
Detection of windows in point clouds of urban scenes

Agis Mesolongitis
Graduate Center of CUNY

New York, NY
amesolongitis@gc.cuny.edu

Ioannis Stamos
Graduate Center of CUNY / Hunter College

New York, NY
istamos@hunter.cuny.edu

Abstract

Laser range scanners have now the ability to acquire
millions of 3D points of highly detailed and geometrically
complex urban sites, opening new avenues of exploration
in modeling urban environments. However, raw data are
dense and complex, lacking high-level descriptive power,
thus revealing the need for the automatic detection of ar-
chitectural objects, such as facades, windows, balconies,
etc. In this paper, we describe novel algorithms for the de-
tection of windows, which are ubiquitous in urban areas.
Detecting isolated windows is a challenging problem due to
the inability of the laser range sensors to acquire any data
on transparent surfaces and due to the wide variability of
window features. Our approach is based on the assump-
tion that the elements (windows) are arranged in multiple
unknown periodic structures making our system robust to
single window detection errors. This kind of detection is es-
sential for high-level recognition algorithms, compression
methods, registration, as well as realistic visualizations.

1. Introduction
The photorealistic reconstruction of individual buildings

or large urban areas can be achieved by a variety of acqui-
sition methods and interpretation techniques mainly based
on ground-based and/or air-borne laser and image sensing.
The state of the art in this area is surveyed in [7] and the ul-
timate goal is the reconstruction of detailed models of urban
sites.

Our work focuses in data which were acquired by laser
scanners and can be used for generating accurate 3D mod-
els. Since unprocessed models are heavy, complex and lack
essential high-level descriptive power, our goal is to abstract
the complex 3D models into high-level descriptors. This not
only allows compressed representations but also facilitates
higher level recognition processes. It also leads to more
realistic 3D visualizations, which take advantage of the se-
mantics of the scene.

In this paper, we are attacking one aspect of this im-

(a) (b) (c) (d)

Figure 1. A selection of the various cases of windows in range
scans: high resolution closed (a) and open (b) window with inte-
rior building points captured as well (shadowed in red - see pdf for
color). Low resolution in (c) and (d).

portant problem by detecting the locations of windows on
building facades, assuming that the windows form multi-
ple two-dimensional periodic structures. Exploiting these
structures is very powerful, as it can reveal fully or par-
tially occluded windows which might otherwise escape de-
tection. It can also reduce the representation of a facade
into a few descriptors and a base point cloud of the sample
window. We also assume that (a) the laser scanner orga-
nizes the points in vertical scanlines (a 2D array), which
facilitates our pre-processing steps and (b) the facades are
mostly planar.

3D laser range sensing results in complex representa-
tions full of clutter (cars, traffic lights, vegetation), missing
data due to physical properties (for instance glass does not
provide any measurements) and variability of appearances
(e.g. open/closed windows — see Fig.1). Our problem is
made significantly harder by also taking into consideration
the missing data due to occlusions and the variability in data
resolution (farther objects are scanned in lower resolution
than close-by ones). However, the methods we describe in
this paper address all these challenges. We demonstrate our
approach using real data from a large urban scene.

2. System Overview
We developed an iterative algorithm that given the point

cloud of a large urban scene, it automatically selects the
points of each facade (see Fig.2) and outputs a set of 3D
points that correspond to the estimated window centers. The

ioannis
Typewritten Text
Point Cloud Processing Workshop, CVPR 2012

ioannis
Typewritten Text

ioannis
Typewritten Text

main algorithmic module for the window center estimation
is inspired by the Generalized Hough Transform [1]. Our
system, initially pre-processes the facade points to ensure
that all windows are uniformly represented as holes. Then,
it converts the processed points to a 2D binary orthographic
point occupancy map (Fig.6), it extracts and iteratively re-
fines the 2D window centers using local lattice fitting and
lattice voting (see Fig.7) and finally projects the 2D centers
back to 3D.

The use of the 2D occupancy map enables the uniform
representation of holes in point clouds of great resolution
variance as watertight 2D regions. Consequently, this map
allows us acquire an initial estimate of the window centers
that needs to be refined and maybe augmented by recov-
ered centers, undetected in the first pass. The refinement of
the centers and the recovery of missed ones are done by a
voting scheme in which each center votes for lattices that
are considered to be good fits for the image. These lattices
represent the local periodicity in the vertical and horizon-
tal directions (see [18]). Therefore, our method takes into
account the local window pattern. The paper is organized
as follows: Section 3 summarizes related work, section 4
presents the automatic facade segmentation, section 5 deals
with the 2D map generation and finally section 6 analyzes
the iterative window center refinement.

3. Related Work
Detecting windows on facades is a problem that has re-

ceived significant attention lately. Previous works have at-
tempted to tackle the problem of detecting multiple regu-
lar windows structures in 2D images by using color-based
features. For example, [8] and [16] suggest accurate meth-
ods based on the use of SIFT and other features and [17]
uses multiple images jointly with the extracted SFM point
clouds. [18] is using simple features such as Harris corners
to detect multiple regularities but the steps of this algorithm
implicitly rely on grouping based on the RGB values.

On the contrary, we rely solely on geometry and our al-
gorithms are applied to a binary 2D map acquired from the
3D data. The windows are represented by connected regions
of value 1 whose borders can be very crude in cases of low
resolution (see Fig.10(a)). So, this automatically excludes
clustering SIFT and other color based features as a first step
to identify different groups of windows (as in [8]).

Furthermore, there has also been a big amount of work
such as [6] and [5] where a single rectilinear window pat-
terns are assumed. These approaches however could not
work for multiple structures and their features still rely on
RGB data. General approaches include [4], which detects
windows as blobs in a color image but does not exploit the
underlying structure. Shape grammar methods have also
been examined, such as [14], which uses training images as
well as specification of grammar rules and [11], which re-

lies on manual interaction. However, in these approaches
periodicity is not enforced.

Fewer approaches exist when the input is a laser range
scan. [3] proposes an efficient approach for the detection of
a single period in the vertical direction for each window col-
umn of a 3D facade. [9] derives regularities of substructures
from a 3D model or range scan of a scene. This general ap-
proach can be used for extracting regularities but it is sen-
sitive in the calculation of curvatures. Simpler approaches
like [10] identify isolated windows directly in the 3D data
by examining holes in a facade but do not detect regular
groups and would not be robust in cases of occlusion. In
[13] window-like rectangular features were extracted by us-
ing 3D edge detection on high-resolution 3D data. The fea-
tures were used for 3D-to-2D registration and no regularity
was enforced. In [15] a Markov Network approach that re-
quires training is used to label points as windows. In [19],
3D repetitive elements are manually selected and automat-
ically consolidated. Finally, in [12] facades are adaptively
partitioned in by horizontal and vertical planes based on the
boundary features of planar regions. However, the data used
in [12] demonstrate a uniform acquisition resolution, which
is not the case in our datasets. These methods can be se-
riously affected by the variation in the resolution and the
window appearance, which can both exist inside a single
scan.
Our contributions can be summarized as follows:
(a) we efficiently extract the facades of a large-scale point
cloud, (b) we extract 3D windows in large-scale datasets, (c)
we detect 3D windows in high-, low- and mixed-resolution
data, (d) by modeling regularity, we are able to detect win-
dows that are missing due to occlusions or low resolution,
(e) we present a quantitative evaluation.

4. Pre-processing: Urban Scene Segmentation
We segment the points that correspond to each facade by

applying the algorithms described in the following sections.
These techniques can be applied in large data sets yielding
results like the one in Fig.2(d). At this point, we have to
note that the sensor: a) is calibrated so that the z-axis corre-
sponds to gravity direction and b) stores the points in a 2D
array, thus revealing connectivity.

4.1. Building Points Detection

A first step towards the segmentation of each single fa-
cade of an urban scene is to detect the points that belong to
buildings. At this point we exploit the structure of the input
data. Specifically, for each scan line, we check each point
sequentially and update an average of the projections on the
horizontal plane. Each point will be weighted depending
on how close it is from the previous one along the scan line.

The weights will be of the form: wk = e
−
‖pk−pk−1‖

2

σ2w where

pk = (xk, yk) is the projection of point k and σw is a pa-
rameter which in our experiments was set to be 0.3 times the
expected thickness of the facade. When we reach the points
of the buildings, these weights become very large (since all
the facade points will have similar projection) and the aver-
age converges to the location of the facade. We then use a
tolerance of 1 meter from this converged point and we label
the points inside this range as facade points (see Fig.2(b)).
This method is accurate and efficient for all resolutions of
the 3D data.

4.2. Automatic Point Clustering

The next step is to operate on the facade points to acquire
the orientation of each facade. Firstly, we fit planes in small
neighborhoods around each point using Principal Compo-
nents Analysis. If the plane fit is good (smallest eigenvalue
of local covariance matrix is smaller than a threshold), then
we assign a normal to the point. Finally, normals with an
angle θz ∈ [60, 120] from the gravity axis are fed to a mean-
shift mode seeking algorithm ([2]) and representative orien-
tations (azimuth angles) are estimated (the modes are usu-
ally 1 or 2). Based on these representatives, we cluster all
the points of the data set.

4.3. Region Growing Segmentation

As a final step, we apply a region growing segmentation
algorithm to connect points which 1) have a small distance
between them and 2) are assigned to the same orientation
cluster. In order to get the final facade volumes, we find the
oriented bounding boxes of each segment and merge over-
lapping boxes. The result is one box per facade which in
practice contains all the facade points and maybe some out-
liers (see Fig.2). Having divided the point cloud into a num-
ber of facades, we need to detect the windows in each one
of them. This exactly is the goal of the next sections.

5. Conversion to 2D / Initial Window Detection
As we desire to unify the representation of windows, we

convert all of them into holes lying on a planar facade (win-
dows as holes can also be seen in [11]). In this way, we will
not distinguish between closed and open windows, missing
or noisy window points. In order to accomplish that, it is
essential that we accurately detect the major plane of the fa-
cade. This is done as follows: First, we find the strongly pla-
nar points using a process similar to the one used in Sec.4.2.
The points are used to fit a single major plane. Having this
plane, we can effectively classify all the points into these
categories: behind the plane, on the plane, in front of the
plane. We choose to delete all the behind the plane points
since these are mainly the ones acquired through the win-
dow frames (see Fig.1).

The processed point cloud can now be used to identify
the window regions. We create a 2D binary point occu-

(a) (b)

(c) (d)

Figure 2. (a) Original point cloud with each scan line having a dif-
ferent color, (b) building points (Sec. 4.1), (c) segmented facades
(Sec. 4.3), (d) The result of the algorithm applied to a large dataset

pancy map, where the window regions are represented by
pixels with value 1. To achieve this, we firstly take an or-
thographic snapshot of the point cloud from the direction
of the normal of the major plane. The pixel dimensions are
1 × 1 centimeters, which is an accurate resolution for ur-
ban scenes. In order to have watertight regions, instead of
projecting points, we use the connectivity grid given by the
laser scanner and for each three connected points we project
the bounding rectangle and assign the value 0 to the corre-
sponding pixels. All pixels not accessed during this projec-
tion module are assigned the value 1 and will correspond
to“missing point”.

Having this binary map, we find connected regions of
pixels valued with 1 and we assume that the ones touch-
ing the top of the image are considered to be sky points and
are regions where windows should not exist. The rest of
the 1-valued closed regions are considered to be the win-
dow regions, i.e. the initial estimates for the windows. We
define the image which has value 0 everywhere, except for
the valid window regions (which will have value = 1), as
Iw(x, y). The size of Iw will be N × M and examples
of Iw can be seen in Figs.6 and 10(a). The centers of the
bounding boxes of the window regions are used as the input
for the consequent steps of our pipeline and are denoted by
C0 = {(xk, yk)}, with |C0| = KC0 , being the cardinality
of the set C0. The bounding boxes will be used only for
the initialization step and then be discarded, as they are not
always accurate due to low resolution variations and occlu-
sions. In order to reject tiny regions or other holes due to oc-
clusions, we specify some boundaries for the width and the
area of the bounding boxes and remove the non-complying
centers from C0. An example of the elements of C0 can be
seen in Fig.6.

(a) (b) (c)

Figure 3. Examples of window structures in our data set (a) Dif-
ferent horizontal period or they have the same horizontal period
but are not aligned, (b) Same vertical period, different horizonal
periods. (c) Same vertical period, different horizonal periods. The
second column can belong to either structure.

Figure 4. Overview of the Iterative Alignment and Reconstruction
module (Sec. 6).

6. Iterative Alignment and Reconstruction

The next step in our pipeline is a module which, after
being initialized with C0, it iteratively attempts to align the
elements of this set and also to add new ones based on the
local periodicity of the image Iw. The inputs of this module
will be C0 and Iw and the output will be the aligned and re-
constructed centers CT , where Ct is the result derived from
iteration t = 0, 1, ..., T . In order to understand the notion
of local window periodicity in a dataset of building facades,
in Fig.3 we present some synthetic facades demonstrating
three cases that occur frequently and consist of multiple pe-
riodic regions.

The iterative procedure is visualized in Fig.4 and the de-
tails of the implementation of the single step module are
presented in the next subsections and are summarized in
Fig.5. When we will refer to a single iteration, for the sake
of simplicity, the input set of centers will be denoted by
C and the output by C′. The elements of these sets will
be denoted in the rest of the paper by 2D vectors ck, for
k = 1, ..., |C| and c′k, for k = 1, ..., |C′|.

6.1. Kernel Image Generation

Having the set C, we would also like to have an image
representation of this set such that it will have large inten-
sities in pixels that correspond to the centers ck ∈ C and
will gradually have smaller intensities in pixels which are
located further from any ck. Hence, each pixel will be
assigned a value which corresponds to the proximity of a
center. The reasons for the generation of this image will
become obvious in the next section, when we will try to
assign lattices to each one of ck as a measure of the local

Figure 5. Diagram of a single step of Alignment and Reconstruc-
tion (Sec. 6)
.

periodicity.
Hence, we create a 2D image Ig of size N ×M , equal

to the size of Iw, with 2D Gaussian kernels centered at ck
and intensity from 0 to 1. The σ parameter is 1.5 ∗ w for
the horizontal direction and 1.5∗h for the vertical direction,
where w and h represent the width and the height of each
window. For the first iteration, w and h are given from the
bounding boxes of the regions of Iw (see Sec. 5), whereas in
the rest of the iterations, as new centers might be created, we
cannot use this information and we set w = 2r and h = 2r.
The r parameter will be used to tune other modules as well
and is a heuristically chosen typical value (r = 100cm)
for window width. It also represents the minimum distance
between two window centers.

6.2. Lattice Histogram Generation - Voting Scheme

This section will analyze the generation of a lattice his-
togram (H) through a procedure which we call lattice vot-
ing. The reader can refer to Algorithm 1 and Fig.6 for a
summary.

Before we proceed to the rest of the analysis of our algo-
rithm, it is essential to define the rectangular lattice, which
is a structure that is widely used in this work. A rectangular
lattice L = L(g, Q,R, l11) with a generator g = (px, py),
px, py ≥ 0 and dimensions Q×R is defined as follows:

L =
{
lij = l11 +

(
(i− 1)px, (j − 1)py

)
,

i = 1, 2, ..., Q,

j = 1, 2, ..., R
}

(1)

In other words, it is a set of Q × R 2D points arranged in
a regular matrix, where columns are spaced by px, rows by
py and the element l11 is the upper left element. Each of the
lij ∈ L can be considered as a seed or node of the lattice.

Figure 6. The variables of the Lattice Histogram Generation and
their relations for the first iteration of Alignment and Reconstruc-
tion. Darker pixels show higher value. See also Fig.5.

In the cases where px = 0 or py = 0, the lattice becomes
one-dimensional.

The basic idea behind lattice voting is that if we concen-
trate on each ck and manage to generate local lattices that
(a) contain this point and (b) are a good fit for the data, then
we have a representation of the local periodicity of the re-
gion in which ck belongs to. The aggregated information of
all the lattices generated from all ck will help us estimate
updated locations c′k. We proceed by setting up a Hough-
like lattice voting scheme, where, given Iw, Ig and C, each
window center ck will vote for new centers, that correspond
to the nodes of lattices that satisfy (a) and (b). The result-
ing histogram (H), denoted as the Lattice Voting Space, will
have peaks in locations that will be the elements of the new
C′. Eventually, C′ will contain points that demonstrate a
better alignment than the ones in C and will probably in-
clude new points if there are peaks in locations where no
element of C was close. The latter points are the recon-
structed centers. If the assumption of underlying multiple
regular structures holds, occluded or yet undetected win-
dows will be revealed in the next iterations. The details of
this procedure are organized in 4 steps which are also sum-
marized in Algorithm 1.

Step 1 A first step towards fitting lattices in our data is to
choose specific generators that agree with the local period-
icity of Iw and Ig . Given a center ck, we find itsKT nearest
centers and we create a histogram of the KT

2 possible pair-
wise translations (also see [18], [9]). Each translation will
vote for absolute values of x and y. The resulting histogram
(generator space) is denoted by Thk.

We are interested in finding the minimum non-zero gen-
erator (period) of the neighborhood. So, we create projec-

tion profiles along the x and y axes of Thk (adapted from
[5]) and we constraint the generator space to include only
the generators which have x < 1.5xp and y < 1.5yp, where
xp, yp > 0 are the first peaks of the corresponding profiles.

Consequently, by locating the peaks in the constrained
generator space, we will end up with the candidate genera-
tors denoted by gkn, where n = 1, 2, ..., Gk and Gk is the
number of the peaks.

Step 2 Now, need to select each candidate generator and
associate it with a lattice which will be large enough but at
the same time it will fit well both the window image Iw and
the kernel image Ig . This way, we are looking for lattices
that are in accordance not only with the original image Iw
but also with the kernel image, which might contain centers
that do not exist in Iw and which also integrates the infor-
mation of the proximity to a window center. We can say
that Iw is a coarse representation of our structure and Ig is a
more refined one. We would also like the lattice to be min-
imal, in the sense that if we overlay it over Iw there should
be much more 1s around the nodes lij than between them.
Such a lattice can be said that it does not “skip” windows
(see sk(L) below). This, was partially ensured by choos-
ing minimum generators in the previous step but since the
generator distribution can be arbitrary, we need to perform
a second check.

In order to find the best lattice for each gkn, we exhaus-
tively consider any possible lattice L that is small enough to
fit inside Iw, contains ck and has gkn as its generator. All
these lattices are assigned a score by the following scoring
function f1 and the one with the larger score is kept and
denoted by Lkn:

f1(L) = α×
(
iF it(L) + cF it(L)

2
− sk(L)

)
+β×sz(L)

(2)
where iF it(L) =

∑
ij Iw(lij)

QR is the fraction of lattice points

on window regions of Iw, cF it(L) =
∑
ij Ig(lij)

QR is the nor-
malized sum of the intensities of Ig at the lattice points,

sk(L) =
1

2QR−Q−R

(Q−1∑
i=1

R∑
j=1

Iw

(
lij + l(i+1)j

2

)

+

Q∑
i=1

R−1∑
j=1

Iw

(
lij + li(j+1)

2

))
(3)

measures the fraction of “1” pixels of Iw in the middle of
the horizontal and vertical edges of the lattice,

sz(L) =
1

2

(
py(Q− 1)

N
+
px(R− 1)

M

)
(4)

is a normalized measure of the size of the lattice and α >
β > 0.
iF it rewards lattices that represent the original image Iw

and cF it penalizes lattices that do not pass through the cen-
ters. Both quantities are necessary to be calculated as iF it
will encourage the expansion of the lattice to windows not
yet represented in C and cF it will validate reconstructed
windows originally hidden in Iw. We also need to reward
lattices for their size because, otherwise, minimal lattices
(i.e. Q = 0, R = 2) will be selected. Finally, the sk quan-
tity penalizes lattices that “skip” window regions. We chose
α = 0.65 and β = 0.35 to focus more to the fit of the lat-
tice than to its size. However, our system is not sensitive to
small variations of these values.

Step 3 At this point, each ck has an associated set of lat-
tices Lk = {Lkn}whose elements correspond to generators
gkn. For n = 1, 2, ..., |Lk|, we calculate a second score for
the lattices using the scoring function f2:

f2(L) = α×
(
iF it(L) + cF it(L)

2

)
+β×sz(L)−dFM(L)

(5)
where dFM (distance from mean) is the normalized dis-

tance between gkn and
∑Gk
n=1 gkn
Gk

. This scoring function
instead of considering the sk value, it penalizes lattices that
have generators which are outliers. Finally, we sort Lk in
descending order based on the f2 score.

Step 4 We choose the top KL lattices to participate in our
voting scheme. In our experiments, we chose KL = 2 to
reduce running time and since this choice seemed to yield
satisfactory results.

At this point, lattice voting takes place as follows: each
top lattice L will vote in the image space by casting Q×R
votes, one for each of its nodes lij . However, each vote does
not correspond to a single bin, but to a disc of bins centered
at lij and with a diameter equal to r (see Fig.7). This is
done in order to compensate for the variation between the
elements of C and a perfectly aligned set.

It was observed that among the KL lattices there can be
lattices that significantly deviate from the ideal local peri-
odicity and introduce variance in the peaks of H . In order
to suppress this effect, lattices with cF it < tvote are not al-
lowed to vote. tvote can be from 0 to 1; high values reduce
the number of inaccurate lattices but also reduce the number
of reconstruction lattices i.e. the lattices that extend to lo-
cations of no initial center attempting to create new correct
centers. In our experiments, we set tvote = 0.5.

Algorithm 1 Voting Scheme
for all centers ck, where k = 1, ...,KC do

Find candidate generators gkn (step 1).
for all gkn, where n = 1, ..., Gk do

Find best lattice Lkn based on the f1 score (step 2).
end for
Sort Lkn based on the f2 score (step 3).
Use the KL top lattices to vote in H (step 4).

end for

(a) (b) (c)

Figure 7. Illustration of lattice voting. (a) and (b) are different
extracted lattices overlaid on Ig and (c) is the resulting histogram.
The darker discs accumulate votes from both lattices. Notice the
reconstruction of the lower left center.

6.3. Peak Location and Refinement

Having H , we need to locate its peaks. The nature of H
allows us to achieve this by simply blurring the image and
looking for pixels with an intensity higher than the ones
around them. Because of the variance of the estimation
(caused by voting on discs and Gaussian kernels in Iw), it
is possible that the peaks belonging to one structure might
have a common translational shift. In order to reduce this ef-
fect, we should find the different structures and try to align
them with the centers of the previous iteration in a rigid
ICP-like manner. In practice, it is sufficient to sort the points
based on their xk and split this set into K equally sized sets
C′q . In our experiments, we chose K = 5. We translate
each c′qi ∈ C′q by −dT , where:

dT (C′q,C) =
∑|C′q|

i=1 δr(c
′
qi, NC(c

′
qi)) ‖ c′qi −NC(c

′
qi) ‖∑|C|

i=1 δr(c
′
qi, NC(c′qi))

(6)
where NS(x) is the nearest neighbor of x among the ele-
ments of set S, |S| is the cardinality of S and

δr(x1,x2) =
{

1 if ‖ x1 − x2 ‖< r
0 otherwise .

Eq.(6) measures the average distance (only if it is smaller
than r) between each point in C′q and its closest neighbor in
C.

6.4. Convergence

We check the output of the iterative procedure for con-
vergence in order to stop and generate the output, as seen
in Fig.4. For a each iteration, the following quantities are
calculated:

d̂T pr re rev rep reo
C0 18± 1 0.910 0.738 0.912 0.392 0.009
CT 21± 1 0.894 0.810 0.919 0.633 0.237

Table 1. Evaluation of the results for centers in C0 (no iteration)
and CT (last iteration). The precision is denoted by pr. The recall
can be analyzed into: overall (re), visible windows (rev), partially
occluded (rep) and fully occluded (reo). d̂T is the mean dT and
is measured in cm.

dC =

∑|C′|
n=1 ‖ c′i −NC(c

′
i) ‖

|C′|
(7)

d|C| = |C′| − |C| (8)

where ‖ x ‖ is the L2 norm of x. After experimentation, we
tuned our process to terminate when dC < 4 and d|C| = 0.
After the algorithm terminates, we project the 2D windows
back to 3D.

7. Experiments and Performance evaluation
For our experiments, we automatically segmented 96

urban facades of various resolutions and sizes. We have
acquired 3D range scans of urban scenes using a Leica
ScanStation2 scanner. We compared the results of our algo-
rithm to manually annotated window centers done through
a special GUI. We denote all the annotated centers by CA

and the estimated centers by CE . The annotated centers
are classified as visible, partially occluded, fully occluded
based on the window visibility. The sets of these centers
are denoted by CAv , CAp, CAo. We find NCA(c) (with a
distance less than r) for each c ∈ CE and we define the
sets CEv , CEp, CEo based on the label of NCA(c). We also
define the quantity: PA/E =

∑|CA|
i=1 δr(c

A
i , NCE (c

A
i)) as

the number of detected windows. Correspondingly we can
define PAv/Ev , PAp/Ep , PAo/Eo. Thus, the precision is
pr = PA/E/|CE | and the recall is re = PA/E/|CA| with
an uncertainty of dT . The recalls for the window labels are:
rei = PAi/Ei/|CAi| , i = v, p, o. Since the algorithm does
not have knowledge of the labels of the detected windows,
pri is not defined. The results are analyzed in Table 1.

The size of the 2D maps generated by our data is of the
order of 105 − 107 pixels. The total number of windows
in our dataset is 6614 of which 4744 are labeled as visible,
1405 as partially occluded and 465 as fully occluded. The
minimum number of windows per facade is 2 and the max-
imum 349. The running time per facade in a 3GHz pentium
with 8GB RAM is 16 ± 7 mins in a C++ implementation.

The detection of windows based on region growing in Iw
is considered to be the naı̈ve approach (first row of Table 1).
We can see that our method, although it demonstrates a sim-
ilar precision than the naı̈ve approach, it can consequently

(a)

(b) (c) (d)

Figure 8. Results of our algorithm. Notice the reconstruction of
fully occluded windows and the satisfactory performance in very
low resolution regions. The wrong detections of the 5th column of
(a) and the 10th one of (c) can be eliminated in a post-processing
step.

(a) (b)

Figure 9. Results of our algorithm as Voronoi regions constructed
from the detected window centers (see pdf for color). Notice the
reconstruction of occluded windows (lower right region of (b)) and
the satisfactory performance in very low resolution regions.

reveal more partially and fully occluded windows keeping
the same recall for visible windows. These instances are
hard to be detected just by region growing because in most
cases no contiguous regions are formed. The difference in

(a) (b) (c)

Figure 10. Low resolution example. (a) Iw, (b) final CT , (c) C3D

on 3D facade. Note that this is a very hard input example and we
are able to detect the majority of windows.

d̂T is negligible, given that the GUI labeling was done with
a 6cm accuracy. Some visual results of our experiments can
be seen in Figs.8, 9 and 10. As we did not assume a single
rectilinear structure, we could detect windows in examples
like the one in Fig.9(b), where two facades were segmented
together since they have the same major plane and zero gap
between them. Also, a few problematic cases can exist, such
as the one in Fig.8(a). In this case, due to big size of the
structure, some lattices with relatively small iF it were not
adequately penalized, thus yielding a non-existent windows
column. A post-processing check can eliminate such cases.

8. Conclusion
We presented an approach with strong results that detects

the centers of windows in planar 3D facades of various ac-
quisition resolutions under the assumption of the existence
of regular window structures. This approach is a step to-
wards the creation of facade descriptors which can be used
in 3D registration, reconstruction, compression and scene
understanding.

Acknowledgements
This work has been supported in part by the following

NSF grants: IIS-0915971, CCF-0916452 and MRI CNS-
0821384. We would like to thank Emmanouil Z. Psarakis
for reviewing and proofreading this paper and for the very
useful suggestions and discussions.

References
[1] D. Ballard. Generalizing the hough transform to detect arbi-

trary shapes. Pattern recognition, 13(2):111–122, 1981.
[2] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE PAMI, 24:603–619,
May 2002.

[3] S. Friedman and I. Stamos. Real time detection of repeated
structures in point clouds of urban scenes. 3DIMPVT, 0:220–
227, 2011.

[4] M. Jahangiri and M. Petrou. An attention model for ex-
tracting components that merit identification. ICIP’09, pages
961–964, Piscataway, NJ, USA, 2009. IEEE Press.

[5] S. C. Lee and R. Nevatia. Extraction and integration of win-
dow in a 3D building model from ground view images. In
CVPR, volume 2, pages 113–120, June 2004.

[6] P. Muller, , G. Zeng, P. Wonka, and L. V. Gool. Image-based
procedural modeling of facades. In SIGGRAPH, 2007.

[7] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van
Gool, and W. Purgathofer. A survey of urban reconstruction.
In EUROGRAPHICS 2012 State of the Art Reports, 2012.

[8] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu.
Translation-symmetry-based perceptual grouping with appli-
cations to urban scenes. In Proceedings of the 10th Asian
conference on Computer vision - Volume Part III, ACCV’10,
pages 329–342, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and
L. Guibas. Discovering structural regularity in 3D geome-
try. SIGGRAPH, 27(3):#43, 1–11, 2008.

[10] S. Pu and G. Vosselman. Knowledge based reconstruction of
building models from terrestrial laser scanning data. ISPRS
Journal of Photogrammetry and Remote Sensing, 64(6):575–
584, 2009.

[11] N. Ripperda and C. Brenner. Application of a Formal Gram-
mar to Facade Reconstruction in Semiautomatic and Auto-
matic Environments. In 12th AGILE International Confer-
ence on Geographic Information Science, 2009.

[12] C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu. Adaptive par-
titioning of urban facades. SIGGRAPH ASIA, 30(6):184:1–
184:9, 2011.

[13] I. Stamos and P. K. Allen. Geometry and texture recovery of
scenes of large scale. Journal of Computer Vision and Image
Understanding, 88(2):94–118, 2002.

[14] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape grammar parsing via reinforcement
learning. CVPR, 0:2273–2280, 2011.

[15] R. Triebel, K. Kersting, and W. Burgard. Robust 3D scan
point classification using associative markov networks. In
IEEE ICRA, pages 2603 –2608, May 2006.

[16] C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting large repet-
itive structures with salient boundaries. In ECCV, pages
145–155, 2010.

[17] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan.
Image-based street-side city modeling. ACM Trans. Graph.,
28:114:1–114:12, December 2009.

[18] P. Zhao and L. Quan. Translation symmetry detection in
a fronto-parallel view. In CVPR, pages 1009–1016. IEEE,
2011.

[19] Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-
Or, and B. Chen. Non-local scan consolidation for 3D urban
scenes. ACM Transactions on Graphics, 29(4):94, 2010.

