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Figure 1. Segmentation pipeline. (a) In this simulated LIDAR setup, the frustum represents a scanner
projecting a beam onto a 3D model. The beam strikes the nearest surface and measures the distance,
rendered here in false color. (b) Similarity based on local plane fitting drives a hierarchical clustering
process. (c) Planar components are refined and merged using a variant of the � -means algorithm.

Abstract

Modern range scanners can capture the geometry of
large urban scenes on an unprecedented scale. While the
volume of data is overwhelming, urban scenes can be ap-
proximated well by parametric surfaces such as planes.
Piecewise planar representation can reduce the size of the
data dramatically. Furthermore, it is ideal for rendering
and other high-level applications. We present a segmen-
tation algorithm that extracts a piecewise planar function
from a large range image. Many existing algorithms for
large datasets apply planar criteria locally to achieve effi-
cient segmentations. Our novel framework combines local
and global approximants to guarantee truly planar compo-
nents in the output. To demonstrate the effectiveness of our
approach, we present an evaluation method for piecewise
planar segmentation results based on the minimum descrip-
tion length principle. We compare our method to region
growing on simulated and actual data. Finally, we present
results on large scale range images acquired at New York’s
Grand Central Terminal.

1. Introduction
Many papers in the range segmentation literature present

algorithms that have advantages when applied to small
meshes or to simple closed objects. Sophisticated ap-
proaches are possible when the number of points is limited
or the topology is known, but the large, complex datasets
produced by modern range scanners favor greedy local ap-
proaches such as region growing. The problem with such
methods is that they do not produce a truly planar segmenta-
tion. Locally planar criteria drive the segmentation process,
but they cannot guarantee output components that are verifi-
ably planar in a global sense. We present a novel framework
for enforcing planarity both locally and globally to produce
a segmentation composed of output components that can be
replaced by polygons with small error. Figure 1 illustrates
our segmentation pipeline. First, a range image is acquired
by a scanner. A local clustering phase groups points to-
gether if they are likely to belong to the same plane. Then,
we refine the set of planes in a global setting using a vari-
ant of the � -means algorithm. Our approach shows that a
�
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combination of simple techniques can be used to produce
high-fidelity segmentation results at a manageable cost.

We borrow liberally from the image segmentation litera-
ture to help us manage the cost of our algorithm. Image seg-
mentation and range segmentation, while closely related,
are not interchangeable. Image segmentation methods typ-
ically use the graph topology of the image grid. In cur-
rent range segmentation work, such as moving least squares
and other point-based methods, the image topology is often
disregarded. The usual range data processing pipeline pro-
ceeds by performing registration and combining the scans
first. Segmentation follows in unorganized point clouds.
We feel strongly that segmentation should come first. Thus,
we perform segmentation on individual range images and
postpone the integration of multiple scans.

Since our goal is to replace planar components with
polygonal approximants, we evaluate our results by mea-
suring the fidelity of the output function to the original data.
We develop a novel method for comparing piecewise pla-
nar segmentations based on the minimum description length
principle. By encoding our output for compression, we
can compare our results directly to the original dataset and
to other segmentations by computing compression ratios.
Tests on simulated range images show that a piecewise pla-
nar representation can approach the ground truth segmenta-
tion, while tests on actual range images show a correspond-
ing empirical improvement over region growing.

2. Related Work

Region growing is commonly applied to large range
datasets because it is fast and easy to implement [2, 3, 9].
Several methods to augment basic region growing use
global techniques in a similar spirit to our work. Gotardo et
al. [8] employ robust statistics to extract seed regions, while
Bab-Hadiashar and Gheissari [1] group inliers by analyz-
ing residuals from parametric fitting. We also perform sta-
tistical clustering, but instead of shrinking clusters to seed
regions, we use the clusters directly, similar to the graph-
based method of Felzenszwalb and Huttenlocher [7]. Their
greedy similarity measure is based on minimum spanning
trees, while our iterative refinement, though not as fast,
gives us greater control over the output.

Our refinement phase, like all iterative methods, con-
verges more quickly the closer the initial guess is to the final
result. Therefore, we use an anisotropic filter to improve the
local plane fit that drives the clustering process. The bilat-
eral filter introduced by Tomasi and Manduchi [13] com-
bines weighting functions in orthogonal domains to create
an edge-aware convolution kernel. Choudhury and Tum-
blin [4] use geometric information in the form of piecewise
linear approximation to improve the bilateral filter near edge
discontinuities. In our purely geometric context, we apply

piecewise linear approximation to range images using a lo-
cal plane fit based on moving least squares [12].

After clustering the points into connected components,
we refine the components using a variant of the � -means al-
gorithm. A form of � -means iteration was used by Cohen-
Steiner et al. [5] to simplify piecewise planar manifolds.
Because the topology is known, they are able to choose the
number of components � arbitrarily. Our refinement phase
expands the applicability of such an approach to the topo-
logically complex surfaces present in raw range images by
fixing � automatically during the clustering process.

To evaluate the final result, we measure the space sav-
ings and the fidelity of the segmentation using a minimum
description length (MDL) criterion. Darrell et al. [6] used
MDL locally to allow neighboring components to compete
for boundary points. Our method also allows competition
between neighboring components, but using global plane
fitting directly ensures that a point belongs to a given com-
ponent only if it fits the output representation. Once we
know that the output truly matches the desired type, we ap-
ply MDL globally to evaluate the final representation.

3. Segmentation Algorithm
Our algorithm proceeds in two distinct phases. The first

is based on local surface fitting, while the second is based on
global surface fitting. A block diagram illustrating our ap-
proach is presented in figure 2. By allowing local and global
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Figure 2. Block diagram. On the left, graph-
based clustering based on local surface fit-
ting generates a hierarchy of connected com-
ponents. Then, on the right, we traverse the
hierarchy bottom-up, refining the subtree at
each internal node by fitting global surfaces
to the individual components.
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notions of planarity to communicate, we expand the range
of evidence available at each point to determine its member-
ship in a component. Using only local relations, boundaries
cannot be resolved cleanly due to ambiguities at corners and
depth discontinuities. In addition, local variations in scale
and sampling rate make suitable thresholds difficult to de-
termine, since no single set of parameters can be optimal in
all areas of the image. By contrast, purely global methods
require additional information beyond the input data points,
such as the number of components we expect to find. We
must bootstrap global methods by aggregating local surface
features or by applying some form of domain knowledge.
Our method is motivated by the observation that local meth-
ods can achieve a partial solution to the planar segmentation
problem while providing exactly the information needed to
initiate a global process of refinement.

The purpose of the first phase of our algorithm is to
build a hierarchical subdivision of the input image such
that the leaf nodes of the resulting tree represent planar
connected components. The second phase then traverses
the tree bottom-up, refining the plane parameters for each
component and merging components where possible. Af-
terward, the set of discovered planes is removed from the
dataset, and the process is repeated on the remaining points.
Since the distribution of similarity weights changes at each
iteration, repeated passes target surfaces with different error
characteristics. Thus, we can distinguish planes at different
depths and sampling rates, and made of different materials.
�	��
���������������������

Computing the similarity measure. Local surface
fitting in actual range data is typically performed using
smoothing operators to combat noise. We use a form of
moving least squares (MLS) approximation to fit planes in
small neighborhoods around each point. Because MLS ap-
proximants are weighted operators that decay with distance,
we can achieve a degree of anisotropy that improves the ini-
tial clustering over simpler isotropic convolution operators.
In our formulation, a local frame is represented by a tuple� �"! #%$'&)(

with origin
#

and normal vector
&

. MLS pro-
jection maps any point

#
within a radius * of the input data

to a point
#

on the MLS surface (fig. 3a). To determine the
radius * , we choose a window size + and use the points in
a +-,.+ neighborhood in the image grid. This choice has
two practical advantages:

1. There is no need to build either explicit connectivity or
search data structures such as � d-trees.

2. Neighborhoods scale automatically to the sampling
rate of the scanner.

The global threshold + is more robust than choosing * di-
rectly would be, because the derived radius scales grace-
fully to adjust for the spread of the scanner beam at different
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Figure 3. Similarity. (a) Project
#

to the lo-
cal frame

�@�A! #	$B&C(
induced by the neigh-

borhood of radius * around
#

. The origin is#
, and the normal is

&
. (b) Distance D�EGF be-

tween
# E and

# F is the sum of point-to-plane
distances D !H# E $B� F ( and D !<# F $I� E ( . Similarity is
the probability, given D EGF , that

# E and
# F be-

long to the same plane.

depths. It is only necessary to determine the general level of
noise in the image, which is related to the error character-
istics of the scanner. For the Leica HDS 2500 [11] scanner
used in our study, a small JK,LJ window is generally satis-
factory, with MN,OM or P�,�P windows being useful sometimes
if the surfaces in the image are bumpy or if they are made
of absorptive materials that partially degrade the signal.

The local frame at
#

is determined by minimizing the
weighted least squares functional

Q �SRNTURV
EXWZY
[ !H# E]\ #�(%^_&�`_acbd!Bef# E�\ #Neg(f$ (1)

where
b

is the weighting function. We define
b

using the
tail probability of the normal distribution

bh!<ij(N�lk \nm !Hij(f$ (2)

where m !<ij(o�p!HqZr s�t�(fu Y]v)wu]x y_z|{ [ \ !<} \�~ ( a:� !�s�q a (�` D }
is the cumulative distribution function with mean ~ and
standard deviation

q
. The tail probability is the probability

that a normally distributed random variable exceeds
i
. We

prefer the tail probability to simpler weighting functions be-
cause it never decays so rapidly that all of the weights van-
ish. Parameters ~ and

b
are determined by fitting a normal
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distribution to the distance values
ef# E�\ #Ne . We minimize

the MLS functional (eq. 1) at
#

by computing the singular
value decomposition (SVD) of the weighted covariance ma-
trix of the points

# E in the neighborhood of
#

, centered at
their mean position

#
. The SVD produces the matrix �.�

of right eigenvectors containing the normal vector
&

cor-
responding to the smallest eigenvalue. In addition, since� � encodes the rotation from world coordinates to the lo-
cal frame, it is convenient to compute the perpendicular dis-
tance from a point

#
to a plane

�
as

D !<#%$B��(�� � � !H# \ #Z(C^�&N� (3)

To compute the distance between two points
# E and

# F
(fig. 3b), we sum two perpendicular projections

D�E�F ��� D !<# E $B� F (g�_��� D !<# F $I� E (_��� (4)

Cut the graph by thresholding edges. The search for
planar components begins by representing the image as a
weighted graph, then removing edges from the graph by
histogram thresholding. We compute point-to-point dis-
tance (eq. 4) for each edge between a pair of � -connected
vertices in the image. Then we generate similarity weights
by fitting a normal distribution to the distance values and
scoring edges using the tail probability (eq. 2). The chang-
ing distribution of weights makes it possible for repeated
application of the clustering method to find different sets
of planes. By contrast, region growing would produce the
same components on each pass no matter how many points
were removed from the dataset, unless some mechanism for
automatically adjusting the parameters were devised.

By generating a histogram, it is easy to determine a suit-
able threshold automatically by the midpoint method. First,
we initialize the threshold to the mean weight. Then, we
partition the weights into two groups above and below the
threshold, and compute the mean of each group. The mean
of the two means becomes the new threshold, and the pro-
cess iterates until convergence. Implicitly, we are positing
that the distribution is bimodal. One mode corresponds to
all edges connecting coplanar points, while the other mode
corresponds to all edges that cross discontinuities.

Once the threshold is chosen, removing edges with
weight below the threshold cuts the graph into connected
components. Then, we filter the components, searching for
planar pieces. A component is rejected immediately if it
has fewer points than some minimum number � . Other-
wise, we treat each component as a candidate plane by fit-
ting plane parameters to its constituent points. To estimate
the parameters, we construct an unweighted covariance ma-
trix in homogeneous coordinates, and solve for the eigen-
vector corresponding to the smallest eigenvalue using SVD.
The eigenvector is a plane equation in point-normal form� ��!�&N$���(

, where
&

is the surface normal and
�

is the per-
pendicular distance to the origin. The distance between a

Figure 4. Three levels of hierarchical clus-
tering from top to bottom. Left: Initially,
all points are nonplanar (red) and connected
by weighted edges. Removing low-weight
edges cuts the image into components. Pla-
nar components (white) are removed, while
the remaining components are processed re-
cursively. Right: hierarchical subdivision of
regions shown as a tree structure.

point
#

in space and a global plane
�

is
� !<#%$ � (���&.^_#��.���

(5)

If the standard error of the residuals is smaller than a pre-
determined tolerance � , then the candidate is planar. We
recurse on the nonplanar candidates, creating a hierarchy
of nested components with the planar components stored in
the leaves (fig. 4). The global threshold � limits the depth
of the component hierarchy. It can be determined by cur-
sory inspection of the data, such that � corresponds to the
smallest planar component desired. The threshold � can be
set according to the manufacturer’s error estimate for the
scanner used to create the image. For the HDS 2500, we
used � ��� mm for all of the examples shown, based on the
positional accuracy provided by Leica.
�	�H�%���n�h�����������C�

After constructing the hierarchy, refinement proceeds
bottom-up by the � -means method using objective function

� �  ¢¡X£¤'¥h¦�§B¨¦ª©�«
¬V
EXWCY
V
¯® ¥�¦

� !<#%$ � E (c$ (6)

where the °�E are disjoint components. The children of each
node of the component hierarchy partition its points into

4



connected subspaces, each containing a set of plane param-
eters that are fitted to the constituent points. By alternately
relabeling the points, then updating the parameters, we it-
eratively converge to the largest and most accurate planar
components we can find.

Relabel the points by plane projection. During
bottom-up traversal, we update membership in the current
node by projecting each point to the set of child planes and
allowing the point to join the closest child. Most points re-
join the same child, but adjacent components compete along
their boundary, which makes our algorithm particulary ef-
fective at corners. Planarity is enforced using a threshold�U± �² ¢¡ª£�! � $B³�q E ( where

q E is the standard error of the ´ th
component. Using a multiple of the standard error tends to
clip peaks, which we repair in a post-processing step by di-
lating components subject the threshold �h± ± �µ!<¶·��k:(>q E
where

¶
is the number of neighbors that belong to compo-

nent ´ . This constraint fills small holes liberally, but restricts
growth along the boundaries.

Refit planes to the new components. After relabel-
ing the points, we recompute the plane parameters for each
child to reflect the change in membership, repeating the pro-
cess until the membership stabilizes. Then, we remove the
parent, promote the child segments one level, and continue
traversing upward to the root. As we travel up the tree, we
fit our candidate planes to larger and larger sets of points,
and our confidence in the accuracy of the fit grows.

Overfitting occurs when adjacent, coplanar components
are created in different branches of the hierarchy. Redun-
dant planes are also removed during post-processing by test-
ing the fit of each plane to the points in adjacent compo-
nents. We use global point-to-plane distance (5) to project
the points from one component into the plane of the other,
merging components if the error distributions agree.

�	�<�%��¹¸)��º��»�h¼N�H��½�¾¿�NÀZ�H½	�Á���
In the best case, our algorithm is a typical recursive

divide-and-conquer algorithm, which runs in Â !H¶OÃXÄ	¶�(
time. Unfortunately, we usually cannot label all of the
points on the first pass. Consider two planes meeting at
a corner. Local neighborhoods degrade in quality as they
approach the corner because outliers cross the edge discon-
tinuity. However, if one of the surfaces can be extracted, its
points no longer pollute the distribution of the other. There-
fore, repeated passes often reveal finer levels of detail.

In the worst case, one component containing the mini-
mum number of points is extracted on each pass, and total
the running time is Å !<¶ a ( . To investigate the average case,
we segmented

s J actual range scans from Grand Central
Terminal at their full size of P�PÁP., PÁP�P pixels. We also
tiled the images into

k , s , s , s , ³ , ³ , �K,Æ� , J¢,.J , andÇ , Ç regions. Results appear in figure 5. For tiled images,
we recorded only the worst running time encountered. Error
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Figure 5. Timing. Log-log plot of number of
points vs. mean running time for 25 scans on
a 3GHz Intel Xeon 5160 processor with + � 5,� � 6mm and � ranging from 400 points at
full size down to 40 for the smallest tile. Error
bars indicate minimum and maximum times.
The best-fitting line has a slope of 1.3.

bars indicate minimum and maximum times—the spread re-
flects dependence on image content. A straight line through
the mean values in the log-log graph suggests an average
case power law relationship with a slope of

k�� ³
. The aver-

age case running time appears to fall closer to the best case.
Our algorithm is implemented in C++ on a Linux sys-

tem with data structures and procedures from the Standard
Template Library and Boost. For linear algebra, we use the
hardware-optimized ATLAS library integrated with CLA-
PACK. We compute the right tail probability (eq. 2) using
the GNU Scientific Library.

Finding the major planes in
s J range images of Grand

Central Terminal took an average of
� P minutes on a 3GHz

Intel Xeon 5160 processor. The complex example in fig-
ure 6 took three hours to find major planes covering

�ÁÈ
%

in the image (see inset). On subsequent runs, we increased
the window size to approximate the curved ceiling, and we
decreased the window size to capture fragments formed by
partial occlusion. A large � �µs cm captured the fenes-
trated panels at either end of the Main Concourse. Since� affects the depth of the component hierarchy, it can have
a great impact on running time. Nevertheless, the Grand
Central Terminal dataset is highly complex, so we included� � J È , which took over M hours to run on average. Even
with such a small number of points per component, how-
ever, our method was able to avoid nonplanar areas such as
the hanging lamps in figure 6 robustly.
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Figure 6. Segmentation results for a 999 x 999
range image of Grand Central Terminal.
Black denotes holes where the scanner failed
to return a value. Red denotes points clas-
sified as nonplanar by our algorithm. Eight
other colors are assigned randomly to differ-
entiate the planar regions. The inset shows
the major planes found in the first of four
runs ( + � 5, � � 6mm, and � � 400).

4. Experimental Results

Hoover et al. [9] first compared planar segmentations us-
ing a collection of heuristic counts. More recently, Jiang et
al. [10] examined statistical distance measures, including
an information-theoretic distance derived from mutual in-
formation. In the same vein, we designed a practical
information-theoretic evaluation procedure based on MDL,
using the byte coder bzip2 as a proxy for entropy. We pa-
rameterize each component in a coordinate frame that min-
imizes the variance in É . If the constituent points are truly
coplanar, the É -coordinates of all such points will be close
to zero in parameter space. After quantization, the greater
proportion of zero bytes in the data stream leads to a better
compression ratio. For each component,

1. Fit a least squares plane.

2. Transform each point to the local coordinate frame.

3. Quantize the transformed values.

After transforming each component, we write the quantized
values to a flat file, and compress the file using bzip2.
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Figure 7. Evaluation. Minimum description
length comparison between region growing
and our method on simulated LIDAR images
with fixed amounts of white noise added.

(a) region growing (b) our method

Figure 8. Failure modes. Region growing
tends to underfit, while our method is more
likely to overfit. (a) One component spans
two faces of the icosahedron. (b) One face
of the cube is described by two components.

We compared our results to the region growing method
of Chen and Stamos [3]. Figure 7 shows the results of di-
rect comparison on simulated LIDAR images. Since the
simulated examples are constructed to match our assump-
tions about the surfaces in a range image, our algorithm
predictably approaches the ground truth compression ratio.
Cases in which our method seem to beat ground truth cor-
respond to overfitting. Region growing, on the other hand,
consistently undersegments. A comparison of failure modes
is presented in figure 8.

Results on actual data are more difficult to interpret, be-
cause region-growing treats smoothly curving surfaces such
as the ceiling of the Main Concourse as one connected com-
ponent, while our algorithm cuts curved surfaces into planar
pieces. Nevertheless, our results were consistent with the
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(a) region growing (b) our method

Figure 9. Actual data. 3D point rendering
of two detail comparisons between region
growing and our method on range images
from Grand Central Terminal. Our method
produces tight corners, and it correctly dis-
tinguishes parallel planes that are separated
by small depth discontinuities.

simulated results in
k:s

trials on actual data. On simulated
data with

�
mm of noise, our method achieved an average

compression ratio of
sU� M k vs.

sU� �Á�
for region-growing. On

actual data, our method achieved a ratio of
s|� M s vs.

s|� �¯M for
region-growing. Two examples from Grand Central Termi-
nal are rendered using 3D points in figure 9. These areas
contain both planes and sculptural detail. Our method ex-
tracts planes with great precision, especially in corners, and
it is able to distinguish difficult cases such as parallel planes
that are separated by small depth discontinuities. Additional
examples on full-size scans are presented in figure 10.

5. Conclusion
The main contribution of our work is a unified frame-

work for range segmentation utilizing local and global
methods driven by a single model. In our novel framework,
a simple hypothesis test negotiates with a simple iterative
refinement step to narrow down a huge range of possible
scales, orientations, and noise levels.

Many previous segmentation methods are not directly
comparable to our algorithm because they do not yield a
planar segmentation. They do not distinguish between flat
and curved surfaces, they group non-coplanar regions, and
they perform poorly on edges. The remedy we propose is

to evaluate the output components dynamically. By using
a single model both to select components locally, and to
evaluate those components globally, we can resolve highly
ambiguous configurations of points. It is this unification of
local and global methods around a single model that allows
us to produce a truly planar segmentation.
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(a) Photograph of the Grand Concourse. (b) Southwest corner.

(d) East end / Entrance to 42nd St. passage. (c) South side / Ticket booths.

Figure 10. Segmentation results for 999 x 999 range images taken inside Grand Central Terminal.
Black denotes holes where the scanner failed to return a value. Red denotes points classified as
nonplanar by our algorithm. Eight other colors are assigned randomly to the planar components to
differentiate the regions. (a) A photograph of the Grand Concourse, facing east. (b) Planar areas
yield high fidelity components with sharp corners. Our method can also handle noisy components
with complex topology, such as the large fenestrated panels. (c) Piecewise planar approximation
of smooth curved surfaces such as the vaulted ceiling are easy to generate. (d) Highly nonplanar
areas such as ticket windows that cannot be approximated well by piecewise planar components are
correctly identified and excluded.
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