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The photorealistic modeling of large-scale objects, such as urban scenes, requires the combination of
range sensing technology and digital photography. In this paper, we attack the key problem of camera
pose estimation, in an automatic and efficient way. First, the camera orientation is recovered by matching
vanishing points (extracted from 2D images) with 3D directions (derived from a 3D range model). Then, a
hypothesis-and-test algorithm computes the camera positions with respect to the 3D range model by
matching corresponding 2D and 3D linear features. The camera positions are further optimized by min-
imizing a line-to-line distance. The advantage of our method over earlier work has to do with the fact that
we do not need to rely on extracted planar facades, or other higher-order features; we are utilizing low-
level linear features. That makes this method more general, robust, and efficient. We have also developed
a user-interface for allowing users to accurately texture-map 2D images onto 3D range models at inter-
active rates. We have tested our system in a large variety of urban scenes.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The photorealistic modeling of large-scale scenes, such as urban
structures, requires a combination of range sensing technology
with traditional digital photography. A systematic way for register-
ing 3D range scans and 2D images is thus essential. Applications
include virtual reality, Google-type maps, realistic sets for movies
and games, urban planning, architecture, historical preservation
and archeology, just to name a few. Recent commercial systems,
such as Google Earth or Microsoft Virtual Earth, make 2D-to-3D
registration algorithms even more relevant. We believe that the
ability to automatically register 2D images captured by freely mov-
ing cameras to 3D urban models, is of major importance. This abil-
ity will allow the texture-mapping of vast 2D image collections
onto their corresponding models. This paper presents a system that
enables the accurate registration of individual 2D images onto a 3D
model. Out work is part of a larger framework that includes 3D-to-
3D registration and multiview geometry [1,2]. Only linear features
are utilized, making our methods applicable to models of any type
(i.e. 3D point clouds, 3D meshes, CAD, SketchUp models, etc.). Our
system first extracts 3D and 2D linear features and then groups
them into major 3D directions and major vanishing points. It final-
ly computes the rigid transformation between the 2D images and
ll rights reserved.
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3D range model by estimating matches between 2D and 3D lines.
We present results from experiments with exterior and interior
scenes of real buildings.

Despite the advantages of feature-based texture mapping solu-
tions, most systems that attempt to recreate photorealistic models
do so by requiring the manual selection of features among the 2D
images and the 3D range scans, or by rigidly attaching a camera
onto the range scanner and thereby fixing the relative position
and orientation of the two sensors with respect to each other
[3–8]. The fixed-relative position approach provides a solution that
has the following major limitations: (a) The acquisition of the
images and range scans occur at the same point in time and from
the same location in space. This leads to a lack of 2D sensing flex-
ibility since the limitations of 3D range sensor positioning, such as
standoff distance and maximum distance, will cause constraints on
the placement of the camera. Also, the images may need to be cap-
tured at different times, particularly if there were poor lighting
conditions at the time that the range scans were acquired. (b)
The static arrangement of 3D and 2D sensors prevents the camera
from being dynamically adjusted to the requirements of each par-
ticular scene. As a result, the focal length and relative position
must remain fixed. (c) The fixed-relative position approach cannot
handle the case of mapping historical photographs on the models
or of mapping images captured at different instances in time. These
are capabilities that our method achieves.

In summary, fixing the relative position between the 3D range
and 2D image sensors sacrifices the flexibility of 2D image capture.
Alternatively, methods that require manual interaction for the
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selection of matching features among the 3D scans and the 2D
images are error-prone, slow, and not scalable to large datasets.
These limitations motivate the work described in this paper, mak-
ing it essential for producing photorealistic models of large-scale
urban scenes.

Formally, the input consists of the pair (D(S), I(S)) of a scene’s S
range scan D and set of images I. We assume that both the camera
& range sensors view the same part of the real scene, so that the 3D
and 2D views have significant overlap (Fig. 1). The locations of the
cameras which produce the images I is unknown and must be
automatically recovered. Thus the output is the pose Pi = {Ri,Tij
Ppi,fi} which describes (a) the transformation (rotation Ri & trans-
lation Ti) from the range-sensor to each camera-sensor’s coordi-
nate system and (b) the mapping (internal camera parameters)
from the 3D camera frames of reference to the 2D image frames
of reference.

We present a novel system that can automatically register 2D
images with 3D range data at interactive rates (i.e. 10 s per 2D im-
age). New strategies for feature extraction and matching are intro-
duced. The contributions of this work can be summarized as
follows:

� We have developed a working system that is able to register 2D
images to 3D models at interactive rates. This system requires
minimal user interaction.
� The whole space of possible matches between 3D and 2D linear

features is explored efficiently (unlike probabilistic RANSAC
methods like [9]). That improves the possibility of convergence
of our algorithm.
� Our earlier systems ([9,10]) require the extraction of major

facades, rectangles, or other higher-order structures from the
2D and 3D datasets. Our current method, on the other hand, uti-
lizes 3D and 2D linear features for matching without significant
grouping. This increases the generality of our algorithm since
we make fewer assumptions about the 3D scene. Scenes with
various layers of planar facades, or without clear major facades
can thus be handled.
� This paper’s method utilizes vanishing points and major 3D

directions, but it does not require them to be orthogonal as
most earlier methods assume.
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Fig. 1. The pose estimation problem. The 3D model of the scene is represented in
the coordinate system of the range sensor. The image taken from the 2D camera
needs to be registered with the 3D model.
The algorithm consists of the following major steps: feature
extraction (Section 3), internal calibration and rotation computa-
tion via vanishing points (Section 4), and camera position compu-
tation via feature matching (Section 5). Results, evaluation, and
conclusions are presented in Sections 6–8. We start by discussing
related work.
2. Related work

There are many approaches for the solution of the pose estima-
tion problem from both point correspondences [11–13] and line
correspondences [14–16], when a set of matched 3D and 2D points
or lines are known, respectively. In the early work of [17], the prob-
abilistic RANSAC method was introduced for automatically com-
puting matching 3D and 2D points. RANSAC is a robust method
and can handle a large number of outliers. The major drawback
however has to do with the inefficiency of the method when a
large percentage of outliers wrt inliers exist. Another drawback is
that it does not guarantee the finding of the solution. Our method
on the other hand explores the whole space of possible solutions in
an efficient manner and is not a probabilistic approach. Solutions
in automated matching of 3D with 2D features in the context of ob-
ject recognition and localization include the following [18–23].

Recently a number of new methods were developed for attack-
ing the problem of automated alignment of images with dense
point clouds derived from range scanners. In the first category of
methods a single 2D image I is automatically registered with a
dense untextured 3D range model D(S). In the works presented
in [9,10] orthogonality constraints of urban scenes are used. Both
methods utilize vanishing points in the 2D image for computing
the rotation. They differ in the individual features used for match-
ing for the final transformation computation: 2D and 3D rectangles
in [9] and 2D and 3D parallelepipeds in [10]. In this paper we pres-
ent a method of this category that is based on matching 2D and 3D
linear segments. A preliminary version of this work appeared in
[24 and 2]. The work of [25], on the other hand, presents an auto-
mated 2D-to-3D registration method that relies on matching the
reflectance range image (i.e. the 2D image generated by the inten-
sity components of the 3D range scan) with the regular 2D image.
This algorithm requires an initial estimate of the image-to-range
alignment in order to converge. In [26] a registration method that
is based on shadows computation is presented. This algorithm
works well in outdoor scenes lighted by direct sunlight.

In the second category of methods a single 2D image I is auto-
matically registered with a dense textured 3D range model D(S). In
that case the 3D range model has been already texture-mapped by
a set of 2D images IM. These images have been captured by a reg-
ular 2D camera pre-calibrated with the range sensor. The single 2D
image I is captured from a separate viewpoint. In the work of Yang
et al. [27] SIFT [28] descriptors are computed on the 2D image I and
already texture-mapped images IM. The features can be back-pro-
jected from IM to the 3D model D(S), and a local planar frame
can be defined around them. Initialization is achieved through a
2D-to-2D similarity estimation method [29]. In the work of Schin-
dler et al. [30] regular patterns on building facades captured by a
2D image I are matched with patterns on a textured low resolution
triangular model of the scene.

In the third category of methods a set of 2D images I is auto-
matically registered with a dense untextured 3D range model
D(S). These methods [1,2,31] use information from a set of images
or from a video sequence and provide comprehensive results by
exploring 2D-to-2D, 2D-to-3D, and 3D-to-3D matching. In the
work of Zhao et al. [31], continuous video is aligned onto a 3D point
cloud obtained from a 3D sensor. First, an SFM/stereo algorithm
produces a 3D point cloud from the video sequence. This point
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cloud is then registered to the 3D point cloud acquired from the
range scanner by applying the ICP algorithm [32]. In our other
work [1,2] the 3D range scans and the 2D photographs are respec-
tively used to generate a pair of 3D models of the scene. The first
model consists of a dense 3D point cloud acquired by the range
scanner and the second model consists of a sparse 3D point cloud,
produced by applying a multiview geometry (structure-from-mo-
tion) algorithm directly on a sequence of 2D photographs. A novel
algorithm for automatically recovering the similarity transforma-
tion (rotation/scale/translation) that best aligns the sparse and
dense models is presented. This alignment is based on accurate
registration of a individual 2D images (subset of the images used
to produce the sparse model) with the 3D model. This registration
method is described in the following sections.
3. Feature extraction

In this section we describe our algorithms for extracting fea-
tures from 3D-range and 2D-image data. These features are uti-
lized for internal camera calibration and camera pose
computation. The fact that our system requires low-level linear
features, makes our algorithms generally applicable to most exte-
rior and interior urban scenes (see Section 6). Each linear feature
is also associated with a radius r. In other words, a 3D feature
can be considered as a cylinder and a 2D feature as an oriented
rectangle (Fig. 2). The value of the radius is initially defined by
the user, and is then adapted based on the density of 3D and 2D
lines (see following sections).

3.1. 3D Feature extraction

The 3D line extraction step is based on the segmentation meth-
od of Stamos and Allen [33], whereas the major directions cluster-
ing is based on the work of Liu and Stamos [10] (note that if 3D
information is provided in terms of a CAD model, then the 3D line
extraction step is trivial.) The result of this process is a set of line
clusters L3D. Each line in a cluster has similar orientation as every
other line in the same cluster. The set of line clusters are then
sorted based on the number of lines in each cluster. We do not
assume knowledge of vertical or horizontal directions for the line
clusters as in our previous method [10]. Each 3D line is thus asso-
ciated with a cluster id, e.g. for the 3D lines in cluster L3D

i , their
cluster id is i. In the next step, 3D features are extracted. First, an
la

lb

lc

la

lb

3D feature merging ( la and lb merged into lc )

lc

2D feature merging ( la and lb merged into lc )

Fig. 2. Example of 3D and 2D features and their merging steps.
initial user-defined radius (e.g. 0.1 m) is assigned to each 3D line.
Then, a line merging step generates the final 3D features. This re-
duces the number of features, and thus increases the efficiency of
the matching stage (Section 5). In this step, each pair of 3D lines
(la, lb) with the same cluster id are merged into a new line lc
(Fig. 2) iff (a) the distance between them are smaller than the
sum of their radii, and (b) their projections on lc overlap. The merg-
ing procedure is continued until there are no two remaining 3D
lines that can be merged. The final result is a set of 3D lines, each
of which is associated with a cluster id and radius.

3.2. 2D Feature extraction

The extraction of 2D features and vanishing points is based on
well-known algorithms (e.g. [9,30,34–36]). We can thus extract
from each image a set of lines that generate vanishing points V1,
V2, . . ., Vn. Each vanishing point defines a cluster of 2D lines. The
set of vanishing points are sorted based on the number of lines
in the clusters.1 Each 2D line is then associated with a cluster id
(i.e. 2D lines of the cluster defined by Vi have id i). Lines that are
close to each other are merged to generate the 2D features used
for matching. The approach is similar to the 3D feature extraction
as described above. Initially, a user defined radius is associated with
each 2D line. In the merging step, if two lines, say la and lb, have same
cluster id, similar orientations and overlap with each other, then
they are merged into a new 2D line lc (Fig. 2). The merging stage con-
tinues until no two remaining 2D lines can be merged. The final re-
sult is a set of 2D lines, each of which is associated with a cluster id
and radius.
4. Internal camera calibration and rotation computation

The internal camera calibration parameters of each 2D camera
(effective focal length and principal point2) can be computed by
the utilization of three orthogonal vanishing points (closed form
solution) [36]. An iterative solution can also estimate the effective
focal length and principal point from two orthogonal vanishing
points [10]. Finally by matching two orthogonal vanishing points
with two orthogonal 3D directions (see Section 3) the rotation R be-
tween the 2D camera and 3D model can be computed.

In this paper we present an additional method for the calcula-
tion of the effective focal length f and of the rotation R. We are
using two vanishing points and two major 3D directions. We, how-
ever, do not assume that these directions are orthogonal to each
other. Orthogonality is prominent in urban scenes, but is not al-
ways present. Our method starts with an initial estimate finit of
the effective focal length, and of the principal point Pinit. finit is in-
cluded in the Exif meta-data, information that is now provided by
most digital cameras. Pinit is estimated by the center of the image.
Based on these estimates, an initial center of projection Cinit is
determined. This is the origin of the camera coordinate system
(Fig. 3).

Let us consider a vanishing point Vi extracted by the 2D images
(see Section 3). The 3D coordinates of Vi in the camera coordinate
system are [(Vi)x � (Pinit)x, (Vi)y � (Pinit)y, finit]T. Thus, the normalized
vector D2D

i ¼ uðCinitViÞ3 represents the 3D direction that generates
the vanishing point Vi. This direction is expressed in the camera
coordinate system. Our goal is to match each vanishing point with
its corresponding 3D direction extracted by the 3D range model
1 Note here that both 3D line clusters and 2D line clusters are sorted based on the
number of lines they contain. Assuming that larger 3D clusters match with larger 2D
clusters, this sort can provide a valuable hint for matching between 3D directions
with 2D vanishing points.

2 Note that we assume that radial distortion is not significant.
3 We use the notation u(v) for describing the unit vector derived from v.
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(see Section 3). This correspondence leads to the calculation of the
focal length and of the rotation R. Let us represent each 3D line clus-
ter in L3D (Section 3) by its 3D direction D3D

j ; j ¼ 1 . . . n (where n is
the number of extracted 3D clusters).

The next step is to find the matching pairs of directions
hD2D

i ;D3D
j i. Consider for the moment that we know the correspon-

dence between vanishing points (expressed in the camera coordi-
nate system) and 3D directions (expressed in the world
coordinate system). It is known that with the principal point fixed
at the center of the image, two pairs ðhD2D

a ;D3D
a i; hD

2D
b ;D3D

b iÞ of
matching vanishing point/3D directions are enough for the compu-
tation of the focal length f. The focal length f (which is jCPj in Fig. 3)
can be computed via the following equations (triangles CVaP, CVbP
and CVaVb)4:

jCVaj2 ¼ jPVaj2 þ f 2

jCVbj2 ¼ jPVbj2 þ f 2

jVaVbj2 ¼ jCVaj2 þ jCVbj2 � 2 � jCVaj � jCVbj � cos a

where a is the angle between D3D
a and D3D

b . (Note that the vanishing
points Va and Vb have been computed by using the initial estimates
finit and Pinit. The above computation leads to the calculation of a fo-
cal length that conforms to the 3D directions D3D

a and D3D
b .) From the

above equations, we can get a quartic equation:

a � f 4 þ b � f 2 þ c ¼ 0

where a ¼ sin2 a; b ¼ sin2 a jPVaj2 þ jPVbj2
� �

� jVaVbj2; c ¼

jVaVb j2�jPVa j2�jPVb j2
2

� �2
� cos2 ajPVaj2jPVbj2. Solving this equation, one

obtains the refined focal length: f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2�4ac
p

�b
2a

q
. Since D3D

a –

D3D
b ; sin a will never be equal to 0. Finally, the rotation R is com-

puted based on these two pairs of matching directions [37].
Based on the above analysis, the task of our system is to find

two matching pairs of vanishing point/3D directions. Intuitively,
pairs hD2D

a ;D3D
a i; hD

2D
b ;D3D

b i
� �

for which the angle between D2D
a

and D2D
b is not similar to the angle between D3D

a and D3D
b can be re-

jected. As a result, we have a list of matching candidates, each of
which contains two pairs of matching vanishing points and 3D
4 Please note that the coordinates of the center of projection C (in the range
scanner’s coordinate system) do not need to be known for the computation of f.
directions, a refined focal length and a rotation. For each one of
these candidates we can apply the algorithm described in the next
section for calculating the camera position, and finally keep the re-
sult that provides the maximal alignment between the 2D image
and 3D model.

In the worst case scenario though all pairs of directions have
similar angles (this scenario is easily realizable in urban scenes
where most angles between major directions is 90�). In this case

there are n
2

� �
m
2

� �
candidate matching pairs of directions (where

n is the number of 3D and m the number of vanishing points). Even
though this is not a large search space (n and m are small in most
urban scenes), testing all hypotheses involves the computation of
the translation (see next section). This is computationally ineffi-
cient for the purposes of an interactive system, where a response
time of up to 10 s per image is appropriate. For these reasons we
let the user to implicitly provide the correct pair of matching direc-
tions, by rotating the 3D model to an orientation that produces a
rendering that is similar (but not exactly the same) to the real
2D image. As shown in Fig. 7b and Fig. 8b, the rotated 3D view
(left) is similar (but not exactly the same) to the 2D image (right).
This user-assisted rotation can approximately align the corre-
sponding 2D and 3D directions.

The aforementioned user interaction not only increases the
computational efficiency of the whole system, but also makes the
registration problem tractable. In general, without constraining
the possible locations of 2D cameras wrt the 3D model, the 2D-
to-3D registration problem becomes intractable. This is due to
the existence of a possible large set of solutions. For example, a
photograph of one of the columns of the 3D structure of Fig. 8
can be matched with any of the symmetric 3D columns of the real
scene. By selecting a synthetic view that is similar, but not exactly
the same as the 2D image, the user can provide an approximate
field of view to help the matching algorithm. In particular, only
3D features that are viewable in the synthetic 3D view are used
for matching 2D image features. Note here that all earlier ap-
proaches still require implicit user interaction in order to assist
in that direction. For example in [10] the user needs to explicitly
provide the match between vanishing points/3D directions. In that
system, the user also needs to match facades between the 2D im-
age and 3D model. Our current approach is more natural and leads
to faster interaction time.
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The final result of this module is a list of matching candidates,
each of which contains two pairs of matching vanishing points/
3D directions, a refined focal length and a rotation. The user can cy-
cle through them, and a camera position is computed for each
matching candidate. Then, each candidate is quantitatively evalu-
ated. The following section provides more details.
Fig. 5. Camera position (translation) computation flowchart. Through step 1 all possible
3D lines extracted from the 3D model, and l2D

a and l2D
b 2D lines extracted from the 2D imag

the verification of this position. If the overlap between l2D
b and the projection of l3D

b on the
(step 1). Otherwise a similar computation is carried out for the pair hl3D

b ; l2D
b i (step 3). If ste

(step 4). This average represents the position that is generated by the hypothesis (hl3D
a ; l2D

a

been explored, each position in T is graded by projecting all 3D lines on the 2D image spac
the final optimization step 6.
5. Camera position computation

A list of matching candidates, named M, is obtained as
described in the previous section. Each element in M contains a
matching pair of two vanishing points and two 3D directions, a
refined focal length and a rotation. In this section, a 2D camera
pairs of matched 3D and 2D lines (hl3D
a ; l2D

a i and hl3D
b ; l2D

b i) are selected (l3D
a and l3D

b are
e). Step 2 computes a camera position based on hl3D

a ; l2D
a i. The pair hl3D

b ; l2D
b i is used for

image is smaller than Oth (20%) (i.e. the position is not verified) a new pair is selected
ps 2 and 3 produce two verifiable camera positions, a weighted average is computed
i and hl3D

b ; l2D
b i). All verified camera positions are stored in a list T . After all pairs have

e (step 5). Positions with high grade (greater than Gth number of matches) survive to
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position will be computed for each candidate inM. Our method of
finding the camera position follows a hypothesis-and-test scheme
by matching the extracted 3D and 2D features based on the frame-
work of Liu and Stamos [10]. A number of major differences with
the aforementioned method make our algorithm more general
and more robust. In particular, our algorithm does not require
the extraction of planar facades, and does not require the grouping
of low-level features in higher-order structures. Scenes that do not
contain clear major facades (such as the example of Fig. 8a and b,
where various layers of planar facades exist) can now be success-
fully handled. Also since all low-level features are used without
significant grouping, more robust results are achieved. Due to the
fact that we are utilizing the low-level linear features we have
developed a new algorithm for the computation of camera position
(Step 2 of the following algorithm).

We now present a detailed description of the algorithm. First, a
candidate from Mi is selected, i.e. the matching pair of vanishing
points and 3D directions are hVa,Vbi and hD3D

a ; D3D
b i; the refined fo-

cal length is fi and the rotation is Ri. The camera position (transla-
tion) is then computed in the following six steps (Fig. 5):
Fig. 6. Registration result of Building 2. Top row: Initial state (before registration). The 3D
the interface. Middle row: The state of the system after the feature extraction. The 3D vie
shows the clustered 2D lines that are drawn on the original 2D image. Different clusters a
2D image is automatically registered with the 3D range data. The 3D viewer (left) shows t
3D line features (2D lines are displayed as red, while projected 3D lines are highlighted
mapped (corner of other building shown in the 2D image). http://www.cs.hunter.cun
references to color in this figure legend, the reader is referred to the web version of thi
Step 1 A hypothetical match between two pairs of 3D and 2D
lines is selected (the algorithm will go over all possible
such selections). Let us call these pairs hl3D

a ; l2D
a i and

hl3D
b ; l2D

b i (l3D
a and l3D

b are 3D lines extracted from the 3D
model, and l2D

a and l2D
b 2D lines extracted from the 2D

image).
Step 2 [Computation of camera position in world coordinate sys-

tem (translation) based on the match of l3D
a with l2D

a ] As
shown in Fig. 4, A and B are the endpoints of l3D

a and S
and T are the endpoints of l2D

a . C is the center of projection.
If l3D

a matches exactly with l2D
a , then in the camera coordi-

nate system, C, S and A should be collinear. The same
applies for C, T and B. We thus consider C as the intersec-
tion point of the following two lines: (a) one that passes
through A having the orientation of line CS and (b) one
that passes through B having the orientation of line CT.
To compute the world coordinates of C, we need to know
the orientations of CS and CT in the world coordinate sys-
tem. We know, however, the orientations of CS and CT in
the camera coordinate system, say na and nb. We have also
range model (left column) and 2D image (right column) are loaded and displayed in
wer (left column) shows the clustered 3D lines while the 2D viewer (right column)
re represented by different colors for clarity. Bottom row: The final registration. The
he texture mapped 3D range data. The 2D viewer (right) shows the matching 2D and

in green). Note that objects that are not part of the 3D model cannot be texture-
y.edu/ ioannis/Iccv07/ contains a video of the process. (For interpretation of the
s article.)



Fig. 7. Registration results from building 1. (a) For description see caption of Fig. 6. (b) (Top row): The 2D image is in a very different orientation wrt the acquired 3D range
model. (Middle row): The user rotates the 3D model so that it is orientated similarly (note that it does not have to be exactly matched) to the 2D image. (Bottom row): The
right image shows the 2D image along with the matched 2D and projected 3D features (see caption of Fig. 6). The left image shows the texture-mapped 3D range model after
successful registration.

L. Liu, I. Stamos / Computer Vision and Image Understanding 116 (2012) 25–37 31



Fig. 8. Registration results from the interior of building 3. (a) For description see caption of Fig. 6. (b) (Top row): The 2D image is viewing a small part of the 3D model.
(Middle row): The user rotates the 3D model so that it is orientated similarly (note that it does not have to be exactly matched) to the 2D image. (Bottom row): The right
image shows the 2D image along with the matched 2D and projected 3D features (see caption of Fig. 6). The left image shows the texture-mapped 3D range model after
successful registration. Note that surfaces that are not part of the 3D model cannot be texture-mapped and appear as black holes. For example the floor is missing from our
range model.
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Table 1
Building 1 (13 images). Each row presents results from successful registration of a
different 2D image with the 3D range model. The registration (matching phase) of
each image requires on average 5–10 s (2 GHz Xeon Intel processor, 2GB of RAM). The
first two columns show the numbers of 3D and 2D features used for matching. ‘‘Fi’’ is
the initial focal length extracted from the Exif meta-data of the image, while‘‘Fr’’ is the
refined focal length. ‘‘M’’ is the number of matched features of the best transforma-
tion. Finally, ‘‘E’’ is the average line-to-line distance (in pixels) between the
automatically matched lines after the optimization (Step 6). ‘‘E2’’ is the average
line-to-line distance between the manually selected lines (in pixels). ‘‘E2’’ is used for
evaluation of accuracy.

F3D F2D Fi Fr M E E2

672 412 3065.83 3072.42 119 4.4492 1.9872
583 345 3065.83 3075.34 103 4.9394 2.0121
409 390 3065.83 3071.90 112 4.8973 2.1029
392 230 3065.83 3069.45 93 4.2109 1.8752
321 312 3065.83 3073.23 187 4.9021 1.6523
456 387 3065.83 3072.12 134 4.3902 1.3892
402 390 3065.83 3071.29 94 3.9827 1.8973
390 219 3065.83 3069.22 87 4.2023 1.9653
592 539 3065.83 3071.90 212 4.3003 1.2393
390 416 3065.83 3061.39 145 3.9203 1.4203
271 392 3065.83 3073.38 123 3.2900 1.9153
430 456 3065.83 3076.19 209 4.1293 1.0872
390 549 3065.83 3063.56 115 4.5902 1.6847

Table 2
Building 2 (seven images). See caption of Table 1.

F3D F2D Fi Fr M E E2

438 789 1185.03 1165.65 114 4.3215 1.4328
421 654 1185.03 1175.89 83 4.2142 1.5832
389 520 1185.03 1172.90 88 3.8992 1.2348
402 432 1185.03 1179.34 101 4.2390 1.5932
389 598 1185.03 1172.90 91 4.5009 1.6932
435 621 1185.03 1169.39 156 4.1290 1.5120
419 535 1185.03 1178.17 182 4.4923 1.7684

Table 3
Building 3 (four images). See caption of Table 1.

F3D F2D Fi Fr M E E2

543 245 2805.81 2833.45 63 4.4439 1.9574
390 190 2805.81 2839.93 50 4.9821 2.2383
493 231 2805.81 2812.24 63 3.9023 2.4892
301 189 2805.81 2829.39 58 3.8910 1.9432
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computed the rotation R which brings the camera and
world coordinate systems into alignment (see previous
section). We can thus compute the orientations of CS and
CT in the world coordinate system as: R � na and R � nb.
Then, the camera position is obtained by finding the inter-
section of two 3D lines: (a) one of which passes through A
with the orientation of R � na and (b) one which passes
through B with the orientation of R � nb.5 Finally, this com-
puted center of projection is used to project l3D

b onto the
image plane. If the projection of l3D

b overlaps with l2D
b (within

a threshold of 80%), then the camera position computed
using ðl3D

a ; l2D
a Þ is verified by the pair ðl3D

b ; l2D
b Þ. We therefore

move to the next step. Otherwise, we return to step 1 (i.e.
the match is discarded) to pick another set of hypothetical
matching lines.
5 A and B are both expressed in the world coordinate system.
Step 3 Step 2 is repeated assuming as hypothesis the match
between l3D

b and l2D
b . The newly computed center of projec-

tion is used to compute the overlap between l2D
a and the

projection of l3D
a . If this overlap is less than a threshold

(i.e. the computed C is not verified by ðl3D
a ; l2D

a Þ, we return
to step 1 (i.e. the match is discarded). Otherwise, we pro-
ceed to the next step.

Step 4 Step 2 has thus computed a camera position C1 by the
hypothesis ðl3D

a ; l2D
a Þ [verified by ðl3D

b ; l2D
b Þ], while step 3

has computed a camera position C2 by the hypothesis
ðl3D

b ; l2D
b Þ [verified by ðl3D

a ; l2D
a Þ]. In this step, the weighted

average (based on the amount of overlap) of these two
camera positions is computed and saved in a list T .

Step 5 Steps 1–4 are repeated for all possible pairs of 3D and 2D
lines ðhl3D

a ; l2D
a i; hl

3D
b ; l2D

b iÞ. All verified camera positions (see
Step 4) are stored in a list T . Then, for each position in
T , all 3D lines are projected onto the image plane. For each
of the projected 3D lines, a possible matching 2D line is
found by searching around its projection. This region is
bounded by the radius of the 3D and 2D lines. The number
of found matches grades this camera position. If the grade
of a camera position is less than a threshold, it is removed
from the list T .

Step 6 The remaining camera positions in T are optimized by two
steps. First, for each camera position Ci a refined position
Cref is found. This is achieved by searching around a small
neighborhood of Ci in order to maximize the overlap
between the matching 3D and 2D lines. The overlap is
measured in the 2D space by projecting the 3D lines on
the image plane and then searching for 2D lines of maxi-
mum overlap. Then this refined position is further opti-
mized by an iterative algorithm that uses the whole set
of 3D and 2D lines. In each iteration, the current camera
position is used to generate a list of matching 2D and 3D
lines from the whole 2D and 3D feature space. Assuming
that the translation is fixed, the rotation is optimized as
follows. Each 2D line a along with the currently estimated
best center of projection Cref define a plane with normal
Na. If Rref is the refined estimate of the rotation, then the
corresponding 3D line b should satisfy RrefNa � b = 0 (i.e.
the dot product of the rotated normal with the 3D direc-
tion should be zero). The set of corresponding 2D (a) and
3D (b) lines thus generate a linear system of equations
for the unknown nine parameters of the rotation matrix
Rref. This system is solved in the least-squares sense in
order to compute Rref.6 Assuming now that the rotation is
fixed to Rref we can iterate and refine further Cref by search-
ing in a small neighborhood around it for maximizing over-
lap between 2D and projected 3D lines. This two step
procedure converges when no significant change in the
rotation and translation occurs. The camera position in T
with the maximum grade is picked as the best one for the
matching candidateMi. This is normally correct, but the list
is still kept as well in case that the one with the maximum
grade is not the best. Then, the user can select other posi-
tions in the list. This maximum grade is also used as the
grade for Mi. For each matching candidate in M, a list of
camera positions is computed by these 6 steps and a grade
is assigned. Then, the list M is sorted based on the grade
and the one with the maximum grade is selected as the best
one but the user also can select other results in M.
6 We need to also correct this estimate to become a rotation matrix using standard
vision techniques [38].



Fig. 9. Asian Society building, NYC. (Top row:) Texture-mapped image on 3D model (left) and 2D image with matched 2D features projected on 3D features (right). Correct
transformation. This is the best option provided to the user. Note that lines from nearby buildings have been used for its computation. (Bottom row:) Texture-mapped image
on 3D model (left) and part of 2D image with matched 2D features projected on 3D features (right). Incorrect transformation. This is one of the wrong options generated. In
that example the rotation is correct, but the translation is not. The error is evident since images of nearby buildings are projected on the 3D model of the Asian Society
building.

Fig. 10. The evaluation of the registration result on building 1. For this case, 19 pairs of 3D and 2D lines are selected and the average error is 1.6833 in pixels (see Section 7
and Table 1 for description of error measurements). Top Left: The manually marked 3D lines; Top Right: Marked 3D lines on 3D range point cloud; Bottom Left: The manually
marked 2D lines; Bottom Right: The marked 3D lines are projected onto the image plane (green) after automated registration. The corresponding 2D lines are shown in red.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. The evaluation of the registration result on building 2. For this case, 96 pairs of 3D and 2D lines are selected and the average error is 1.4923 in pixels (See Section 7
and Table 1 for description of error measurements). Top Left: The manually marked 3D lines; Top Right: Marked 3D lines on 3D range point cloud; Bottom Left: The manually
marked 2D lines; Bottom Right: The marked 3D lines are projected onto the image plane (green) after automated registration. The corresponding 2D lines are shown in red.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. The evaluation of the registration result based on manually selected line
correspondences. For this case, 21 pairs of 3D and 2D lines are selected and the
average error is 1.7217 in pixels (see Section 7 and Table 1 for description of error
measurements). The marked 3D lines are projected onto the image plane (green)
after automated registration. The corresponding 2D lines are shown in red. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

7 Note that the reflectance depends on various parameters (distance, orientation
and surface material) and is not the actual color of the object as captured by a 2D
digital camera.
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6. Results

We are presenting results from real experiments in four urban
settings that we name 1 (Fig. 7), 2 (Fig. 6), 3 (Fig. 8) and Asia Soci-
ety building in NYC (Fig. 9). Buildings 1 (Thomas Hunter building,
NYC) and 2 (building across from Cooper Union, NYC) are the exte-
riors of regular urban structures. Building 3 is the interior of Grand
Central Station, a scene of architectural complexity and beauty.
First a number of 3D range scans of each structure was acquired
using a Leica HDS 2500 and Leica ScanStation2 time-of-flight laser
range scanners [8]. This scanners provides absolute 3D range mea-
surements up to a distance of 100 m, and at an accuracy of 6mm.
Each 3D point is associated with reflectance information, that cor-
responds to the amount of laser-intensity getting back to the range
sensor.7 We then segment each range scan, extract linear 3D fea-
tures, and register the scans in a common coordinate system.

Figs. 6–8 provide individual registration results, as described in
our technical sections. Note than in the case of Fig. 7b and Fig. 8b
the user needs to orient the 3D range model in a position that sim-
ulates the 2D color image. As you can see from these figures this
simulation does not need to be exact. It is necessary for assistance
in matching vanishing points with 3D directions (Section 4) in or-
der for our system to perform in interactive rates (5–10 s for
matching per image). Tables 1–3 present quantitative results for
successful automated registrations. The last two columns describe
error measured as (a) average distance between matching lines
used for automated registration (named ‘‘E’’), and (b) average dis-
tance between manually selected lines (named ‘‘E2’’).

In Fig. 9 we are showing two of the options that are presented to
the user by the interactive system. They include a good (top) and
bad (bottom) transformation. Both options correspond to the same
rotation but they include different translations. Note that these
solutions are generated from different sets of correspondences be-
tween 3D and 2D lines. The good transformation includes lines
from various building in the area, whereas the bad transformation
lines only from the Asian Society building (center of the image). It
seems that support from a large part of the scene provides more ro-
bust results, something that is true for camera calibration methods
as well.

In all cases the first step (Section 4) never fails since the scenes
contain at least two vanishing points. The user may have to select



Fig. 13. Top: Texture mapping details for Building 1 (left) and Building 2 (right). The texture mapped urban structures (windows, street signs, AC units, etc.) demonstrate the
high accuracy of our registration system. Bottom: Texture mapping details for Building 3 (notice accuracy of registration of flag and of light fixtures).

Table 4
Quantitative results of failed registrations. Building 1 (three images) – Building 2 (two
images) – Building 3 (five images). Each row presents results from a failed registration
of a different 2D image with the 3D range model. For building 1 (top part), three
images fail out of total of 16 images. For building 2 (middle part), two images fail out
of total of nine images. For building 3, 5 images fail out of total of nine images. The
failure is due to the low quality of the extracted 3D/2D features (poor lighting
conditions or camera motion). The first two columns show the numbers of 3D and 2D
features used for matching. ‘‘Fi’’ is the initial focal length extracted from the Exif
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the correct correspondence between the possible matches, but this
is a small set of possibilities. The second step however (Section 5)
depends on the quality of the extracted low-level 2D and 3D linear
features. In cases that we cannot extract features of high quality
(due to low contrast in 2D images), this method will not be able
to perform correctly. On the other hand few correct 2D-to-3D
registrations can be enhanced with multiview-geometry solutions
to bring sequences in alignment with a model (see [1]).
meta-data of the image, while ‘‘Fr’’ is the refined focal length. ‘‘M’’ is the number of
matched features of the best transformation. Finally, ‘‘E2’’ is the evaluation error
which is average line-to-line distance (in pixels) based on the manually selected line
correspondences.

F3D F2D Fi Fr M E2

392 230 3065.83 3069.45 93 24.2109
398 341 3065.83 3072.32 121 13.9034
386 276 3065.83 3068.81 91 9.3920
390 219 3065.83 3069.22 87 8.2134
389 598 1185.03 1172.90 91 7.5009
421 654 1185.03 1175.89 83 22.4323
389 520 1185.03 1172.90 88 43.5432
543 245 2805.81 2833.45 63 33.6743
390 190 2805.81 2839.93 50 28.6434
301 189 2805.81 2829.39 58 19.8653
7. Evaluation

In order to quantitatively evaluate the accuracy of the registra-
tion results, we manually selected prominent 3D and 2D lines, and
calculated the distance between corresponding 2D and projected
3D lines. Examples of marked 3D and 2D lines are shown in Figs.
10–12. After automated registration, the marked 3D lines are pro-
jected onto the image plane (bottom right images in Figs. 10–12).
The average distance (in pixels) between the marked 2D lines from
the projections of their corresponding marked 3D lines is our eval-
uation metric. For each pair of corresponding 2D and 3D lines, the
line-to-line distance is the average of the two distances measured
from the two end points of the projected 3D line to the matching
2D line.

Tables 1–3 show the successful registration results. The last col-
umn (‘‘E2’’) contains the evaluation results. Intuitively, smaller er-
rors correspond to better registration results. An average error
around 1–2 pixels is at an acceptable range for a good registration.
This is also verified visually by our high-quality texture-mapping
results. Examples of texture-mapping details are shown in
Fig. 13. Table 4 shows the results of failed registrations. These fail-
ures are caused by extracted 3D and 2D features of low quality due
to poor lighting conditions or camera motion.

8. Conclusion

We have presented a systematic way for registering individual
2D images with a 3D range model. Our methods assume the exis-
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tence of at least two vanishing points in the scene (not necessarily
orthogonal). No higher-order grouping of features is necessary. Our
system allow us to register 2D images with a 3D model at interac-
tive rates. In our future work we would like to be able to handle
scenes of general configuration not containing any major vanishing
points. This would let the exploration of registration algorithms in
non-urban scenes.

In summary, this new image-to-range registration system re-
quires minimal user interaction and can register 2D images with
3D range data at interactive rates. The user interaction not only in-
creases the computational efficiency of the whole system, but also
makes the registration problem tractable. In addition, the whole
space of possible matches between 3D and 2D linear features is ex-
plored. The current system can work well with scenes containing
multiple layers of planar facades, or without major facades, as long
as linear features exist. This increases the generality of our algo-
rithm, since we make few assumptions about the 3D scene.
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