing for a larger value in



Figure 2. (Left) Initial vegetation detection algorithm (blue: ver-

tical, green: horizontal, red: vegetation (class T )). (Right) Less

sensitive vegetation detection (Sec. 7.1). Red shows vegetation re-

gions with high probability (class T ′). Some vegetation regions

are missed, but there are now much fewer misclassifications on

non-vegetation areas.

this case) of the random variables in each state. The selec-

tion of the exact transition probabilities, standard deviations

and threshold h does not significantly change the results as

long as the described behavior is maintained. Intuitively

what we did was to introduce more noise in our observa-

tions since sDi,k is an approximation of the first derivative

of sVi,k. Therefore, the algorithm is now less sensitive to

changes of regular surfaces to irregular surfaces. For a re-

sult of this algorithm see Fig. 2.

7.2. Determination of suspicious scanlines

In order to decide whether a given scanline i could po-

tentially contain a car, we run an online CUSUM-like al-

gorithm on the sequence of acquired data points that are

currently classified as H or V , or are missing (M ). Note

that when we receive a point that is classified as T ′ we stop

this online algorithm. The idea is to now distinguish a reg-

ular surface (which can also contain steps, holes or other

small obstacles) from a region that could contain cars. The

former are characterized by points which would customar-

ily be identified as horizontal H and others corresponding

to steps or other small obstacles which would customarily

be characterized as V . Missing data is possible mainly due

to inability to sense, or less frequently, small holes. Cars

on the other hand are characterized by curved surfaces and

continuous chunks of missing data due to mirrors, windows

or metallic areas Thus, a possible way to capture and con-

trast a ground region to a possible car region is by using two

separate Markovmodels; the one corresponding to a regular

surface should have an enhanced probability in the horizon-

tal H and vertical V states and low probability to missing

statesM . A possible car region on the other hand due to its

curved surface and the persistence of missing data should

be characterized by a higher likelihood of transition from

a horizontal H state to a vertical V and/or a missing state

M and vice versa. We therefore devise an online CUSUM-

like algorithm to detect a change from one Markov model

(regular surface) to another (car). The states of the models

Figure 3. Determination of suspicious scanlines (Sec. 7.2). Trig-

ger points along scanlines shown as brown [blue: vertical, green:

horizontal, red: vegetation (class T ′)]. Two arrows help to visual-

ize two of the triggers. These scanlines contain cars. See the pdf

for color.

are H (state 1), V (state 2) and M (state 3). The algorithm

is the same as in Sec. 7.1 but the transition matrix (3) is

different. The transition matrix (3) specifications for each

Markov model are: under H0: p1 = 0.8, p2 = 0.1, q1 =
0.09, q2 = 0.9, r1 = 0.6, r2 = 0.3 [i.e. tendency to stay

at horizontal or vertical state; state of missing data does not

sustain itself and it most probably reverts to horizontal], and

under H1: p1 = 0.5, p2 = 0.25, q1 = 0.25, q2 = 0.5, r1 =
0.25, r2 = 0.25 [i.e. tendency to change between states].

This online CUSUM sets off a trigger the first time it de-

tects a change from H0 to H1. The threshold used in this

algorithm is h = 1. The selection of the exact transition

probabilities and threshold h does not significantly change

the results as long as the described behavior is maintained.

Example of scanlines that produce triggers can be seen in

Fig. 3.

It is important to note that such a trigger could be set

off not only as a result of the presence of a car region but

also in the presence of vegetation or even (in rare cases) as

a result of a big hole on the ground. Therefore we use this

trigger only as an indicator of a suspicion of the presence of

a car and proceed to run further tests, including the divider

algorithm that follows, beforewe make a final decision. The

next section describes processing in scanlines that contain

triggers.

7.3. Divider detection

Within a scanline that the trigger of Sec. 7.2 goes off a

set of intervals [t1(0), t2(0)], . . . , [t1(m − 1), t2(m − 1)]
that could potentially contain car regions need to be com-

puted. These intervals can contain points currently classi-

fied as horizontalH or vertical V , as well as missing points

M . This is achieved by calculating the dividers t1(p) and
t2(p) (p = 0, . . . ,m− 1). For an example see Fig. 4.

Searching for first dividers. We start by detecting the first

divider t1(p). Initially p = 0. A potential first divider is the



first point along the scanline where there is a transition from

a horizontalH to a vertical V surface. This is due to the na-

ture of the car as an object above the ground.Let us say that

the change to the V surface happens at point k along the

scanline. If the angle sVi,k corresponds to a gradual change

into a vertical surface (i.e. sVi,k < l1 or sVi,k > l2 )1,

then this point is considered as the first divider as it usu-

ally signifies the appearance of a tire. Otherwise (i.e. if

l1 ≤ sVi,k ≤ l2)
2 then the transition is more sudden. That

can identify a bumper or the side of a car or another ver-

tical surface (e.g. a pole or an obstacle). We thus need

to further identify the case of a bumper or the side of car

which is achieved by performing the following additional

test: TestUnder(Xi,k). We compute the Euclidean distance

d(Xi,k − XA) between the k-th point and the origin XA

(i.e. scanner’s location). We also compute the same dis-

tance for L = 30 previous points d(Xi,k−j −XA), for all
j = 1, . . . , L. Out of these distances we compute the max-

imum M . If the difference between d(Xi,k −XA) and M
is small 3 that means that the k-th point is the furthest away
from the scanner. TestUnder(Xi,k) is set to False and in that

case we don’t choose that point as the first divider (this case

corresponds to a vertical obstacle, not a car) and we con-

tinue the search using the algorithm from the beginning of

this paragraph. Otherwise (TestUnder(Xi,k) is set to True,

i.e. the k-th is not the furthest away from the scanner) some

previous points are under the surface of the divider. This is

the case that identifies the location of a potential bumper or

side of car and we declare t1(p) = Xi,k.

Searching for next dividers. Successive dividers are

specified as sudden changes in distances between suc-

cessive points Xi,n and Xi,n+N where N is either one

(i.e. next point in scanline) or greater than one but

all points Xi,n+1, . . . ,Xi,n+N−1 are missing. Thus if

d(Xi,n,Xi,n+N) is above a threshold tsep
4 and the vector

Xi,n+N −Xi,n is forward looking (i.e. does not point back

towards the scanner) then divider t2(p) = Xi,n and divider

t1(p+1) = Xi,n+N. At this point the interval [t1(p), t2(p)]
and the beginning of the next interval t2(p + 1) have been

1We choose l1 = −5◦ and l2 = 20◦. A value of 0◦ corresponds

to an abrupt change to the vertical, since the z axis is the known vertical

direction. We provide a slack around this sudden jump, giving more slack

to positive angles because small steps can be misclassified as tires. Note

that due to the rotation invariance of a tire these thresholds do not have to

be adjusted in the case of inclined ground.
2Note that these thresholds do not have to be adjusted in cases of in-

clined ground surfaces. In that case the transition will appear more gradual

and will be captured by the first test.
3We use the threshold 0.01m. This threshold should be above the stan-

dard deviation of the noise level of the scanner (it is larger by one order of

magnitude).
4We choose tsep = 4m. Our goal is to provide one car within each

interval. That threshold allows in most cases separation between two dif-

ferent car regions. In the cases where the scanline gets two cars very close

to each other two or more cars can be within the same interval. But they

will still be identified as car regions.

identified. Within the identified interval a further test is per-

formed. This test detects whether after the beginning of the

interval a long almost perfectly horizontal surface exists5. If

such a surface is identified from point K to point L within

the interval [t1(p), t2(p)] then that means that we have a

transition from an object to the ground in that interval. In

that case we terminate interval p at K (i.e. t2(p) = K),

we ignore the original divider t2(p + 1) and we restart the

search for the first divider of the next interval p+1 by look-
ing for the first divider once again. This is achieved by ap-

plying the algorithm of the previous paragraph after point

L. Essentially we are looking for another object of interest

within the scanline. Otherwise (i.e. in the case in which the

interval [t1(p), t2(p)] does not contain any long horizontal

region), set p = p + 1 and look for t2(p) and t1(p + 1) by
applying the algorithm of this paragraph.

The intervals [t1(p), t2(p)] do not contain points of class
T ′. This is achieved by terminating the divider detection

algorithm after the first point of the class T ′ is identified (i.e.

point with high probability of being vegetation). A second

termination condition for the divider detection algorithm

is at the first measured 3D point with z-coordinate higher
than a threshold theight. Due to our online computation of

ground surfaces we have a robust estimate of the current

height of the ground at each scanline. We are thus adjusting

automatically theight to be at a reasonable distance above

the current ground estimate (i.e. we are adding 2m to the

ground height). Our algorithm is not looking for cars out of

context.

Further division of intervals Before continuing with

further processing of the intervals [t1(p), t2(p)], p =
0, . . . ,m − 1 in order to decide whether they belong to

cars or not we do a further subdivision of each of the inter-

vals by subtracting long sequences of consecutive vertical

points (these regions are obvious and normally correspond

to strictly vertical obstacles or trunks of trees). This may

result in cutting each interval [t1(p), t2(p)] into disjoint in-

tervals [v1(pj), v2(pj)], j = 0, . . . , r − 1.

7.4. The high verticals algorithm

This algorithm runs within each scanline i and is search-
ing to find the first continuous sequence of vertical points

Xi,k, . . . ,Xi,k+M such that the last point’s Xi,k+M z-

coordinate is well beyond the ground. Since we have a reli-

able estimate of the height of the ground from the algorithm

of Sec. 5 we can robustly set such a threshold (in our set-

ting we add 2.5m to the current height of the ground). If

point Xi,k+M indeed exists then we calculate its horizon-

tal distance dh from the scanner (i.e. length of projection

of Xi,k+M −XA on known horizontal plane) . Now every

point whose horizontal distance from the scanner is greater

5We use a threshold of 3m since it is not possible to find long horizon-

tal regions of that length on car regions. This threshold can be adjusted

appropriately if needed.
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Figure 4. The divider algorithm (Sec. 7.3) in one example scanline.

(Top) Distance between successive points (horizontal axis: index

of scan point - vertical axis: distance between successive points)

[distance is shown as negative when it can not be computed due to

missing points]. After the first divider there are two subsequent di-

viders. This generates three intervals that are displayed with differ-

ent colors (red-cyan-red). Parts of the scanline that are not within

dividers are displayed as purple. The last interval is terminated

due to reaching the limit in theight (see Sec. 7.3). (Middle) Ac-

tual scanline that produced the distance graph shown on top. The

points are displayed with the same color-code as above. Before

the correction, horizontal surfaces on the ground, or tree regions

can be part of the intervals. (Bottom) Same scanline after the cor-

rections. Only two intervals survive and the ground points are not

part of them. The last interval reverts to a tree region by the al-

gorithm of Sec. 7.5 (note that this algorithm is applied on signed

angles and not distances).

than dh cannot take the label of a car (C) since we assume

that no car can lie behind such vertical objects (i.e. vertical

walls or large poles). This check is extremely useful and it

allows us once again not to search for cars out of context.

7.5. Fourier transform for car vs. vegetation

As a result of the divider algorithm of Sec. 7.3 we have

identified the intervals [v1(0), v2(0)], . . . , [v1(r−1), v2(r−
1)] of potential cars.

Our final test consists of transforming the sequence of

points in each of the intervals [v1(j), v2(j)] j = 0, . . . , r−1
into the frequency domain by applying a Fourier transform.

This algorithm is used to distinguish a tree from a car re-

gion. As a result of that we are able to classify each point

in the interval as part class C (car) or C′ (car complement).

As a result of the less sensitive vegetation algorithm of

Sec. 7.1 many regions that are part of vegetation are now

given the classification H or V . We thus need to apply

a test within each of the intervals [v1(j), v2(j)] that clas-
sifies them as tree vs non-tree (likely car). This is done

by transforming the signed angle data sVi for each of the

points in the interval [v1(j), v2(j)] into the frequency do-

main (Fourier transform). In particular, letN be the number

of points in the interval [v1(j), v2(j)] for a fixed j. Since the

numbers sVi are real the array of frequencies repeats itself

for k > N
2
. We thus only need to consider the frequencies

F (k) for k = 0, . . . , N
2
if N is even and k = 0, . . . , N−1

2
if

N is odd. We now select the maximum of these frequencies

MX = max0≤k≤N
2
|Fk| and compute the set of all fre-

quencies S =
{

N
8
≤ k ≤ N

2
; |F (k)| > MX

2

}

, which are

greater than MX
2

. If the set S is empty, then the variation in

the array of {sVi} i = 0, . . . , N − 1 is rather stable signify-
ing a region that is more likely to be a car than vegetation.

If, on the other hand, the array of signed angles results in at

least one frequency that is above half of the maximumMX
this is more likely to signify a high-variation region, in this

case vegetation. Note that the F (0), i.e. the 0 frequency,

is most likely to be the highest one in any case. Our algo-

rithm decides on the classification C (car) when the set S is

empty. If the set S is non-empty the labeling given by the

initial classification algorithm is given to each of the points

in the interval [v1(j), v2(j)].

7.6. Final processing stage

Once all the data has been processed by the Fourier trans-

form analysis of the last subsection, everything that has not

been classified as a car now recovers its original classifica-

tion which was decided upon by the initial vegetation al-

gorithm described in [7]. This concludes the car detection

algorithm.

8. Combination of algorithms

The coarse classification algorithm is the base and runs

online in each scanline producing labels horizontal (H), ver-

tical (V), and vegetation (T). Part (a) of the ground algo-

rithm is run for the first N scanlines in parallel with the

coarse classification algorithm in order to estimate the ini-

tial level of the ground. We then start again from the first

scanline. The following algorithms run in sequence within

each scanline: (1) Part (b) of the ground algorithm that com-

putes and verifies ground points (G) as well as the current

estimate of the level of the ground, (2) the curb algorithm

that generates potential curb points (PC), and (3) the car al-

gorithm. Finally, whenever part (b) of the curb algorithm

identifies a verified curb, we need to revisit (i.e. go back to)

the scanlines that contain the curb. At last we correct (i.e.

revert to the coarse classification labels) any car points that

have been detected behind the curb.

9. Results and Conclusions

We have tested our algorithms on a number of scans

in busy urban settings, which include ground, vegetation,

moving objects, cars and other urban structures. Our acqui-

sition device is the Leica ScanStation2 [8]. This is a time-

of-flight scanner with a spherical field of view, that gener-

ates a sequence of 3D points at a distance of up to 300m

and accuracy of 5mm per point. Visualizations of some re-

sults can be seen in Fig. 5. We have also developed an intu-

itive user-interface for the ground-truth labeling of 3D point



Figure 5. (Top & Bottom) Online car detection results. The de-

tected car point are displayed with yellow color. Horizontal sur-

faces are shown in green, vertical in blue, and vegetation in red.

Ground is shown in white. No offline post-processing has been

performed to the dataset. See the pdf for color.

clouds. We tested our online classification results against

ground-truth and produced precision-recall numbers and the

confusion matrix shown in Table 1. These figures demon-

strate the high accuracy of our algorithms. The precision for

car objects is 0.96 and the recall 0.86. In some cases, per-

sistent spikes (introduced by moving objects) can be iden-

tified as cars. The incorporation of context (ground, curbs,

high-verticals) along with the clever online techniques pro-

vide very accurate results. The fact that no training is in-

volved proves the possibility to generate accurate classifi-

cations using a small set of contextual rules along with in-

novative statistical techniques. Our algorithms consist of

various stages. Each stage is significant (with the exception

of the one of Sec. 7.5 that could be ommitted). Also, the de-

tection of the ground provides an extremely significant cue.

We were very careful in designing the ground-detection al-

gorithm since possible errors in it would be detrimental for

the whole pipeline. Our ground and curb detection tech-

niques provide almost perfect results. Our future work in-

cludes the online classification of different types of urban

objects, as well as combination of online methods with of-

fline techniques. We would also like to evaluate each stage

of the algorithm separately in order to discover its relevant

significance. Finally, we will investigate the effect of learn-

ing the parameters that we have used in our HMM models.
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