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Abstract

We examine the task of point-level object segmentation in
outdoor urban LIDAR scans. A key challenge in this area is
the problem of missing points in the scans due to technical
limitations of the LIDAR sensors. Our core contributions
are demonstrating the benefit of reframing the segmenta-
tion task over the scan acquisition grid as opposed to con-
sidering only the acquired 3D point cloud and developing
a pipeline for training and applying a convolutional neu-
ral network to accomplish this segmentation on large scale
LIDAR scenes. By labeling missing points in the scanning
grid we show that we can train our classifier to achieve a
more accurate and complete segmentation mask for the ve-
hicle object category which is particularly prone to miss-
ing points. Additionally we show that the choice of input
features maps to the CNN significantly effect the accuracy
of the segmentation and these features should be chosen to
fully encapsulate the 3D scene structure. We evaluate our
model on a LIDAR dataset collected by Google Street View
cars over a large area of New York City.

1. Introduction
Growing interest in applications including mapping and

autonomous vehicle navigation have lead to continued ef-
forts in acquiring large-scale 3D range scans of the naviga-
ble world. Many companies have now invested in fleets of
cars equipped with LIDAR scanners to acquire the raw 3D
data for these applications. This then motivates the develop-
ment of algorithms to generate semantic information, such
as object segmentation, to connect the raw data to higher
level applications.

Previously the task of object segmentation in 3D point
clouds has been posed as assigning a class label to each 3D
point in a scene. However LIDAR scans may be imper-
fect and contain missing data because certain surfaces such
as glossy metal or transparent glass may reflect or refract
the emitted light and prevent measurement in a particular
scanning direction. But despite there being no valid mea-

surement, the sensor’s pose and orientation is still known.
In this work our key contributions are highlighting how this
information may still be used and reframing the object seg-
mentation task for LIDAR scenes as assigning class labels
to each sensor grid point, including both acquired 3D points
and missing grid points. We focus specifically on the task
of vehicle segmentation in urban scenes due to the ubiq-
uitous presence of vehicles and high frequency of missing
points on vehicle surfaces. We also describe the details of
our procedure for labeling missing points, which cannot be
visualized and labeled in simple 3D renderings of the LI-
DAR scene.

In this work we propose an end-to-end convolutional
neural network (CNN) architecture for predicting seman-
tic labels in LIDAR range scans, this is to our knowledge
the first application of this model to large scale LIDAR
scenes. Directly applying a standard CNN model is not
possible because LIDAR scans contain many thousands of
scanlines and the conventional solution of downscaling may
impact the real 3D measurements. To resolve this problem
another key contribution of this work is to describe a pre-
processing pipeline for generating normalized patches of
low-level features from large-scale LIDAR scenes. Utiliz-
ing this pipeline, diagrammed in Figure 1, we can efficiently
train and apply our model despite the irregular dimensions
of large LIDAR scenes.

Additionally we experiment with different choices of
low-level feature inputs and show that these features can
significantly effect the resulting segmentation accuracy.
Simply using 3D positions as inputs would be sensitive to
the choice of origin in the registered coordinate system and
only using depth from the scanner would not fully capture
the relative 3D structure between neighboring points and
the mobile sensor. By using additional feature maps that
model these 3D relations, as well as the positions of miss-
ing points, we demonstrate improved overall segmentation
accuracy.

We evaluate our proposed model on a large urban dataset
acquired by Google Street View cars equipped with LI-
DAR sensors which we have annotated with over 1000 in-
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Figure 1. System Overview. During training we sample positive and negative locations in large pieces of the LIDAR scene. For each
sampled position we extract an input patch of low-level features and using our CNN model predict labels for a target patch centered on the
same location. Note that the gray windows on the car are likely to be missing points and should be labeled with the positive class in our
system. At test time we use a sliding window to densely segment a scene.

dividual vehicles. This dataset consists of several runs of
LIDAR scans acquired by two sensors mounted on either
side of a moving car, stitching together scanlines from the
moving sensors produces long push-broom LIDAR scenes.
We compare several choices of low-level feature inputs and
show that our proposed model can produce accurate vehicle
label predictions on both measured 3D points and unmea-
sured missing points.

2. Related Work

Semantic segmentation and object detection have been
extensively covered in the literature and in this section we
limit comparison to other works on 3D urban range scans
and related CNN approaches in RGB and RGB-D images.

Earlier work on 3D object detection focused on matching
handcrafted locally computed 3D features on points with
fixed supports such as spin images [15, 22, 19] or shape
contexts [9, 31]. While these features are useful for match-
ing object instances using distinctive keypoints [20], for the
classification task these features have been combined with
bag-of-words representations that model distributions over
a dictionary of feature codewords. In this case the local in-
variance properties of these features may no longer be desir-
able, leading to the bag-of-words representation being dom-
inated by features common across object categories. For ex-
ample, since objects are often only partially observed from
a limited set of viewpoints some works [24, 28] were able
to improve performance by using viewpoint dependent fea-
tures. Our work shares this more egocentric view of 3D
vision by working directly on the scanning grid as opposed
to the more common approach of working in a globally reg-
istered coordinate system.

More recent works have adopted unsupervised segmen-
tation strategies to generate supersegments of 3D points,

similar to superpixels, by clustering 3D points or voxels
[11, 34, 21, 8], or fitting geometric primitives like planes
[32, 17, 35]. This allows computation of segment-level fea-
tures that may be more distinctive than local point features.
These segments can then be combined in some structure
model, for example using graphical models [3, 25, 2] or
hierarchical segmentation trees [23, 33] over adjacent seg-
ments, to smooth classification results by modeling local
context and give a structured representation of the final se-
mantic or instance segmentation. However the limitation of
these approaches is that it is difficult to correct for errors
in the initial unsupervised segmentation which may prop-
agate to the final segmentation. Also when clustering 3D
points, the missing grid points are not considered and of-
ten the adjacency information from the scanning grid is dis-
carded. We note that Dohan et al. [8] also evaluate their seg-
mentation algorithm on parts of the same dataset as we do,
but our results are not directly comparable since they per-
form additional preprocessing to remove ground and facade
planes, which is reasonable for offline processing but would
need to be handled differently for online applications. The
same kind of removal could be applied as a post-processing
step to our system but we wish to demonstrate the results of
a fully supervised approach.

In 2D vision, the most recent state-of-the-art results on
a variety of classification [16, 14] and segmentation [18, 7]
tasks have been achieved using convolutional neural net-
works. Compared to handcrafted features, CNNs can ex-
plore a richer space of feature transformations that are op-
timized for the target task with the tradeoff that a CNN re-
quires model architecture engineering. While sometimes
combined with structure models [6, 26], CNNs can achieve
competitive performance when directly optimizing for the
task of segmentation.

Corresponding 3D applications of CNNs most related to



the system we present in this paper have been in the domain
of RGB-D images, typically acquired indoors using infrared
structured light sensors. These systems often leverage the
availability of well-registered RGB channels to reuse pre-
trained RGB models on much larger datasets. Completely
missing depth information is also characterized differently
in this setting, typically caused by disparity occlusions due
to distances between RGB camera, IR emitter and IR sensor
rather than surface material properties. One line of research
has focused on unsupervised feature learning [27, 4, 5] due
to the limited availability of labeled 3D data, but our work
is more comparable to supervised methods. We considered
the architecture of Song and Xiao [29] which contains 3D
convolutions. Urban LIDAR scenes however are less clut-
tered than indoor scenes and the cost of 3D convolutions
may outweigh the benefit in such sparse conditions, but it is
an alternative worth exploring in future work. Most similar
to our approach is the depth feature extraction component
of Gupta et al. [12] that uses a similar set of input feature
mappings including depth, height, and angle maps for each
pixel in an RGB-D scene. Whereas they restrict themselves
to three feature maps in order to initialize a deep model
trained on the ImageNet dataset, we build upon this work
by showing that additional feature maps can significantly
improve performance when trained from scratch and also
by explicitly handling missing points from the LIDAR grid.

3. Data Preparation

Here we describe the necessary steps for preparing large
LIDAR scenes for use with our CNN model. This includes
our procedure of labeling points and missing point positions
with the target class label, sampling patches of the scene as
input to the CNN, and computing low-level input features
on each patch.

3.1. Labeling Procedure

Initially each 3D point is labeled using a 3D inter-
face that allows several freeform tools for the selection of
points [30]. For example, in order to simplify labeling ob-
jects our tool allows labeling points in a volume above a
plane fit to a selection of points, e.g. the ground plane. How-
ever it is not possible to label missing points in this view, as
show in Figure 2 since there is no valid location to render
them.

In order to label the missing points once object points
have been labeled in 3D, we reproject all the points to have
unit distance from the sensor and interpolate the missing
points using the known fixed angle between points along
each scanline. This gives a well-defined location to ren-
der the missing points and produces a circular 2D image of
each scanline with respect to the sensor position. Using the
3D object labels as a guide, it is now possible to fill in any

Figure 2. Part of a 3D scene containing two cars. While miss-
ing data due to occlusions and sensor range are obvious, it is not
entirely clear from this view where missing points are located in
relation to 3D points. We also show how selecting all points above
a fit ground plane makes it possible to quickly and accurately label
the 3D object points.

Figure 3. Labeling missing points (best viewed in color). Left:
2D reprojection with missing points on cars and above buildings
visualized in gray. Note that some cars only have missing points on
windows while others are more heavily effected. Right: Missing
points within boundaries of the car are labeled.

missing point positions within an object’s surface with the
appropriate label, as can be seen in Figure 3.

3.2. Patch Sampling

Since an individual LIDAR scene may be many thou-
sands of scanlines long, it is necessary to generate input of
an appropriate size for the CNN. We avoid interpolated re-
sizing, common in RGB images, since it can distort the 3D
points and interact with the missing points.

We first break each full LIDAR run into smaller pieces of
several thousand scanlines, avoiding segmenting target ob-
jects when possible. During training, for each of T pieces
we sample up to N

2 positions that contain a target label and
N
2 unlabeled background positions. This biased sampling

helps balance the distribution of positive and negative sam-
ples for training a standard classifier, which is necessary in
our case since vehicle points are a minority of scene points.



Figure 4. Input low-level features. Color values from navy (low) to yellow (high) follow the viridis color map shown on the far left. Left to
right: Depth, height, signed angle, missing mask, and ground truth labels in black and white.

The size of one training epoch is set to be NT . Centered
on each sampled position we generate an M ×M patch of
input features and a K ×K patch of labels where K ≤M .
These patches are continuously generated throughout the
training procedure and minibatches of size 32 are dequeued
from a random shuffle queue. In order to reduce preprocess-
ing computation and memory usage, one set of NT sample
patches is reused for 20 training epochs but is still randomly
shuffled between epochs.

3.3. Input Features

Since 3D point positions vary throughout a scene de-
pending on the global coordinate system, it becomes neces-
sary to generate normalized features for each patch indepen-
dent of the sampled position. Similar to Gupta et al. [12] we
adopt depth from the sensor and height along the sensor-up
(vertical) direction as reliable measures, although our view
of height is more egocentric based on relative heights within
a patch rather than geocentric and fixed to the ground eleva-
tion. In addition to the angle feature of [12] which measures
the angle of elevation between a point and the sensor posi-
tion, we also consider the signed angle feature described
in Stamos et al. [30] which measures the elevation of the
vector formed by two consecutive points and indicates the
convexity or concavity of three consecutive points. While
the signed angle requires additional points as support and
may be undefined for some points due to missing data and
edge cases, it may be a better measure of local curvature
than the sensor position dependent angle of [12].

Each of the depth, height, angle, and signed angle fea-
tures is normalized by the mean and standard deviation of
the non-missing points within each patch and clipped to the
range [−6, 6] to control for outliers. Most points normally
lie well within this range however some patches may be
cropped in a way that outlier points very close or very far
from the sensor take extreme values. This produces simi-
lar features throughout the scene, regardless of the average
distance of surfaces within a patch from the sensor. For
missing points their value is set to 6, the maximum value in
the clip range.

The final feature we consider is a simple 0/1 mask in-

dicating which scanning grid locations correspond to the
missing points. This results in an M × M × 4 patch of
features as input to the CNN. An example set of features for
a given patch can be seen in Figure 4.

4. Model

Our model follows a now commonly used architecture
for convolutional neural networks. In this section we de-
scribe the layout of our model’s architecture, the regression
parameterization for segmentation, and details of the op-
timization including regularization and initialization meth-
ods. This model establishes a baseline for training end-to-
end CNNs on urban LIDAR scenes.

Our model consists of a sequence of convolutional lay-
ers with max-pooling followed by a sequence of fully con-
nected linear layers. In our experiments we set the number
of layers to two 5 × 5 convolutional and two linear lay-
ers. This model is relatively shallow compared to modern
2D image based models, but was useful in establishing a
baseline and experimenting with various low-level feature
inputs since best practices for LIDAR images are not yet
established.

In order to accomplish single class segmentation our
model predicts a K × K block of labels for a window of
points centered on the M ×M input patch. We parameter-
ize this as K2 independent binary classification tasks utiliz-
ing logistic regression on the final representation produced
by the CNN on the entire M ×M patch. We typically set
K < M so we only predict on locations that have sufficient
feature support within theM×M patch. In preliminary ex-
periments errors were more likely on the edges when using
the entire M ×M window. To label a full scene we simply
use a sliding window with stride K. In this way, different
choices of M and K allow trade-offs between CNN model
size and number of evaluations needed to cover an entire
scene.

The total loss of the model is the sum of the binary
cross entropy losses of each logistic regression plus an L2-
regularization penalty on the weights of the linear layers



with scaling coefficient λ = 0.001,

−
K2∑
k=1

yk log(pk) + (1− yk) log(1− pk) +
λ

2

L∑
l=1

||Wl||22,

where yk is 1 if the kth point in the target grid is positive
and 0 otherwise, pk is the probability of the kth point being
the positive class, and Wl are the weights of the lth linear
layer.

For additional regularization we also apply dropout with
p = 0.5 on the final layer weights. The weights for the lay-
ers with ReLU activation are initialized using the method
of He et al. [13] and the weights for the final layer with
sigmoid activation use the Xavier initialization [10]. The
model is trained by stochastic gradient descent with mo-
mentum of 0.9 and initial learning rate 0.01. The learn-
ing rate is decayed using an exponential schedule every 350
epochs by a rate of 0.95.

5. Experiments
Our proposed model is evaluated on a subset of the large

R5 Google Street View dataset which includes a collec-
tion of 20 runs through lower Manhattan covering approxi-
mately 100 city blocks, that we have annotated with vehicle
labels. This dataset was acquired by cars equipped with two
LIDAR sensors on either side of the car capable of acquir-
ing 180 point scanlines with points in 1 degree increments.
A summary of the labeled data, containing over 40 million
grid points, can be seen in Table 1.

For training we use the majority of the run denoted NYC
0, a relatively large run containing many vehicles, consist-
ing of T = 25 pieces while reserving two of the pieces for
in-sample testing. Note that these in-sample test scenes are
not included in our quantitative results since the relatively
superior results on these scenes may be due to in-sample
bias. We set the number of samples per piece to N = 256
to allow for one training epoch’s worth of data to fit com-
fortably in memory. For these experiments we set the patch
size to M = 64 and the target size to K = 8. We use
the TensorFlow [1] library to define out models and train
each model for 10, 000 epochs which takes approximately
28 hours on a single Titan X GPU.

To evaluate how our approach generalizes to completely
new scenes we use three relatively smaller runs with fewer
vehicles denoted NYC 1, 11, and 19. See Table 1 for a full
summary of the number of vehicles and scanlines for each
of these runs.

We train a new model for each of a select number of
combinations of the input feature maps that we consider:
normalized depth (D), normalized relative height (H), angle
with up-axis (A), signed angle (S), and missing mask (M).
A summary of all the models we’ve trained can be found in
Table 2. We note that DHASM, the model containing all of

Run + Side Vehicles Scanlines
NYC 0 Side 1 295 41572
NYC 0 Side 2 359 41572
NYC 1 Side 1 138 78101
NYC 11 Side 1 126 12787
NYC 11 Side 2 77 12787
NYC 19 Side 1 49 19144
NYC 19 Side 2 37 19144
Total 1081 225107

Table 1. Number of labeled vehicles and scanlines per run. Note
that only parts of Side 1 of NYC 1 were used in our experiments.
Despite having the most scanlines, NYC 1 does not contain pro-
portionally more vehicles.

Features Test AP
D 77.49
DHA 86.40
DHS 84.54
DHAM 84.72
DHSM 86.58
DHASM 86.74

Table 2. Average precision of different feature combinations. D
denotes depth, H denotes height, A denotes angle, S denotes
signed angle, and M denotes the missing mask. The model con-
taining all feature maps gives the best overall performance.

Figure 5. Precision-Recall curves for feature map comparison. The
top performing combinations of features throughout all possible
sensitivity settings are DHSM and DHASM, which utilize our pro-
posed signed angle and missing mask feature maps.

the candidate feature maps, yields the highest average pre-
cision score. However it has a relative dip in performance
compared to many of the other models in a narrow range
towards the middle of the curve, as seen in Figure 5. It is
difficult to explain this behavior but one possibility is that



Features Test AP
DHSM-NML 82.71
DHSM 84.80
DHASM-NML 83.85
DHASM 84.92

Table 3. Average precision on non-missing labeled points only.
NML denotes a model trained with no missing point labels for the
vehicle class.

the fixed size of the CNN across our experiments does not
have enough capacity to fully utilize the increased number
of input feature maps. The next best model in this region,
DHSM, uses our proposed signed angle feature and perhaps
indicates some confusion caused by the presence of both an-
gle based representations. We would also like to note here
that while our evaluation may not be directly comparable to
Dohan et al. [8] due to differences in preprocessing and sub-
sets of the dataset used, our approach clearly outperforms
their point-level segmentation baseline and is comparable to
their full approach without explicitly generating hypothesis
segmentations, demonstrating the strength of CNN-based
feature representations.

Additionally we tested the efficacy of labeling missing
points by comparing our top two models against equivalent
versions trained without labels for the missing points. To
fairly compare these models we only consider predictions
on the non-missing points. As can be seen in Table 3, sim-
ply training a model with labeled missing points leads to
a significant increase in average precision scores even on
those points that are not missing themselves. Again the full
combination of features, DHASM, suffers a relative dip in
the curves in Figure 6, but the best models to use at all set-
tings are still those trained with missing labels.

In order to generate visualizations for a qualitative eval-
uation we selected the DHASM model and chose a con-
fidence threshold corresponding to a recall of 0.85 on the
test set, this setting resulted in a threshold of 0.46 with test
precision 0.73. We observed high quality segmentation on
our relatively simple in-sample test scenes as shown in Fig-
ure 7. General quality of segmentation for small conven-
tional vehicles were maintained for out-of-sample scenes,
e.g. Figure 8, but additional errors were introduced due
to the higher frequency of more challenging vehicles like
trucks and previously unobserved styles of facades and veg-
etation.

6. Conclusion and Future Work

In this work we have presented a CNN model and train-
ing pipeline for segmentation of large scale LIDAR scenes
acquired by vehicle-mounted sensors. In our evaluation we
have shown that our model which has been designed to ex-

Figure 6. Precision-Recall Curves for comparing efficacy of miss-
ing point labels. Here we see that models trained with missing
point labels generally outperform those models without those la-
bels, even on the non-missing points.

plicitly handle missing points through additional labeling is
able to produce a superior segmentation versus an equiva-
lent model without these labels. Furthermore we’ve shown
that the choice of input features is a significant factor for
this task and utilizing the additional feature maps we pro-
pose that represent the missing points and 3D structure of
the scene can further improve performance.

There exist several directions for future work. Further
experimentation with additional feature maps can refine
which features are necessary to sufficiently model the 3D
structure of the scene for a CNN with 2D spatial convolu-
tions. We would also like to address additional tasks with
this model, including multi-class object-level segmentation
and pose estimation. It may also be possible to further
model missing points by measuring their true values in con-
trolled scans or synthetic data in order to impute depth val-
ues for missing points.
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Figure 7. Results on NYC 0 in-sample test scene. Colors correspond to True Positives - Yellow, True Negatives - Dark Blue, False Positives
- Cyan, False Negatives - Orange. Green denotes boundary points that were not classified. Top: 2D representation of test scene showing
classification including missing points. Bottom: The same scene rendered in 3D. For this scene most errors correspond to either object
boundaries or small foreground objects like phone booths or people that may look locally similar to a partially observed vehicle in LIDAR.
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