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Abstract

One of the most significant problems in the area of 3D
range image processing is that of segmentation and classifi-
cation from 3D laser range data, especially in real-time. In
this work we introduce a novel multi-layer approach to the
classification of 3D laser scan data. In particular, we build
a hierarchical framework of online detection and identifica-
tion procedures drawn from sequential analysis namely the
CUSUM (Cumulative Sum) and SPRT (Sequential Proba-
bility Ratio Test), both of which are low complexity algo-
rithms. Each layer of algorithms builds upon the decisions
made at the previous stage thus providing a robust frame-
work of online decision making. In our new framework we
are not only able to classify in coarse classes such as verti-
cal, horizontal and/or vegetation but to also identify objects
characterized by more subtle or gradual changes such as
curbs or steps. Moreover, our new multi-layer approach
combines information across scanlines and results in more
accurate decision making. We perform experiments in com-
plex urban scenes and provide quantitative results.

1. Introduction
The photorealistic modeling of large-scale scenes, such

as urban structures, has received significant attention in re-
cent years [9]. Outdoor urban environments are complex
due to the variability of objects (such as buildings, people,
cars, street level structures, roadways, curbs, etc. - see Fig.
1), occlusions, partial views, multiple resolutions and noise.
On the other hand, indoor scenes face similar challenges
due to clutter, significant occlusions as well as variability
of materials (such as glass or metal). One of the most sig-
nificant problems is that of segmentation and classification
from 3D laser range data. Time-of-flight laser scanners ac-
quire 3D points sequentially. In that set-up, it makes sense
to develop classification techniques that operate on-the-fly,
as data is being acquired. Even in the case of other scanner
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technologies, real-time classification through fast sequen-
tial techniques is desirable. Important applications include
augmented reality, and scene understanding for robotics.

In this work we develop a system for the sequential clas-
sification of 3D points captured by a range scanner, by in-
troducing a novel hierarchical framework which consists
of various low-complexity change-detection algorithms. A
change detector is defined as a method that distinguishes
between two states from a stream of observations. In our
previous work [15], it was shown how the basic format of
the CUSUM/SPRT change-detection algorithms (to be de-
fined in Sec. 4) could be used to build a toolbox of use-
ful sequential classifiers. In the current paper, we introduce
a novel hierarchical classification framework by extending
this basic scheme. This results in a robust and efficient set
of routines for online classification.

Hierarchical information processing is ubiquitous and
has proven very useful in artificial intelligence, particularly
in the field of neural networks. With this in mind, we ex-
plore the idea of building a hierarchy of change detectors.
Within this framework, while the first layer of processing
may involve detecting changes in distribution directly on
the sensor output, subsequent layers of the hierarchy re-
ceive input in the form of alarms emitted by change de-
tectors lower in the hierarchy. We are classifying points
acquired by a 3D range scanner into one of the categories
{vegetation, vertical, horizontal, curb}. Note that the
location of curbs can be used for identifying drivable terrain
and can serve as a cue for the identification of other objects
of interest. This procedure can be adapted for detection of
various step-like changes (such as stairs for instance).

In the next section we review related work. Then in Sec.
3 we provide an overview of our system. Sec. 4 describes
the basic CUSUM and SPRT hypothesis testing procedures.
Secs. 5 through 7 go into more detail about the components
of our system, and in Sec. 8 we discuss the complexity of
the algorithm. Finally, in Sec. 9 we present experimental
results on a collection of 3D urban scenes.
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Figure 1. Part of 3D range scan of a complex urban scene.

(a) (b) (c)

Figure 3. Close up view of second layer processing for the vertical class. From an input classification δ(1)ij (a), the SBIJ statistic (b) is
computed in an online-fashion and then fed into a second layer CUSUM, giving the out classification in (c).

2. Related work

Classifying different types of objects has received a great
deal of attention in recent years [3, 10, 2, 15]. Most work in
3D vision is based on the detection of features and the use of
machine learning techniques for classification in an offline
fashion. In [4], urban objects are segmented and classified
by comparing them to annotated examples using shape and
contextual features. In the early work of [6], spin-image
features are used for the recognition of objects in cluttered
scenes. In [3], the Maximum Margin Associative Markov
Networks for point cloud labeling were introduced. [19]
extended it with more classifiers, while [8] generalized it to
high-order Markov Random Fields (MRFs) using the Func-
tional Boosting method. [20] presents a multi-stage infer-
ence procedure that uses point cloud statistics to learn re-
lational/contextual information between classes, while [12]
presents message-passing methods for classification. The
technique is applied to point cloud classification and 3D sur-
face estimation from single images. The work of [17, 18]

involves the recognition based on keypoints, while [14]
provides a comparison of various 3D keypoint descriptors
(such as [13]) within the context of classification.

However, these techniques assume that the data becomes
available all at once, as opposed to sequentially. Online de-
tection techniques have been used in 3D Computer Vision
but mainly in the context of a moving car [7, 16], where
rough object types need to be identified for determination
of drivable vs. non-drivable surfaces. Our earlier work [5]
constructs online detection techniques to classify points in
one of three classes, namely horizontal, vertical and veg-
etation by exploiting the sequential nature in which data
points are acquired by the 3D laser range-scanner. Yet, the
techniques developed therein use only a first layer of online
classification algorithms which are limited to information
provided within each scanline and thus fail to combine vital
information contained across scanlines.

Considering a comparison to more standard approaches,
the online nature of our algorithm means that as soon as data
begins streaming in, the classification of each new point re-



Figure 2. Description of laser-scanning mechanism. A set of laser-
beams are emitted in a sequential fashion. The angle between the
beams in the vertical direction is α and in the horizontal β. The
device measures the distance between the center of projection and
the surface point along the beam direction. Each point is acquired
sequentially in a raster-scanning order (i.e. first column then sec-
ond column, etc., within a column first row, second row, etc.).

quires a constant amount of time, comparable to the acqui-
sition time. This is in contrast to methods based on, e.g.
MRFs, where inference is a global operation involving op-
timization. At the same time, we are able to achieve some
benefits of MRFs-namely the ability to enforce smoothness.
In MRFs this is achieved through pairwise or higher order
potential functions while here we use aggregation (Sec. 7).

Finally, hierarchical systems involving change detection
have been explored for instance in [1]. In that work, a two
level change detection procedure is described, in which the
rise of an alarm from one change detector activates another
change detector that confirms or rejects the alarm raised by
the first. Also, intrusion detection systems have employed
change detection schemes at various stages of processing.
In these systems, the output of change detection elements
serve as input to other processing modules. However, a
novel feature of the present work is that we use the output of
one change detector as the input to another change detector.
This is reminiscent to the fact that neural networks are not
just hierarchical information processing systems, but they
are hierarchies of homogeneous components, wherein the
output of one can serve as input to another.

3. System overview
Our system consists of three stages. The first layer pro-

duces a coarse classification of points into one of the classes
{vegetation, vertical, horizontal}. This is done via a se-
quential approach using the CUSUM and SPRT procedures,
which are described in the next section. The second layer
implements pattern detection on this classification. This is
relevant for object classes that can be characterized by a cer-

tain pattern of alarms produced by change detectors. Curbs
are an example of this; they can be identified by a pattern of
the form “horizontal→ vertical→ horizontal”. This is de-
scribed in more detail in Sec. 6. The final layer is aggrega-
tion, which eliminates noise in the first layer classification
by taking into account observations from larger neighbor-
hoods. This is described in Sec. 7. Although each stage
serves a different purpose, a single methodology is used in
their design: (1) identify useful summary statistics on the
input and (2) apply sequential identification and/or detec-
tion routines in the proper combination on these statistics.

Time-of-flight range scanners acquire 3D points in a se-
quential fashion, whereas triangulation-based scanners can
acquire a larger number of points at once. In both cases,
the 3D points are organized in a structured grid manner, as
shown in Fig. 2. As a result, we acquire a grid of 3D points
Pi,j = [xij , yij , zij ], for i = 1, . . . ,M and j = 1, . . . , N .

Let us first introduce the collection of major object
classes C = {Ck}, k = 1, . . . ,K that are present in a scene.
We then focus on the specific class Ck for a fixed k which
we denote by C and define the indicator variables

1ij =

{
1 iff Pi,j is of class C
0 otherwise, (1)

and the decision variables

δ
(r)
ij =

{
1 iff Pi,j is decided to be of class C
0 otherwise, (2)

where r denotes the stage in which a decision is taken with
r = 1, . . . , R and i = 1, . . . ,M , j = 1, . . . , N . In fact,
the decision rules at stage r+ 1 are built on top of statistics
of decisions made at stage r. This enables us to compute a
coarse classification into major classes at first and to subse-
quently use this initial classification to identify patterns that
characterize more detailed objects. The final layer of clas-
sification is used to robustify decisions on object types by
combining information in adjacent scanlines.

To be more specific, we list the different classifications
we intend to achieve in the following three layers:

Layer 1 We first classify the 3D points in one of three classes
C1 : Horizontal, C2 : V ertical, C3 : V egetation,
using information within each scanline.

Layer 2 We then further classify the 3D points into given pat-
terns. One of these patterns could be a transition
from horizontal to vertical and then back to horizontal.
Based on the height of the vertical region such a pat-
tern would signify the existence of a curb. Note that
other similar patterns (such as steps) can be detected
following the same paradigm.

Layer 3 Finally, we aggregate the above classifications, by
combining results from neighboring scanlines.



It is important to mention that δ(r)ij are not necessar-
ily determined at the time the point Pi,j is scanned. In
the examples developed below, δ(R)

ij is determined based

on a statistic whose value depends on the decisions δ(r)ij ,
for r = 1, . . . , R − 1 computed after a window of size
n × n (which requires at least n scanlines) becomes avail-
able. Using information across scanlines results in, as ex-
pected, more robust and accurate decisions.

4. Online detection and identification algo-
rithms

This work builds off well known algorithms from se-
quential analysis. Many online classification tasks can be
phrased as the problem of detecting the time at which the
process generating observations switches from one statisti-
cal mechanism to another. The CUSUM (Cumulative SUM)
change-detection procedure is one such change detector,
and is known to satisfy a number of optimality conditions
[11]. Closely related is the SPRT (Sequential Probability
Ratio Test), a sequential hypothesis testing scheme [11]. We
use various combinations of these two procedures to clas-
sify points, as described below.

We briefly review the CUSUM and SPRT. More details
can be found in [11]. To describe the CUSUM and SPRT
rules we begin by considering the summary statistic or ob-
servation Vi,j for j = 1, 2, . . . , N associated with each
point Pi,j for every fixed scanline i. There are two hy-
potheses at hand regarding the distribution of these sum-
mary statistics, namely

H0 : Vi,j i.i.d. ∼ f0(x), j = 1, 2, . . . , N

versus (3)
H1 : Vi,j i.i.d. ∼ f1(x), j = 1, 2, . . . , N

and two cases stemming from them:

1. The observations followH0 for j = 1, 2, . . . , v−1 and
H1 for j = v, v+1, . . . , N , where v > 0 is the change
point.

2. The observations follow either H0 or H1 for all j =
1, 2, . . . , N .

In the first case the objective is to stop and declare an alarm
as soon as possible. The CUSUM stopping rule is known
for its optimal property of balancing the trade off between
a small detection delay for any given tolerance on the mean
time to the first false alarm. It is defined as

T (h) = inf{j > 0;uj ≥ h} (4)

where u0 = 0; uj := max{0, uj−1 + g(Vi,j)} and

g(x) = ln
f1(x)

f0(x)
(5)

Figure 4. A demonstration of the aggregate statistic SBIJ compu-
tation for a window of size 5 × 5. The places in the window with
δ
(1)
ij = 1 are labeled as 1. For each location (i, j) with δ(1)ij = 1

we calculate the Euclidean distances between Pij and every other
point Pkl with δ(1)kl = 1 in the same window. For a demonstration
we show three such locations as circles in the figure.

The threshold h is then determined by the user’s tolerance
on the mean time to the first false alarm, namely

EH0 [T (h)] = γ. (6)

In the second case the objective is to decide between H0

and H1 by devising a sequential decision rule (s.d.r.) which
is a pair of a stopping rule S and a decision variable ∆S

the latter of which takes values in {0, 1} corresponding to
hypothesesH0 andH1 respectively. The idea is to devise an
s.d.r. that minimizes the number of observations required to
make a decision subject to given type I (PH0

(∆S = 1) =
α) and type II (PH1

(∆S = 0) = β) error probabilities. It is
known that the SPRT S enjoys such an optimality property
[11] where

S = inf{n ≥ 0; g(Vi,j) /∈ (a, b)}

with g(Vi,j) as in (5) and the constants a and b are defined
through b ≈ log 1−β

α , a ≈ log β
1−α . The decision variable

takes the value 1 if exit takes place on b and 0 if exit takes
place on a. Note that the implementation of the these algo-
rithms only requires the ability to evaluate the ratio of the
likelihoods under each hypothesis.
5. First layer: Coarse classification

The first stage of processing in our system is a prelimi-
nary classification of points into one of several classes. This
is performed as in [15]. As an example of the first layer of
algorithms, we consider classifying point Pi,j as vertical,
generating the decision variables δ(1)ij . A summary statistic
which can be used for this can be calculated from the se-
quence Di,j = Pi,j+1 − Pi,j defined within each scanline
i. We define the sequence Vi,j j = 1, . . . , N as the angles
between the vectorDi,j with the pre-determined z axis. See
Fig. 5a for a visualization of this statistic. The resulting se-
quence can then be modeled as Gaussian variables {Vi,j}
, j = 1, 2, . . . , N with a different mean under each of the
hypotheses H0 and H1 respectively. More specifically, hor-
izontal surfaces are characterized byEH0

[Vi,j ] = µ0 = 90◦



while vertical surfaces by EH1 [Vi,j ] = µ1 = 0◦. We as-
sume that the scanner is initially placed on a horizontal
surface and as such the CUSUM stopping rule (4) is de-
signed to detect a change from the mean µ0 to the mean µ1

above. Under the Gaussian distributional assumption the
form of g(x) in (5) becomes g(x) = −

[
x− µ1+µ0

2

]
which

ensures the proper functionality of both CUSUM and the
subsequent SPRT rules.

To concretize the final values of our decision variables
δ
(1)
ij , suppose that the CUSUM stopping rule T of (4) goes

off at observation L. We then run the SPRT and suppose
it stops at observation L + Q after exit on the right (i.e.
∆S = 1). Then δ(1)ij are set to 1 for all j, such that L ≤
j < L + Q. Also δ(1)ij is set to 0 for all j with j < L. The
SPRT is repeated starting from observation L + Q + 1. If
∆S = 1 at observation L+Q+X then δ(1)ij are set to 1 for
all L+Q+ 1 ≤ j < L+Q+X and to 0 if ∆S = 0. The
SPRT is repeated from observation L + Q + X + 1. The
reader may consult [15, 5] for more details.

6. Second layer: pattern detection

Information about where curbs are in a 3D scene can be
very useful low level information for tasks further along a
pipeline. For instance it can be used to help detect driv-
able terrain for autonomous driving or mapping applica-
tions. Information about curbs can also be used as con-
textual information when classifying building facades or
ground/sidewalk areas.

Our curb detector is a component of second layer pro-
cessing, meaning that curbs are detected by a combination
of CUSUM/SPRT procedures whose inputs are a signal de-
rived from a combination of CUSUM/SPRT outputs at the
first layer of processing described in Sec. 5. The form of
the statistics used for curb detection are motivated by a few
simple observations about curbs and the area surrounding
them. Firstly, there is a gradual change in the height of
points where a curb occurs, going from very close to the
ground to the sidewalk. Secondly, the curb appears as a ver-
tical segment of short length between two horizontal sec-
tions (before and after the curb). Therefore, we use both
the height of points above the ground (determined by their
z-coordinate), and the output of the vertical classifier δ(1)ij to
construct the statistic used for curb detection.

In particular, the summary statistics Vi,j , j =
1, 2, . . . , N will be the z-coordinate of each point Pi,j . We
then make distributional assumptions for Vi,j according to
the hypotheses (3). In particular we set f0(x) = φ(

x−µg

σ )

and f1(x) = εjφ(
x−µg

σ ) + (1 − εj)φ(
x−µpw

σ ), where µg
stands for the mean of the z-coordinate on the ground and
µpw stands for the mean of the z-coordinate on the pedes-
trian walk. Note that φ(x−µσ ) is the Gaussian kernel with
mean µ and variance σ. Both parameters µg and µpw can

be estimated from prior data as can σ which is usually esti-
mated as a fraction of the difference between µg and µpw.
The parameters εj j = 1, 2, . . . , N use the classification
variables δ(1)ij as follows:

1. εj = 0 for all j = 1, . . . , v, where
v = min{m; δ

(1)
im = 1},

2. εj = kη for j = v + k, k = 1, 2, . . . , u, where
u = min{m > v; δ

(1)
im = 0} and η is set to

1
# points in pattern of interest .

We can estimate the # of points in pattern of interest us-
ing the distance from the scanner, the scanning resolution,
and from prior data.

The intuition behind the above is as follows. The dis-
tribution f0(x) describes the state of the world before the
appearance of the curb. Before a curb, the z-coordinates
should be around the mean z-coordinate for the ground.
Then, there is a gradual change to the z-coordinate of the
pedestrian walk. The 3D points that are part of this grad-
ual change should have been classified as vertical from the
classifier of the previous level. The distribution f1(x) is a
mixture model that describes just that gradual change, by
taking into account the classification of the previous level
in the form of the parameters εj that act as weights.

The above discussion largely assumes that the curb is not
running parallel to the scanning direction. For curbs paral-
lel to the scanning direction, performing the sequential pro-
cessing in the direction across scanlines would be sufficient.

Using the above distributional assumptions we use the
algorithm described in the second paragraph of Sec. 5 to
determine the decision variables δ(2)ij (i.e. the curb classi-
fication). Fig. 5b shows a curb detected by this procedure.

7. Final layer : aggregation
The first or second layer of algorithms produce a local

decision per point, which may be noisy. The goal of the
final layer is to aggregate the results of the first (or sec-
ond) layer algorithms, by focusing on aggregating first (or
second) layer decisions δ(1)ij (or δ(2)ij ). In the next two sec-
tions we consider the aggregate statistic and the final layer
CUSUM on the statistic that we use to achieve this.

7.1. Aggregate statistic

We consider windows of size n×n that run sequentially
on the result of the previous layer (for example on the δ(1)ij
shown in Figs. 3(a),6(a)). We can consider various aggre-
gation functions on this window. One proposed function
is described below. At each position (i, j) in the n × n

window for which δ
(1)
ij = 1 has been provided from the

first layer, we can calculate the distances in the Euclidean



(a) (b)
Figure 5. (a) Signed angles summary statistic. The color of each point is related to its signed angle (red denotes no input). (b) Result of
curb algorithm. Red points indicate detected curb.

space between point Pi,j and every other point Pk,l with a
δ
(1)
kl = 1 in the same window. A window is represented

by its lower left corner (I, J) and its size n. Within each
window we calculate the following aggregate scalar as the
summary statistic:

SBIJ =

I+(n−1)∑
i=I

J+(n−1)∑
j=J

K(I+(n−1)−i) δ(1)ij Di,j , (7)

where

Di,j =

I+(n−1)∑
k=I
k 6=i

J+(n−1)∑
l=J
l 6=j

δ
(1)
kl GI,J(||Pi,j − Pk,l||)

and I = 1, . . . ,M − n+ 1, J = 1, . . . , N − n+ 1. GI,J()
is the Gaussian kernel φ

(
x−µ
σ

)
with mean µ equal to the

sample mean of all pairwise distances between points Pi,j
with δ(1)ij = 1 in the window, and variance σ2 the sample
variance of the same pairwise distances. K() is a Gaus-
sian kernel of 0 mean and of standard deviation σ = n/5.
For a given window size n, the values K(n− 1), . . . ,K(0)
need to be computed once. The kernel values K(i) act as
weights in order to favor points closer to the direction of
movement of the window. Note that when the distance be-
tween two points is close to the sample mean, the Gaussian
kernel GI,J() will be close to its maximum value. For large
pairwise distances the Gaussian kernel will be close to zero.
Therefore, in windows with many points that are tightly
concentrated in space, SBIJ will be large. In windows with
a few points that are away from each other in space, SBIJ
would be small. In addition, we favor distances from points
closer to the window movement direction (via the use of
K()), because we want to accelerate the increase of SBIJ
as the window is moving from an area of low concentration
of points to an area of high concentration.

The fact that the mean of GI,J() is the sample mean and
variance of pairwise distances in the window is important.
Areas of further away objects are sampled less densely from
areas of close objects. That means that the pairwise dis-
tances in windows of further away objects will be larger,
than the ones from close by objects. The use of the sample
mean and variance removes the bias generated by denser
sampling of the closer to the scanner objects.

An illustration of how the statistic is computed is given
in Fig. 4. The statistic requires many pairwise distances to
be computed; these can be cached for efficiency. Figs. 3 and
6 show the SBIJ statistic and the refined classifications, in
the case of vertical and vegetation respectively. In each case
we find that noise has been reduced significantly.

7.2. Final layer CUSUM

As stated above, a CUSUM procedure is run on the SB
statistic. Assume that we have calculated the decision vari-
ables δ(1)ij for the vegetation class. We now calculate the
SBIJ statistic on an n× n moving window both in a verti-
cal (i.e. fix scanline I and vary J = 1, . . . , N−n+1) and in
a horizontal direction (i.e. fix J and vary I = 1, . . . ,M −
n + 1). Initially the procedure assumes that the category
is absent and is thus detecting a change from the hypothe-
sis H0 = No vegetation to H1 = V egetation present.
Once the change has been detected, a separate test takes
over which detects the change from H1 back to H0. Specif-
ically, focusing on scanline I , a change from H0 to H1 is
detected as Tc = min{k; dk > h} where

dJ = max

{
0, dJ−1 +

(
SBIJ −

µ0 + µ1

2

)}
,

for J = 1, 2, . . .. The parameters to be chosen in the above
are the threshold h and the means µ0, µ1, which should cor-
respond to the mean of the SBIJ statistic under H0 and H1



(a)

(b)

(c)

Figure 6. Close up view of final layer processing for vegetation classification. From an input classification δ(1)ij (a), the SBIJ statistic (b)
is computed in an online-fashion and then fed into a final layer CUSUM, giving the final classification in (c). Note that noise that appears
in (a) has been eliminated in (c).

respectively. Likewise, a change from H1 to H0 is detected
using T ′c = min{k; d′k > h′} where

d′J = max

{
0, d′J−1 −

(
SBIJ −

µ0 + µ1

2

)}
,

for J = 1, 2, . . ..
For the parameter µ0, it is easy to see that under H0 the

mean of the SBIJ is 0, and thus we set µ0 = 0. The value
of µ1 is set to 100 which is an approximation of the value
of the SBIJ in regions with a high density of δ(1)ij = 1.
The thresholds h and h′ are set to 50 for the purpose of our
experiments in light of (6). It is important to note here that

the CUSUM alarm times Tc and T ′c are robust to the choice
of µ1 whose only strict restriction is µ1 > 0. In fact it is the
difference in µ1 and µ0 that matters.

8. Complexity Analysis

Our method is online and can run in real-time. Signed
angle, CUSUM, and SPRT computations are O(1) per 3D
point and require O(1) memory. The complexity of the ag-
gregate statistic (Sec. 7) depends on the window size n se-
lected, and n is to be kept small in order not to over-smooth
and for real-time processing. In the worst-case scenario



computation of each SBI,J (Eq. 7) requires calculation of
all pairwise distances and it costs O(n3) per point. This
is due to the fact that distances calculated for SBI,J can
be carried over to SBI,J+1 (or SBI+1,J ). The Gaussian
weights K used in the computation are constant and can be
pre-computed. Since n is small the computation of the ag-
gregate statistic is fast, and memory requirements are O(1).

9. Experiments

We tested the algorithms described above on a large
dataset of urban scenes. The data was captured us-
ing a Leica ScanStation 2 scanner that obtains points
in the order depicted in Fig. 2. We performed two
sets of experiments. First we tested the ability of the
system to classify points into one of the three classes
{vegetation, vertical, horizontal}. This experiment was
performed on a set of 9 scans, totalling about 6.4 mil-
lion points. The scenes contained buildings, cars, light
poles, streets, sidewalks and smaller items such as fire
hydrants, garbage cans, etc., typical to urban settings.
Ground truth data was obtained using custom labelling
software. The results are shown in Tables 1 and 2 be-
low. For each class we report the precision, recall, and
F1 score. Note that the precision increases, while recall
decreases (except of the horizontal class, where the op-
posite is true). The available ground truth data for curbs
was smaller, and we performed a smaller experiment( ≈
400, 000 points) where points were classified into one of
{vegetation, vertical, horizontal, curb}. The precision-
recall results are shown in Table 3. Fig 7 shows a sample of
ground truth data and the classification output by our sys-
tem. The curb detection is very robust.

These numbers demonstrate a reduction of the number
of false positives due to aggregation, without sacrificing too
many true positives. For example the false positives for
vegetation were reduced significantly from around 360, 000
points to 207, 000 points. One aspect not captured in Ta-
bles 1 and 2 is that second layer processing significantly
improves the cohesion of detected objects. This can be seen
by comparing Figs. 9 and 7.1. We suspect that poor Hor-
izontal numbers can be due to the difficulty in labeling by
hand horizontal points in numerous windows in large fa-
cades.

There are a number of constants which need to be set in
our system. The parameters of the CUSUM on the SBIJ
statistic are discussed in the last paragraph of the previous
section. Also, computing the statistic requires the selection
of a window size n, for which we used n = 5 in the ex-
periments. The curb detector from Sec. 6 requires the mean
of the sidewalk, µpw (taken to be µg + 0.1), and the multi-
plier η (we used 0.2 since the approximate number of points
scanned on a curb given the position of our scanner is about
5), used to calculate the sequences εj defined in that section.

Metric Vegetation Vertical Horizontal
Precision 0.704 0.971 0.773
Recall 0.835 0.806 0.958
F1 0.764 0.881 0.856

Table 1. Results using only first layer (coarse) classification (9
scans)

Metric Vegetation Vertical Horizontal
Precision 0.793 0.991 0.738
Recall 0.811 0.797 0.99
F1 0.802 0.883 0.845

Table 2. Classification results after aggregation (9 scans)

Metric Vegetation Vertical Horizontal Curb
Precision 0.872 0.981 0.827 0.883
Recall 0.936 0.885 0.965 0.902

Table 3. Results using only first layer (coarse) classification (one
scan)

The CUSUM threshold used for the curbs was h = 0.0001
again in light of (6). Note that the subtlety of the change in
the statistics induced by curbs leads to a choice of a small
threshold though the algorithm is robust to its exact value.

We also report on the timing of our algorithm. For one of
our typical scans, the scanner attempted to acquire 681, 400
points. The processing of this scan took around 12 minutes
in a 2.2 GHz laptop, leading to an average of 1.05 millisec-
onds per point. This is almost the time of 1ms required
for the acquisition of a single point with this last-generation
scanner.

10. Conclusion

In this work we sought to demonstrate that the method-
ology of sequential detection can serve as a unifying princi-
ple in the design of hierarchical systems for classification.
We found that added layers of sequential processing, no-
tably the aggregation step of Sec. 7 significantly improved
the performance of our system. Our methodology should
also be applicable to other sequential tasks outside of 3D
vision. Future work could possibly explore this, as well as
the integration of machine learning methods.
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