
sensors

Article

3D Object Detection and Instance Segmentation from 3D Range
and 2D Color Images †

Xiaoke Shen 1,* and Ioannis Stamos 2

����������
�������

Citation: Shen, X.; Stamos, I. 3D

Object Detection and Instance

Segmentation from 3D Range and 2D

Color Images. Sensors 2021, 21, 1213.

https://doi.org/10.3390/s21041213

Received: 22 December 2020

Accepted: 31 January 2021

Published: 9 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Graduate Center, Computer Science Department, City University of New York,
New York, NY 10016, USA

2 Hunter College & The Graduate Center, Computer Science Department, City University of New York,
New York, NY 10065, USA; istamos@hunter.cuny.edu

* Correspondence: xshen@gradcenter.cuny.edu
† This paper is an extended version of Xiaoke, S.; Ioannis, S. Frustum VoxNet for 3D object detection from

RGB-D or Depth images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020.

Abstract: Instance segmentation and object detection are significant problems in the fields of com-
puter vision and robotics. We address those problems by proposing a novel object segmentation and
detection system. First, we detect 2D objects based on RGB, depth only, or RGB-D images. A 3D
convolutional-based system, named Frustum VoxNet, is proposed. This system generates frustums
from 2D detection results, proposes 3D candidate voxelized images for each frustum, and uses a
3D convolutional neural network (CNN) based on these candidates voxelized images to perform
the 3D instance segmentation and object detection. Results on the SUN RGB-D dataset show that
our RGB-D-based system’s 3D inference is much faster than state-of-the-art methods, without a
significant loss of accuracy. At the same time, we can provide segmentation and detection results
using depth only images, with accuracy comparable to RGB-D-based systems. This is important
since our methods can also work well in low lighting conditions, or with sensors that do not acquire
RGB images. Finally, the use of segmentation as part of our pipeline increases detection accuracy,
while providing at the same time 3D instance segmentation.

Keywords: frustum; VoxNet; instance segmentation; object detection; 3D CNN; robotics

1. Introduction

We are living in a three-dimensional world. Compared to 2D images, 3D images
give us a better representation of this world. A better representation of our living world
can help automated systems to understand the world with higher certainty. Meanwhile,
directly processing the 3D representation of the world can be computationally expensive.
Humans can understand the 3D environment in a very efficient way by only focusing on
the important parts. For example, it is easy for human beings to realize not salient parts,
such as the empty space and background objects, and thus focus on the important objects,
such as other people, cars, pets, etc. We want to find a way to use the three-dimensional
data more efficiently by simulating human beings’ intelligent behaviors to address the 3D
instance segmentation and 3D object detection problem. We achieved this by building a
system based on both the 2D and 3D data representations.

Segmentation and object detection are significant problems in the fields of computer
vision and robotics. 2D object detection systems from RGB images have been significantly
improved in recent years due to the emergence of deep neural networks [1–5], and large la-
beled image datasets [6,7]. For applications related to robotics though, such as autonomous
navigation, grasping, etc., a 2D object detection system is not adequate. Thus, 3D object
detection and reconstruction [8] systems have been developed, with input coming from

Sensors 2021, 21, 1213. https://doi.org/10.3390/s21041213 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21041213
https://doi.org/10.3390/s21041213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041213
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1213?type=check_update&version=1

Sensors 2021, 21, 1213 2 of 29

RGB-D or depth-only sensors. We describe a new 3D object detection system that incor-
porates mature 2D object detection methods as a first step. The 2D detector can run on
an input RGB image, or pseudo-RGB image generated from a 3D point cloud. That 2D
detection generates a 3D frustum (defined by the sensor and the 2D detected bounding
box) where a search for a 3D object is performed. Our main contribution is the 3D object
detection and instance segmentation within such a frustum. Our method involves 3D
voxelization, not of the whole frustum, but of a learned part of it. That allows for a higher
resolution voxelization, lower memory requirements, and a more efficient segmentation
and detection.

1.1. Problem Definition
1.1.1. 3D Object Detection

Given RGB-D data or depth only data as input, 3D object detection aims to classify
and localize objects in 3D space. The depth data, obtained from LiDAR or indoor depth
sensors, are represented as a point cloud. Each object is represented by a class (one among
k predefined classes) and an amodal 3D bounding box. The amodal box is represented by
the center (x, y, z), physical size (w, d, h), and orientation (θ, φ, ψ) relative to a predefined
canonical pose for each category. We only consider the heading angle θ around the up-axis
for orientation [9].

1.1.2. 3D Instance Segmentation

The 3D semantic segmentation goal for point cloud is to obtain fine inference by pre-
dicting labels for each cloud point. Every cloud point is represented by a class (one among
k predefined classes). 3D instance segmentation provides different labels for separate
instances of objects belonging to the same object-class. Thus, instance segmentation can
be defined as the task of simultaneously solving object detection and semantic segmenta-
tion [10].

1.2. Our Solutions

Figure 1 illustrates the overview of our 3D object detection system. In the upper left
we see a 2D RGB image, along with the 2D detected bounded boxes (a chair and a desk).
On the upper right we see a 2D pseudo-RGB image that was generated from the associated
3D range image (see [11]), along with similarly detected 2D bounded boxes. We call this
pseudo-RGB image a DHS image, where D stands for depth, H for height, and S for signed
angle. The depth is a normalized distance of the associated 3D point, height is a normalized
height of the 3D point, and the signed angle measures the elevation of the vector formed
by two consecutive points on a scanline indicating the convexity or concavity of three
consecutive points (see [11]). We can apply traditional 2D detectors on this pseudo-RGB
image, making our method applicable even when no RGB information is available. 3D
frustums are then extracted from these 2D detections. A 3D frustum is a prism having
as apex the sensor location and extending through the 2D bounding boxes into the 3D
space. Learned parts of the 3D frustum are being voxelized. These voxelizations are fed to
Frustum VoxNet, which is a 3D Fully Convolutional Neural Network (FCN), to finalize the
3D object detection.

Our 3D detection is enhanced by our 3D instance segmentation. The voxelizations are
fed to a segmentation subnetwork of the Frustum VoxNet, which is a 3D FCN, to produce
the 3D instance segmentation.

Sensors 2021, 21, 1213 3 of 29

Figure 1. Overview of the whole system. Upper left: RGB image and detected 2D bounding boxes.
Upper right: depth height and signed angle (DHS) image, and detected 2D bounding boxes. A DHS
image is a pseudo-RGB image generated by a depth image (see text). Bottom: The final 3D detected
objects from the associated 3D range image. The 3D detection not only provides an amodal bounding
box but also an orientation. The red point is the center of the bounding box and the green one is
the front center. The detected 2D bounding boxes from either and RGB or DHS image, generate 3D
frustums (which are prisms having as apex the sensor location and extend through the 2D bounding
boxes to the 3D space). They are then fed to our Frustum VoxNet network, which produces the 3D
detections.

In this paper, we demonstrate the power of using a 3D FCN approach based on volu-
metric data to achieve accurate 3D instance segmentation and detection results efficiently.
We are presenting a novel method for learning the parts of 3D space to voxelize. This allow
us to provide high resolution representations around the objects of interest. It also allows
our system to have reduced memory requirements and lead to its efficiency. In addition,
compared to systems that do not perform voxelization (such as [9,12]), our methods can
operate without the requirement of subsampling the datasets. Compared to systems that
do voxelize (such as [13]), our system does not voxelize the whole space, and thus allows a
higher resolution object representation. Finally, we provide a 3D instance segmentation
and 3D object detection system based on depth only images as well as RGBD images.

In summary our main contributions are as follows:

• We have developed novel methods for 3D objection, classification, and instance
segmentation. We have thoroughly tested their efficiency and accuracy as described
in Sections 3 and 4.

• We have significantly improved efficiency with respect to the state-of-the-art in 3D
detection. Our 3D detection without segmentation has been presented in [14]. In this
paper, we provide an enhanced system that performs both detection and segmentation.
That improves the detection performance, and it also includes instance segmentation
results. The increased space and time efficiency makes our method appropriate for
real-time robotic applications.

Sensors 2021, 21, 1213 4 of 29

• We are able to provide accurate detection and segmentation results using Depth only
images, unlike competing methods such as [9]. This is significant, since our methods
can also work well in low lighting conditions, or with sensors that do not acquire RGB
images.

This paper is organized as follows. Section 2 describes the related work. The ob-
ject detection system and the experiments based on an indoor dataset are described in
Section 3. In Section 4 our 3D instance segmentation system is explained. The 3D object
detection based on the 3D instance segmentation output is also described in Section 4.
The last section presents our conclusions.

2. Related Work

2D methods: RGB-based approaches can be summarized as two-stage frameworks
(proposal and detection stages) and one-stage frameworks (proposal and detection in
parallel). Generally speaking, two-stage methods such as R-CNN [1], Fast RCNN [2], Faster
RCNN [3], Feature Pyramid Network (FPN [4], and mask R-CNN [5] can achieve a better
detection performance while one-stage systems such as you only look once (YOLO) [15],
YOLO9000 [16], RetinaNet [17], and Single Shot Object Detection with Feature Enhance-
ment and Fusion (FFESSD) [18] are faster at the cost of reduced accuracy. For deep learning-
based systems, as the size of the network is increased, larger datasets are required. Labeled
datasets such as PASCAL VOC dataset [19] and Common Objects in Context (COCO) [20]
have played important roles in the continuous improvement of 2D detection systems. Nice
reviews of 2D detection systems can be found in [21,22].

3D methods: Compared with detection based on 2D images, the detection based on
3D data is more challenging due to several reasons [22]: (1) Data representation itself is
more complicated. 3D images can be represented by point clouds, meshes, or volumes,
while 2D images have pixel grid representations. (2) Due to the extra dimension, there
are increased computation and memory resource requirements. (3) 3D data is generally
sparser and of lower resolution compared with the dense 2D images, making 3D objects
more difficult to identify. Finally, (4) large sized labeled datasets, which are extremely
important for supervised-based algorithms, are still inferior compared with well-built 2D
datasets. A nice review about different 2D and 3D object detection systems can be found
in [22]. Below we summarize the basic approaches.

Project 3D data to 2D and then employ 2D methods: There are different ways to project
3D data to 2D features. Horizontal disparity, height above ground, and the angle the pixel’s
local surface normal (HHA) was proposed in [23] where the depth image is encoded with
three channels: horizontal disparity, height above ground, and the angle of each pixel’s
local surface normal with gravity direction. The signed angle feature described in [24]
measures the elevation of the vector formed by two consecutive points and indicates the
convexity or concavity of three consecutive points. Input features converted from depth
images of normalized depth (D), normalized relative height (H), angle with up-axis (A),
signed angle (S), and missing mask (M) were used in [11]. We are using DHS in this work
to project 3D depth image to 2D since as shown in [11] adding more channels did not affect
classification accuracy significantly. Keeping the number of total channels to three, allow
us to use networks with pre-trained weights for starting our training.

2D-driven 3D object detection from RGB-D data: Our proposed framework is mainly
inspired by 2D-driven 3D object detection approaches as in [9,25]. First, a 2D detector
is used to generate 2D detections. The differences of our work with [25] are: (1) the 2D
detector in [25] is only based on RGB images and our proposed system explores both
RGB-D and depth only data. (2) 3D detection in [25] uses a MLP regressor to regress the
object boundaries based on histograms of points along x, y, and z directions. Converting
raw point clouds to histograms results in a loss of information. The main differences of
our system to Frustum PointNets [9] are the following: (1) In the 2D detection part, [9] is
based on RGB inputs, while our system can support both RGB-D and depth-only sensing.
(2) In the 3D detection part, our system is using voxelized data, while Frustum PointNets

Sensors 2021, 21, 1213 5 of 29

is consuming raw point clouds via PointNet [12]. PointNet uses a fully connected neural
network and max pooling, so it cannot support convolution/deconvolution operations well.
We believe 3D convolution/deconvolution can play important roles in both 3D semantic
segmentation and object detection. (3) PointNet’s computation complexity is increased
if more points are available as the framework’s input is N × K where N is the number of
points and K is the number of channels. (4) Random sampling is required in PointNet,
but is not needed in our voxelization approach. A recent method [26] that is based on
PointNet and Hough Voting, achieves improved detection results without the use of RGB
images. Our method is still more efficient in inference time, and thus more appropriate for
robotics application. In addition, our approach does not need to subsample the 3D point
cloud as required by [26].

3D CNNs: VoxelNet [13] uses 3D LiDAR data to detect 3D objects based on the KITTI
outdoor dataset, and utilizes bird’s eye view (BEV) features (such as Multi-View 3D Object
Detection (MV3D) [27], Aggregate View Object Detection (AVOD) [28], and Multi-Modality
Sensors of USV [29])). The use of BEV is not helpful in indoor applications. In addition,
the use of the whole range image for voxelization lowers the resolution (and therefore
the scale) of the objects of interest. Early influential 3D detection systems used two-stage
approaches. The first stage generates proposals, while the second stage performs 3D
detection. DeepSliding Shape [30] detects 3D objects based on the SUN RGB-D dataset
and it uses directional Truncated Signed Distance Function (TSDF) to encode 3D shapes.
The 3D space is divided into 3D voxels and the value in each voxel is defined to be the
shortest distance between the voxel center and the surface from the input depth map. A
fully convolutional 3D network extracts 3D proposals at two scales corresponding to large
size objects and small size objects. For the final 3D detection, this method fuses the 3D
voxel data and RGB image data by using 3D and 2D CNNs. Our approach, on the other
hand, first focuses on the frustum to voxelize, and then selects the part to be voxelized
based on training. That allows us to achieve higher resolution around the objects of interest.

3D detection based on multi-sensors: With the development of sensor technologies,
multiple sensors can be more available at a reasonable cost. Hence, 3D detection systems
based on various sensors are developed in the past several years. In [29] 3D object detection
is based on multi-modality sensors of unmanned surface vehicles (USV). Feature deep
continuous aggregation (FDCA) [31] aggregates features by using multi-sensors for 3D
vehicle detection.

3. 3D Object Detection

Object detection is a significant problem in the fields of computer vision and robotics.
2D object detection systems from RGB images have been significantly improved in recent
years due to the emergence of deep neural networks and large labeled image datasets.
For applications related to robotics though, such as autonomous navigation, grasping,
etc., a 2D object detection system is not adequate. Thus, 3D object detection systems have
been developed, with input coming from RGB-D or depth-only sensors. In this section we
describe a new 3D object detection system that incorporates mature 2D object detection
methods as a first step. The 2D detector can run on an input RGB image, or pseudo-
RGB image generated from a 3D point cloud. That 2D detection generates a 3D frustum
(defined by the sensor and the 2D detected bounding box) where a search for a 3D object
is performed. Our main contribution is the 3D object detection within such as frustum.
Our method involves 3D voxelization, not of the whole frustum, but of a learned part of it.
That allows for a higher resolution voxelization, lower memory requirements, and a more
efficient detection.

Figure 1 illustrates the overview of our system. In the upper left we see a 2D RGB
image, along with the 2D detected bounded boxes (a chair and a desk). On the upper
right we see a 2D pseudo-RGB image that was generated from the associated 3D range
image (see [11]), along with similarly detected 2D bounded boxes. We call this pseudo-
RGB image a DHS image, where D stands for depth, H for height, and S for signed angle

Sensors 2021, 21, 1213 6 of 29

(see Section 1.2). We can apply traditional 2D detectors on this pseudo-RGB image, making
our method applicable even when no RGB information is available. 3D frustums are then
extracted from these 2D detections. A 3D frustum is a prism having as apex the sensor
location and extending through the 2D bounding boxes into the 3D space. Learned parts of
the 3D frustum are being voxelized. These voxelizations are fed to Frustum VoxNet, which
is a 3D fully convolutional neural network (FCN). We name this system as Frustum VoxNet
V1 [14]. The content of this section is reorganized from [14]. All figures and tables in this
section are initially from [14].

3.1. Dataset

Since our final goal is indoor robotic navigation, our Frustum VoxNet system has been
evaluated based on an indoor SUN RGB-D dataset [7]. SUN RGB-D dataset splits the data
into a training set which contains 5285 images and a testing set which contains 5050 images.
For the training set, it further splits into a training only, which contains 2666 images and a
validation set, which contains 2619 images. Similar to [25,30], we are training our model
based on the training only set and evaluate our system based on the validation set. We call
the only training dataset as train2666 in the future description.

3.2. Frustum VoxNet V1 System Overview

First, 2D detections on RGB or DHS image generate 2D bounding boxes of objects.
The 2D detections generate 3D frustums (defined by the sensor and the 2D detected
bounding box) where a search for a 3D object is performed. For each such frustum, we
know the class of the object to be detected by the 2D detection. Our system accurately
localizes the amodal 3D bounding box and the orientation of the detected 3D object.
To achieve this, we perform 3D voxelization, not of the whole frustum, but a learned part
of it. That allows for a higher resolution voxelization, lower memory requirements, and a
more efficient detection. We explain first how we decide which part of the frustum to use.

3.3. Frustum Voxelization
3.3.1. 3D Cropped Box (3DCB) and 3D Intersection over Itself (IoI)

Given a 3D frustum (defined as a 3D prism from the sensor and the 2D detected
bounding box into the 3D space), our goal is to voxelize only a part of it. We define that
part as axis-aligned 3D bounding boxes enclosed in the frustum. We call that bounding
box a 3D cropped box (3DCB for short). Given a specific object class (for instance a table),
an ideal 3DCB will be big enough to contain all the 3D points belonging to the object,
but also small enough to achieve high resolution voxelization. In order to quantify the
ability of a given 3DCB to tightly contain a given 3D object, we define the metric 3D
Intersection over Itself (IoI). Suppose the object of interest lies in a bounding box 3DBBOX.
Then the IoI of the 3DBBOX wrt to a given 3DCB is defined as the volume of intersection
of the 3D bounding box with the 3DCB over the volume of the 3D bounding box itself.
Therefore an IoI of 1.0 means that the 3DCB is perfectly enclosing the object in 3DBBOX,
while as this number tends to 0.0 more and more empty space is included in the 3DCB.

The formula for 3D IoI is:

IoI3D =
volume3DBBOX ∩ volume3DCB

volume3DBBOX

From the definition, it is trivial to show that:

IoI3D = IoIXY ∗ IoIZ

where IoIXY is the IoI in the XY plane and IoIZ is the IoI along the Z axis.

IoIXY =
area3DBBOXXY ∩ area3DCBXY

area3DBBOXXY

Sensors 2021, 21, 1213 7 of 29

IoIZ =
length3DBBOXZ ∩ length3DCBZ

length3DBBOXZ

3DBBOXXY and 3DCBXY are 2D projections of 3D bounding box and 3DCB onto the XY
plane. 3DBBOXZ and 3DCBZ are 1D projections of 3D bounding box and 3DCB onto the
Z axis.

We use this metric to choose the optimal 3DCB size. A 2D example in Figure 2 is used
to show the difference between IoI and Intersection over Union (IoU). From this example,
box A is totally contained in 2DCB (XY plane projection of a 3DCB) while only half of box
B is covered by 2DCB. If we use 2D IoU, we will get 0.11 for box A with 2DCB and 0.18 for
box B with 2DCB.

Figure 2. An example of 2D cropped box (2DCB) with two objects box A and box B. All these boxes
are square. A has length 1, B has length 2, and 2DCB has length 3. Half of B is overlapped with 2DCB.

3.3.2. Generating 3DCBs Using an IoI Metric and Frustum Voxelization Based on 3DCBs

During training, given a ground truth 2D bounding box of an object of a given
class (for example table) and given the ground truth 3D bounding box of the same ob-
ject, we would like to calculate the optimal 3DCB. The 3DCB is represented by its cen-
ter, width, depth, and height. We are adding the constraint that width and depth are
the same. This makes sure that the object can freely rotate within the 3DCB along the
vertical axis. We proceed by equally dividing the 2D bounding box along the row and
column into FR× FC 2D boxes. Then we have FR× FC subfrustums. We will generate
FR × FC candidate centers of 3DCBs in that case. The center of each 3DCB is the cen-
troid of the respective frustum. One example of 3× 3 subfrustums of a desk is shown in
Figure 3. If we set FR = FC = 1, then there is only one 3D frustum to consider (and
therefore one 3DCB center). Our goal is to calculate the optimal sizes of respective 3DCBs
for each object category.

Figure 3. An example of equally subdividing a whole frustum into 3× 3 subfrustums (best viewed
in color). In this example, the object is a desk. The upper one shows the 2D bounding box of desk is
equally divided into 9 small boxes. From each small box, a subfrustum is generated as shown in the
bottom image.

Sensors 2021, 21, 1213 8 of 29

A ground truth 3D bounding box will be recalled (i.e., enclosed into the 3DCB) if the
3D IoI of this box is greater than a threshold. Formally, we define this recall as recallvolume:

recallvolume =
|3DCBpositive|
|3DCB|

where |3DCBpositive| is the cardinality of positive 3DCBs and |3DCB| is the cardinality
of all 3DCBs. A 3DCB is positive when IoI3D = IoIXY ∗ IoIZ ≥ threshold. To make
the parameter setting simple, we are exploring the recall of XY plane and Z axis sepa-

rately. Similar to recallvolume, recallXY and recallZ are defined as: recallXY =
|3DCBpositive

XY |
|3DCB| ,

recallZ =
|3DCBpositive

Z |
|3DCB| , where |3DCBpositive

XY | is the cardinality of positive 3DCBs in XY plane,

|3DCBpositive
Z | is the cardinality of positive 3DCBs in Z axis and |3DCB| is the cardinality

of all 3DCBs. A 3DCB is positive in XY plane when IoIXY ≥ thresholdXY and a 3DCB is
positive in Z axis when IoIZ ≥ thresholdZ.

Although, we cannot naively have recallvolume = recallXY ∗ recallZ, we have a nice
inequality to guarantee a lower bound of recallvolume:

recallvolume ≥ max(0, recallXY + recallZ − 1) (1)

The proof of this inequality is given below:

Proof. Define the threshold used for positive 3DCB as threshold3D, and a 3DCB is positive
when IoI3D = IoIXY ∗ IoIZ ≥ threshold3D. The recallvolume recallXY, recallZ, thresholdXY
and thresholdZ are defined in the main article. We set the threshold3D = thresholdXY ∗
thresholdZ.

As 3DCBpositive
XY ∩ 3DCBpositive

Z implies IoIXY ≥ thresholdXY and IoIZ ≥ thresholdZ.
We can further get IoI3D = IoIXY ∗ IoIZ ≥ thresholdXY ∗ thresholdZ = threshold3D, which
implies 3DCBs in the set of 3DCBpositive

XY ∩ 3DCBpositive
Z are positive. Meanwhile, we

can show from an example that the set of 3DCBpositive can possibly be obtained from
3DCBpositive

XY ∩ 3DCBnonpositive
Z , where 3DCBnonpositive

Z is a complement set of 3DCBpositive
Z :

if thresholdXY = 0.9, thresholdZ = 0.9, we can get threshold3D = 0.81. A 3DCB with
IoIXY = 1.0, IoIZ = 0.82 will be an element of set 3DCBpositive

XY ∩ 3DCBnonpositive
Z . Also it

is a positive 3DCB. From above arguments, we can conclude the following relation:

3DCBpositive ⊇ {3DCBpositive
XY ∩ 3DCBpositive

Z } (2)

From Equation (2), we can get:

|3DCBpositive| ≥ |3DCBpositive
XY ∩ 3DCBpositive

Z | (3)

We can also rewrite right part of Equation (2) as:

{3DCBpositive
XY ∩ 3DCBpositive

Z }

= 3DCBpositive
XY \

{3DCBpositive
XY ∩ {3DCB \ 3DCBpositive

Z }}

(4)

Sensors 2021, 21, 1213 9 of 29

From Equation (4), we can further get:

|3DCBpositive
XY \

{3DCBpositive
XY ∩ {3DCB \ 3DCBpositive

Z }}|

≥ |{3DCBpositive
XY \ {3DCB \ 3DCBpositive

Z }|

≥ |3DCBpositive
XY | − |3DCB \ 3DCBpositive

Z |

= |3DCBpositive
XY | − (|3DCB| − |3DCBpositive

Z |)

(5)

From Equations (3) and (5), we can get:

|3DCBpositive| ≥ |3DCBpositive
XY | − (|3DCB| − |3DCBpositive

Z |)

= |3DCBpositive
XY |+ |3DCBpositive

Z | − |3DCB|
(6)

From Equation (6), we can get:

|3DCBpositive|
|3DCB|

≥
|3DCBpositive

XY |+ |3DCBpositive
Z | − |3DCB|

|3DCB|

(7)

Equation (7) can be rewritten as:

recallvolume ≥ recallXY + recallZ − 1 (8)

Since recallvolume is supposed to be greater or equal to 0, we get:

recallvolume ≥ max(0, recallXY + recallZ − 1) (9)

Both the thresholdXY and thresholdZ are set as 0.90. We are generating both the
average center and median center from subfrustums and pick up the best one from these
FR× FC candidates to calculate the recall. The average recall based on different setups of
width/depth and height are shown in Figure 4. From the results, we can observe: (1) the
performance of the average center based 3DCB is better especially when 1× 1 subfrustums
are used compared with the median center. The reason for this might be the range of indoor
depth sensor is limited and outliers will not have too much influence to the results. (2) The
3DCB generated from 1× 1 is better than 3× 3 and 5× 5 ones. Based on these observations,
we are choosing both 1× 1 and 3× 3 during training to generate more samples and make
the training robust to the inaccurate bounding box predictions. During inference, 1× 1
subfrustum-based 3DCB is used to speed up and get better performance.

The generated 3DCBs are voxelized to finish the frustum voxelization process.

Sensors 2021, 21, 1213 10 of 29

1 2 3 4 5 6
Width/Depth(m) of 3DCB

0.00

0.25

0.50

0.75

1.00

Re
ca

ll
of

 x
y

pl
an

e
@

Io
I=

0.
90

average_1_1
median_1_1
average_3_3
median_3_3
average_5_5
median_5_5

0.5 1.0 1.5 2.0 2.5 3.0
Height(m) of 3DCB

0.00

0.25

0.50

0.75

1.00
Re

ca
ll

of
 z

ax
is

@
Io

I=
0.

90

average_1_1
median_1_1
average_3_3
median_3_3
average_5_5
median_5_5

Figure 4. IoIXY and IoIZ with the widths/depths and heights. 3D cropped boxes (3DCBs) are
generated from average/median center based on FR× FC subfrustums with different widths/depths
and heights. In this plot, verage/median_m_n corresponds to recall based on average/median center
in m× n subfrustums.

3.4. Double Frustum Method

To increase the accuracy of the center calculations, we developed a double frustum
framework. We use a smaller 2D bounding box to generate a smaller frustum for the
calculation of the 3DCB center. The estimated center should now be more accurate since
it will concentrate on the central part of the object and thus will avoid the use of other
background objects. A 3DCB is then selected from a larger frustum in order to contain
background context points and possible false negative points. The larger frustum is
generated from a larger 2D bounding box. During training, we generate a large frustum by
randomly increasing the 2D bounding box width and height by 0% to 15% independently.
For the small frustum, we randomly decrease the 2D bounding box width and height by
0% to 10% independently. During inference, the large frustum is generated by increasing
the 2D bounding box width and height by 5%. Original 2D detection bounding boxes are
used to calculate the 3DCB center.

3.5. Multiple Scale Networks

In [30], two scales network were used for different categories concerning the 3D
physical size. We are using 4 scales networks to voxelize the 3D objects corresponding
to the average physical size of average height, maximum of average width, and depth.
The mapping of 3D object categories to different scales is shown in Table 1.

Table 1. Objects are classified into 4 categories based on there average physical size. Voxelization is
processed based on each category.

Short (h ≤ 0.55) Tall (h > 0.55)

Small (max(w, h) ≤ 0.3) toilet N/A

Medium (0.3 < max(w, h) ≤ 0.55)
chair, nightstand, sofa chair,

garbage bin, bathtub bookshef

Large (max(w, h) > 0.55) table, desk, sofa, bed, dresser N/A

Sensors 2021, 21, 1213 11 of 29

We are calculating the recallXY and recallZ for different objects with the different
setups for width/depth and heights. The curves of recallXY with width/depth and recallZ
with height are plotted for four classes based on 3× 3 subfrustums (sofa is from large short
scale, chair is from medium short scale toilet is from small short scale and bookshelf is
from median tall scale) are shown in Figure 5. From these curves, we can find out that
medium tall scale category needs greater height and both the large short and medium short
categories need more width/depth. We are selecting the minimum width/depth and height
which can guarantee all objects within that scale network can meet the requirements of
recallXY ≥ 0.90 and recallZ ≥ 0.95. This is based on 3× 3 subfrustums. From Equation (1),
we can have the lower bound of the recallvolume of 0.85. Although 0.85 is not high enough,
when based on 1× 1 subfrustums, the lower bound of the recallvolume can achieve 0.94
as recallXY ≥ 0.95 and recallZ ≥ 0.99 for 3DCBs generating from 1× 1. Since we are
using both 3DCBs from 1× 1 and 3× 3 subfrustums, the recall is good enough to support
the training.

1 2 3 4 5 6
Width/Depth(m) of 3DCB

0.00

0.25

0.50

0.75

1.00

Re
ca

ll
of
 x
y
pl
an

e
@
Io
I=
0.
90

bed
chair
bookshelf
toilet

0.5 1.0 1.5 2.0 2.5 3.0
Height(m) of 3DCB

0.00

0.25

0.50

0.75

1.00

Re
ca

ll
of
 z

ax
is
@
Io
I=
0.
90

bed
chair
bookshelf
toilet

Figure 5. XY plane recall and Z axis recall for bed, chair, bookshelf, and toilet with the widths/depths
and heights based on train2666 dataset.

The physical sizes (width/depth/height) of 4 scale networks are shown in
Table 2 based on the principles described above. 3DCB are further voxalized (count-
ing the number of cloud points within each voxel) into a 3D tensor with the shape of
W × D× H. The W × D× H for each scale network are selected to make it having a better
resolution as compared with [30]. The comparison of physical size, resolution, tensor shape
of the RPN, and detection networks of [30] and ours are also shown in Table 2.

Sensors 2021, 21, 1213 12 of 29

Table 2. Resolution and shape comparison between DeepSliding Shape [30] and ours. Anchors of the bed and trash can
from [30] are used as examples of proposal’s physical size to make the comparison with ours.

Method Network 3DCB Physical Size (m) 3DCB Shape Resolution (cm)

DSS
[30]

RPN 2.5× 2.5× 2.5 208× 208× 100 5.2× 6.0× 2.5
Detection (bed) 6.7× 6.7× 3.2 30× 30× 30 2.0× 2.0× 0.95

Detection
(trash can) 1.0× 1.0× 1.2 30× 30× 30 0.3× 0.3× 0.5

Ours

small short 1.6× 1.6× 1.5 198× 198× 102 0.8× 0.8× 1.5
medium short 3.2× 3.2× 1.7 198× 198× 102 1.6× 1.6× 1.7

large short 4.8× 4.8× 2.2 198× 198× 102 2.4× 2.4× 2.2
medium tall 2.8× 2.8× 3.0 134× 134× 134 2.1× 2.1× 2.2

3.6. 3D Object Detection
3.6.1. 3D Bounding Box Encoding

Similar to [30], we are using the orientation, center, width, depth, and height to encode
the 3D bounding box.

3.6.2. Detection Network Architecture

We are using 3D FCN networks to build the 3D detection network by adapting the
network structure of ResNet [32], and fully convolutional network (FCN) [33]. We propose
a fast 6 layer fully convolutional 3D CNN model as shown in Figure 6. We name it
ResnetFCN6 with respect to ResNet [32] and FCN [33]. We also tried the ResNetFCN35,
which has 35 3D CNN layers. The network structure is shown in Figure 7. Since the
ResnetFCN6 can already provide us good results and the inference speed is faster, we use
ResnetFCN6 as our main network for 3D detection.

Figure 6. ResnetFCN6 architecture (used for large short scale). Every 3D CNN layer will be followed
by a dropout layer. The tensor shape shown here is the output shape of each block. It provides the
(width, depth, height, channel) information of the network. The other three scale networks have the
same structure with different input size as shown in Table 2.

Sensors 2021, 21, 1213 13 of 29

Figure 7. ResNetFCN35 network structure.

Inputs of our networks are voxelized images. Our network will have C ∗ 7 outputs,
where C is the number of classes within the corresponding scale network, and 7 is the
orientation, center xyz, and size (width/depth/height) predictions. The 2D prediction info
is implicitly encoded in the system since the prediction is based on each category.

3.6.3. Loss Function

We are generating loss function for detection by adjusting the loss function from
YOLO9000 [16]. Similar to [16], we use simple L2 distance instead of Kullback–Leibler
divergence to evaluate the difference of predicted category probability distributions and
the ground truth distributions. For the regression part, for centers, we normalize the x, y, z
values to 0 and 1 and then use a sigmoid function to make the prediction. For width (w),
depth (d), and height (h), we use anchor to support the prediction. For each category, we
set the anchor as the average value of the train2666 samples for objects within this category.
The ratio of the bounding box to the related anchors are used to drive the network to make
the correct prediction. The formal definition of the loss is given in the formulas below.

L3D
detection = λ1Lorientation + λ2Lxyz + λ3Lwdh

where Lxyz = Lx + Ly + Lz, Lwdh = Lw + Ld + Lh, Lx = (x − x?)2, Ly = (y − y?)2,
Lz = (z− z?)2, Lw = (log w

aw
− log w?

aw
)2, Ld = (log d

ad
− log d?

ad
)2, Lh = (log h

ah
− log h?

ah
)2.

aw, ad, ah are width/depth/height of anchors. λ1, λ2, λ3 are used to balance losses.
By combining the loss of orientation, center (xyz), and the physical size (width/depth/

height) together, our system can learn to regress the 3D bounding box of the target object
through each part. In addition, the combined loss makes the training process very efficient.

3.7. Training Process and Data Augmentation

For the 2D detection, we are using ResNet [32] 101 layer as the backbone and using
the feature pyramid layers proposed by [4] which is based on Faster RCNN [3] approach.
The loss is the same as [4]. For the 2D detection, the network is pretrained on COCO dataset.
Then it is retrained on SUN RGB-D dataset based on RGB or DHS images. Although,
the DHS images are different to the RGB images, we find the pretrained weights can
still speed up the whole training process and improve the detection results. Data are
augmented by adding Gaussian blur, random cropping, and image translating up to 10%
of the original images.

For the 3D detection, we use the stochastic gradient descent (SGD) with learning rate
of 0.01 and a scheduled decay of 0.00001. For regulation we use batch normalization [34].
The cloud points are randomly rotated around z-axis and jittered during the voxelization
process before feeding them to the network.

3.8. Efficiency Boost by Pipelining

Pipelining instructions is a technology used in central processing units to speed up the
computing. An instruction pipeline reads an instruction from the memory while previous
instructions are being executed in other steps of the pipeline. Thus, multiple instructions
can be executed simultaneously. Pipelining can be perfectly used in our system as we
have two stages, one is 2D detection and one is 3D detection. In the 3D detection, instead

Sensors 2021, 21, 1213 14 of 29

of using the 2D detection of frame n, we can use the 2D detection results of frame n−1
and generate frustums based on that. By using pipelining, our system can be sped up
from t2D + t3D to max(t2D, t3D), where t2D and t3D are the 2D and 3D detection time,
respectively. The disadvantage of using pipelining is frustums generated from the previous
2D image maybe not accurate under the fast movement of the sensor of an object of interest.
However, our system will not suffer significantly as our results show, due to robustness
on frustum location. We use multiple candidates with different centers during training to
make it robust. Meanwhile, the double frustum method used in our system makes our
3D detections robust to slightly moved 2D detections. The illustration of the pipelining
method is shown in Figure 8. By using pipelining, our system can be sped up to 48 ms (this
is about 2.5× speedup to the state-of-the-art [9]) when use YOLO v3 and ResNetFCN6. It
can achieve 21 frames per second which can well support real time 3D object detection.

Figure 8. Illustration of using pipelining to speedup the whole detection framework.

3.9. Experimental Results for the Frustum VoxNet V1 System
3.9.1. Effects of Batch Normalization, Group Normalization, and Dropout

Overfitting can be an issue for supervised machine learning-based systems as it
will have poor performance in the test stage, although the system performs well during
the training process. Dropout [35] is a powerful tool to prevent neural networks from
overfitting. Batch normalization (BN) [34] is another method we can use to speed up the
training and also prevent overfitting. However, BN performs better when the batch size
is large enough. Since Frustum VoxNet is using 3D CNNs based on Voxelized images,
large batch sizes are not well supported when single GPU is used. Some new technologies
are introduced to address the small batch size problem such as group normalization
(GN) [36]. We explore the performance of different combinations of these methods by
evaluating the performance of center and orientation predictions. Results are shown in
Figure 9. We do not use BN as our batch size is small and the using of BN will lead to
inconsistencies between training and inference. Although when using the GN, there are
no inconsistencies between training and inference, the performance of center prediction is
worse compared with not using any normalization. Therefore, our final model does not
use any normalization. However, dropout is used in our final model as it can improve the
center prediction performance.

The dropout’s better performance shows the power of this simple but efficient method
for addressing the overfitting issue. There are many explanations of why dropout works. I
did not find anyone mentions that the dropout process has some similarities to ensemble
methods. In machine learning, ensemble methods use multiple learning algorithms to
obtain better predictive performance than could be obtained from any of the constituent
learning algorithms alone [37]. In the training process, dropout randomly drop units
(along with their connections) from the neural network. This generates different ’thinned’
networks. At test time, it is easy to approximate the effect of averaging all these thinned
networks’ predictions by using a single unthinned network with smaller weights [35].
At the test time, the averaging process is kind of ensembling the output of different
networks to achieve better results and hence overcome the overfitting.

Sensors 2021, 21, 1213 15 of 29

Table Desk Dresser Sofa Bed
0.00
0.25
0.50
0.75
1.00

L2
 d
ist
an
ce
(m
)

a) Distance between predicted and GT center

gn_w/o_dropout
no_bn_no_gn_w/o_dropout

no_bn_no_gn_with_dropout

Table Desk Dresser Sofa Bed
0.0

0.2

0.4

0.6

0.8

Ab
so
lu
te
 d
ot
 p
ro
du
ct

b) Absolute dot product between predicted and GT orientation

Figure 9. Performance comparison of different combinations on using batch normalization (BN),
group normalization (GN) and dropout. “gn_w/o_dropout” means using GN without dropout.
“no_bn_no_gn_w/o_dropout” means using none. “no_bn_no_gn_with_dropout” means not using
BN/GN, however, the dropout is used.

3.9.2. Evaluation of the Whole System

First we evaluate the 2D detector in Table 3. The evaluation is based on the standard
mAP metric with IoU threshold of 0.5. Comparing our RGB-based and depth-based (DHS
image) 2D detections, we see that in most cases RGB performs better, but the depth-based
2D detector is competitive. For few classes such as bathtubs, DHS results are slightly
better. The reason might be that some classes such as bathtubs have special geometric
shapes and they are easier to be detected by depth sensors. Comparing with state-of-
the-art methods, our 2D detector performs better in some categories, and we are also
introducing new categories. We are on par with most other categories, except for bathtub,
desk, and bookshelf.

Full 3D detection results are shown in Table 4. We provide various variations in our
system. First two variations include RGB 2D detector, and the last two include depth
only (DHS) 2D detector. In all cases, we use an FPN for the 2D detector. For the 3D
detection we have experimented with ResNetFCN6 and ResNetFCN35. As in the 2D
case, our 3D detector is on par in most categories with the state-of-the-art, and we have
also incorporated more classes. Looking at the computational performance of the 3D
detector only, we see that our implementation using ResNetFCN6 provides significant
improvements on inference time. Since the architecture is modular (i.e., we can swap out
our 2D detector with one from the reported as state-of-the-art), we see that our approach
can lead to significant efficiency improvements, without a significant drop in detection
accuracy. That will lead to a system geared to real-time robotics applications.

We have also evaluated the efficiency and accuracy of our system when a very fast
2D detector (YOLO v3) is being used. Table 5 shows the decrease in detection accuracy as
expected. Finally Table 6 provides a detailed analysis of multiple network combinations in
terms of efficiency, along with the number of parameters to tune. As mentioned before,
we can achieve faster inference times in 3D detection, and can thus lead to a faster system

Sensors 2021, 21, 1213 16 of 29

overall if we swap our 2D detector with the ones reported as state-of-the-art. Using
YOLO and pipelining approaches, we can provide a significant boost in total efficiency,
with accuracy loss though.

Table 3. 2D detection results based on SUN RGB-D validation set. Evaluation metric is average precision with 2D
Intersection over Union (IoU) threshold of 0.5.

Bed Toilet
Night
Stand Bathtub Chair Dresser Sofa Table Desk Bookshelf

Sofa
Chair

Kitchen
Counter

Kitchen
Cabinet

Garbage
Bin Microwave Sink

RGB-D RCNN [23] (RGB-D) 76.0 69.8 37.1 49.6 41.2 31.3 42.2 43.0 16.6 34.9 N/A N/A N/A 46.8 N/A 41.9
2D-driven [25] (RGB) 74.5 86.2 49.5 45.5 53.0 29.4 49.0 42.3 22.3 45.7 N/A N/A N/A N/A N/A N/A
Frustum PointNets [9] (RGB) 56.7 43.5 37.2 81.3 64.1 33.3 57.4 49.9 77.8 67.2 N/A N/A N/A N/A N/A N/A
OURS (RGB) 81.0 89.5 35.1 50.0 52.4 21.9 53.1 37.7 18.3 40.4 47.8 22.0 29.8 52.8 39.7 31.0
OURS (D) 78.7 77.6 34.2 51.9 51.8 16.5 48.5 34.9 14.2 19.2 48.7 19.1 18.5 30.3 22.2 30.1

Table 4. 3D detection results of system V1 on SUN RGB-D validation set. Evaluation metric is average precision with
IoU threshold of 0.25 as proposed by [7]. Both Clouds of Oriented Gradients (COG) [38] and 2D-driven [25] are using
room layout context to boost performance while ours, Deep Sliding Shapes (DSS) [30], and Frustum PointNets [9] are not.
Frustum PointNets [9] is using the 3D segmentation information to train the network to boost the 3D detection, while
our system V1 and DSS [30] are not. Our system V2 uses the 3D segmentation information, and the results of V2 have a
significant performance boost compared with V1.

Bed Toilet
Night
Stand Bathtub Chair Dresser Sofa Table Desk Bookshelf

Sofa
Chair

Garbage
Bin

Frustum Proposal
Runtime

3D Detection
Runtime

Total
Runtime

DSS [30] (RGB-D) 78.8 78.9 15.4 44.2 61.2 6.4 53.5 50.3 20.5 11.9 N/A N/A N/A N/A 19.55 s
COG [38] (RGB-D) 63.7 70.1 27.4 58.3 62.2 15.5 51.0 51.3 45.2 31.8 N/A N/A N/A N/A 10–30 min
2D-driven [25] (RGB-D) 64.5 80.4 41.9 43.5 48.3 15.5 50.4 37.0 27.9 31.4 N/A N/A N/A N/A 4.15 s
Frustum PointNets [9] (RGB-D) 81.1 90.0 58.1 43.3 64.2 32.0 61.1 51.1 24.7 33.3 N/A N/A 60 ms 60 ms 0.12 s

OURS RGB-D (FPN+3D ResNetFCN6 V1) 78.5 84.5 34.5 42.4 47.2 18.2 40.3 30.4 12.4 18.0 47.1 47.6 110 ms 48 ms 0.16 s
OURS RGB-D (FPN+3D ResNetFCN35 V1) 79.5 84.6 36.2 44.6 49.1 19.6 40.8 27.5 12.5 19.1 47.9 48.2 110 ms 128 ms 0.24 s
OURS Depth only (FPN+3D ResNetFCN6 V1) 77.1 76.1 32.4 42.0 45.9 14.1 35.8 25.3 11.7 16.8 48.5 35.0 110 ms 48 ms 0.16 s
OURS Depth only (FPN+3D ResNetFCN35 V1) 77.4 76.8 33.1 43.7 45.8 15.2 37.3 25.5 11.8 17.4 48.8 35.4 110 ms 148 ms 0.24 s

Table 5. 2D/3D detection results based on YOLO v3 vs. FPN. 2D detection is based on RGB images.
3D detection is based on RGB-D images and the 3D detection network is based on Frustum VoxNet V1.

2D Network 3D Network Bed Toilet Chair Sofa Table

2D Detection FPN 81.0 89.5 52.4 53.1 37.7
YOLO v3 71.8 73.7 38.5 51.4 22.1

3D Detection FPN 3D ResNetFCN6 78.5 84.5 47.2 40.3 30.4
YOLO v3 3D ResNetFCN6 66.9 69.8 30.1 37.9 18.8

Table 6. Number of parameters and inference time comparison between Frustum Pointnet and our system. For YOLO v3,
input resolution is 416 by 416 and the model FLOPS is 65.86 Bn.

Methods # Parameters Runtime (ms)

—–
Frustum
Proposal

3D
Detection

Frustum
Proposal

3D
Detection Total

Frustum PointNets (FPN + Pointnet V1) 28 M 19 M 60 60 120
Frustum PointNets (FPN + Pointnet V2) 28 M 22 M 60 107 167

Ours w/o Pipeline (FPN + 3D ResNetFCN6 V1) 42 M 2.5 M 110 48 158
Ours w/o Pipeline (FPN + 3D ResNetFCN35 V1) 42 M 23.5 M 110 149 259

Ours w/o Pipeline (YOLO v3 + 3D ResNetFCN6 V1) N/A 2.5 M 29 48 77
Ours with Pipeline (YOLO v3 + 3D ResNetFCN6 V1) N/A 2.5 M 29 48 48

3.10. Evaluate Frustum VoxNet Results Based on Ground Truth 2D Bounding Box
3.10.1. Orientation Results

We use the dot product between the ground truth orientation and predicted one to eval-
uate the orientation prediction performance. If the dot product is 1, the prediction is perfect.

Sensors 2021, 21, 1213 17 of 29

If it is −1, it means that we have a flipped prediction. Histograms of the dot product be-
tween predicted orientations and ground truth orientations for each category are shown in
Figure 10. From the results, we can see for most categories that we have a pretty good ori-
entation prediction. For some categories, such as table and desk, the orientation is flipped.

−1 0 1
0

500

Fr
eq

ue
nc

y table

−1 0 1
0

200
desk

−1 0 1
0

50

bookshelf

−1 0 1
0

50

Fr
eq

ue
nc

y dresser

0 1
0

100

night_stand

−1 0 1
0

25
bathtub

−1 0 1
0

2500

Fr
eq

ue
nc

y chair

−1 0 1
0

250
sofa

−1 0 1
0

250
bed

−1 0 1
Dot Product

0

50

Fr
eq

ue
nc

y toilet

−1 0 1
Dot Product

0
250

sofa_chair

−1 0 1
Dot Product

0

100

garbage_bin

Figure 10. Histogram of the dot product between predicted orientation and ground truth orientation. Histograms are
not normalized.

3.10.2. Bounding Box Center, Physical Size, and 3D Detection Results

We use the following metrics to evaluate the predictions for the center and physical
size of the bounding box based on ground truth 2D bounding boxes.

Dx = |x∗ − x|, Dy = |y∗ − y|, Dz = |z∗ − z|

Dw = |w∗ − w|, Dd = |d∗ − d|, Dh = |h∗ − h|

Dxyz =
√
(x∗ − x)2 + (y∗ − y)∗ + (z∗ − z)|

Dwdh =
√
(w∗ − w)2 + (d∗ − d)∗ + (h∗ − h)|

x∗, y∗, z∗ are the predicted center and x, y, z are ground truth. w∗, d∗, h∗ are the predicted
width/depth/height and w, d, h are ground truth.

We compare the center prediction based on the frustum average center and the pre-
diction from our Frustum VoxNet system. Table 7 provides the average distance between

Sensors 2021, 21, 1213 18 of 29

predicted and ground truth centers by using these two methods. As expected, the Frustum
VoxNet prediction is better than the average center from frustum.

Evaluation results for the performance of Frustum VoxNet based on frustums gener-
ated from ground truth bounding boxes are shown in Table 8. Histograms of 3D detection
IoU for each category are shown in Figure 11.

Table 7. Result comparison between average and predicted center from Frustum VoxNet.

x− x∗ y− y∗ z− z∗ Dxyz

Table Frustum Average Center −0.005 −0.233 0.075 0.522
Predicted from Frustum VoxNet 0.014 −0.040 0.030 0.395

Desk Frustum Average Center −0.010 −0.198 0.109 0.428
Predicted from Frustum VoxNet 0.028 −0.040 0.048 0.319

Sofa Frustum Average Center −0.015 −0.168 0.010 0.516
Predicted from Frustum VoxNet 0.007 0.041 0.013 0.444

Bed Frustum Average Center 0.031 −0.195 0.013 0.573
Predicted from Frustum VoxNet −0.009 0.010 −0.012 0.354

Table 8. Detailed evaluation results. Frustum VoxNet is evaluated based on SUN RGB-D validation set. Frustums used to
finalize detection are generated from ground truth 2D bounding boxes. The 3D IoU threshold used for 3D recall is 0.25.

Category
Instance
Number Dx Dy Dz Dxyz Dw Dd Dh Dwdh |o∗ · o|

Average
3D IoU

3D Recall
(IoU@0.25)

table 1269 0.201 0.280 0.070 0.395 0.206 0.132 0.042 0.287 0.747 0.319 0.656
desk 457 0.158 0.220 0.080 0.319 0.180 0.122 0.052 0.258 0.752 0.329 0.674

dresser 91 0.248 0.298 0.135 0.489 0.126 0.064 0.107 0.209 0.758 0.241 0.451
sofa 381 0.213 0.320 0.075 0.444 0.210 0.099 0.048 0.264 0.847 0.459 0.796
bed 441 0.195 0.220 0.096 0.354 0.154 0.125 0.083 0.246 0.746 0.462 0.898

night stand 220 0.156 0.226 0.069 0.314 0.050 0.037 0.044 0.087 0.830 0.329 0.655
bathtub 37 0.162 0.114 0.067 0.226 0.134 0.071 0.040 0.173 0.805 0.383 0.811

chair 4777 0.118 0.217 0.067 0.286 0.038 0.048 0.047 0.089 0.886 0.369 0.708
sofa chair 575 0.109 0.168 0.070 0.242 0.058 0.051 0.045 0.103 0.840 0.466 0.849

garbage bin 248 0.065 0.098 0.050 0.145 0.043 0.035 0.042 0.082 0.760 0.384 0.782

toilet 87 0.051 0.093 0.073 0.148 0.028 0.039 0.047 0.076 0.825 0.498 0.929

bookshelf 106 0.183 0.303 0.130 0.433 0.410 0.063 0.149 0.474 0.880 0.345 0.679

Sensors 2021, 21, 1213 19 of 29

0

200

Fr
eq

ue
nc

y

table

0

50

desk

0

20

bookshelf

0

20

Fr
eq

ue
nc

y

dresser

0

25

night_stand

0

5

bathtub

0

500

Fr
eq

ue
nc

y

chair

0

50
sofa

0

50

bed

0.0 0.5
3D IoU

0

10

Fr
eq

ue
nc

y

toilet

0.0 0.5
3D IoU

0

100
sofa_chair

0.0 0.5
3D IoU

0

25

garbage_bin

Figure 11. Histogram of 3D IoU. Histograms are not normalized.

3.11. Visualizations of 2D and 3D Detection Results

Visualizations of both 2D and 3D detection results are shown in Figures 12 and 13 for
both the based on RGB-D system and based on depth image only system. For those two
figures, the upper right shows the corresponding 3D detection results (light green ones are
the 3D ground truth boxes and orange-colored boxes are predictions) based on frustums
generated from RGB image 2D detections (to have a better visualization, RGB colors are
projected back to the cloud points). Lower left shows 2D detection based on DHS image.
Lower right shows the corresponding 3D detection results (light green ones are the 3D
ground truth boxes and orange-colored boxes are predictions) based on frustums generated
from DHS image 2D detections. From Figure 12, for the first image in the first row, our
system can perfectly detect the chair. For the desk, the orientation is off as the frustum
generated by the 2D bounding box contains some cloud points from the chair. For the
second image, we can see that the based on RGB image system detect more false positive
objects in the 2D stage and hence more 3D false positive objects will be detected. For the
first image of the second row, our system successfully detect the unlabeled table. For the
last image, the sofa’s orientation is off as there are too many points are missing for the sofa.
From Figure 12 we can see that the 3D detection system works well for both the based
on RGB-D and based on depth only systems. The RGB-D-based 3D detection system will
generate some false positive 3D detections as it has more false positive detection during
2D detection stage. We can also find out that our system can detect objects which were
not labeled during the data annotation. In Figure 13, on the left part, our system can
successfully detect unlabeled objects such as garbage bin and table. On the top right image,

Sensors 2021, 21, 1213 20 of 29

our system fails to detect one table in 2D detection stage as it is partially observed. For the
last one, one night stand is undetected as it is blocked by bed.

Figure 12. Visualizations of 2D and 3D detection results part 1. This visualization contains four RGB images and four DHS
images. For each image, 2D detection is shown superimposed. Next to each image we show the corresponding 3D detection
results (light green ones are the 3D ground truth boxes and orange-colored boxes are the predictions) based on frustums
generated from image 2D detections (to have a better visualization, RGB colors are projected back to the cloud points).

Sensors 2021, 21, 1213 21 of 29

Figure 13. Visualizations of 2D and 3D detection results part 2. Please read the caption of Figure 12 to get an explanation
about how to understand the visualization.

4. 3D Instance Segmentation and Object Detection

Different from the 2D instance segmentation, 3D instance segmentation is more natural.
As the 2D image consists of projections of 3D objects, different items may overlap with
each other in the 2D image plane. However, in the 3D space, different objects are separated
naturally. Figure 14 shows a visualization of the 3D instance segmentation from the SUN
RGB-D dataset. From the visualization, we can see that different chairs are separated
naturally in the 3D space. However, in the 2D image plane, we can not efficiently separate
chairs from each other. Based on this observation, we propose our Frustum VoxNet V2,
which introduces the 3D instance segmentation in our system. 3D detection based on 3D
instance segmentation can significantly boost the final performance.

Sensors 2021, 21, 1213 22 of 29

Figure 14. An example of 3D instance segmentation. The left image is the RGB color image and the
right is the instance segmentation based on the point cloud. The image comes from the SUN RGB-D
dataset and the instance segmentation visualization is based on the ground truth 3D segmentations.

4.1. Overview of the Frustum VoxNet V2 System

The Frustum VoxNet V2 system is also a 2D driven system. The differences with the
Frustum VoxNet V1 are as follows. V2 supports 3D instance segmentation, and its 3D
detection is based on the output of the 3D instance segmentation. The 2D detection part
for Frustum VoxNet V2 is identical to V1. For the 3D part, Figure 15 shows the difference
between V1 and V2. For the V2 system, we have two steps: (1) We feed the voxelized image
(generated by the frustum voxelization process) to a segmentation network to generate
3D instance segmentation. (2) The frustum will be voxelized based on the 3D instance
segmentation, and then this voxelized image is fed to the 3D detection network to produce
the 3D object detection.

Figure 15. Frustum VoxNet V1 vs. Frustum VoxNet V2.

4.2. 3D Instance Segmentation
4.2.1. Instance Segmentation Network Architecture

The segmentation network architecture (see Figure 16) is adjusted from the ResNet-
FCN6 in Frustum VoxNetNet V1. It has the same input as the ResNetFCN6. However,
the output is a tensor with the shape of (width, depth, height, #categories) as we are
predicting the instance segmentation mask per category. Table 9 shows the detailed input
and output shapes for the segmentation network.

Sensors 2021, 21, 1213 23 of 29

Figure 16. Segmentation architecture (used for large short scale). Every 3D CNN layer will be
followed by a dropout layer. The tensor shape shown here is the output shape of each block. It
provides the (width, depth, height, channel) information of the network. The other three scale
networks have the same structure with different input size as shown in Table 2.

Table 9. Input and output shapes for the segmentation network based on different scale networks.
We combine the table and desk into the same category, so we have the number of categories for the
medium short is 4 instead of 5.

Network 3DCB Physical Size (m) Input 3DCB Shape Output Tensor Shape

small short 1.6× 1.6× 1.5 198× 198× 102 48× 48× 24× 1
medium short 3.2× 3.2× 1.7 198× 198× 102 48× 48× 24× 4

large short 4.8× 4.8× 2.2 198× 198× 102 48× 48× 24× 4
medium tall 2.8× 2.8× 3.0 134× 134× 134 32× 32× 32× 1

4.2.2. Segmentation Ground Truth Based on Voxelization

The original ground truth from the SUN RGB-D dataset is per cloud point. Since our
system’s output is a 3D voxelized image (a 3D tensor), we convert the original per cloud
point mask into a 3D binary voxelized image. We first generate a volumetric representation
encodes the 3D cloud point as a 3D tensor of real values (the real value here means how
many cloud points are dropping inside of a voxel). Then we change the 3D tensor of real
values to 3D tensor of binary values by using the thresholding method. Specifically, we
create the 3D tensor of binary value by using the following formula:

f (x) =

{
1, if voxel is not empty and positive point ratio ≥ Threshold
0, otherwise

4.2.3. Segmentation Loss Function

Similar to the 2D instance segmentation loss in the Mask R-CNN [39], we are using
a sigmoid function to predict the 3D mask and the loss is using the binary cross-entropy
loss. As more than 97% of the voxels are empty, we only apply loss to non empty voxels.
Specifically, we are using the following formula.

CE(gtv(i,j,k) , pv(i,j,k)) = − ∑
x∈{0,1}

gt
v(i,j,k)
x ∗ p

v(i,j,k)
x

Sensors 2021, 21, 1213 24 of 29

Loss =
W

∑
i=0

D

∑
j=0

H

∑
k=0

CE(gtv(i,j,k) , pv(i,j,k))1A(v(i,j,k))

where W, D, H are the size of the segmentation output tensor. v(i,j,k)i is a voxel with index
of i, j, k. gtv(i,j,k) is the ground truth of the mask for this voxel and pv(i,j,k) is the prediction
probability of the voxel being positive or negative. A is a set contains all non empty voxels
of this image.

4.3. 3D Object Detection
4.3.1. 3D Object Detection Network Architecture and Loss Function

3D object detection network architecture and loss function of V2 are identical to V1.

4.3.2. 3D Object Detection Network Inputs

For V2, the training uses the voxelized image based on the ground truth of the 3D
segmentation. For the inference, the input is the voxelized image based on the predicted
3D segmentation.

4.4. Training Process

We use the Stochastic Gradient Descent optimizer to train both the segmentation and
detection network. The training loss for each network can be found in Figure 17. From the
result, we can see the training process converge smoothly with the increasing of the number
of the iterations. In addition, when the training task has less samples, the training takes
less iterations. For example, the number of instances for the bed only is a subset of the
large short network (bed, sofa, table, desk, and dresser), and the training of the bed only
network can converge faster than the large short network: the training of the large short
network needs 600 k iterations while the bed only network only needs 450 k iterations.
The medium short network has the largest number of instances, it takes more than 800 k
iterations to converge.

Figure 17. Segmentation training loss for different scale networks.

Sensors 2021, 21, 1213 25 of 29

4.5. Evaluation of the Whole System

The evaluation results are shown in Table 10. From the results, we can see that
using the voxelized image based on the 3D instance segmentation output, the 3D object
detection’s performance has a significant boosting, especially for the categories with a
strong geometry shape such as toilet and bathtub. Overall, our Frustum Voxnet V2 has
84% of the detection performance compared to Frustum Pointnet. Our V2’s detection
performance is improved by 11% compared to V1 based on RGBD images. Our depth
only system can achieve 93% detection performance compared to RGBD-based system in
Frustum Voxnet V2.

Table 10. 3D detection results on SUN RGB-D validation set. Evaluation metric is average precision with IoU threshold of
0.25 as proposed by [7]. Average mAP is used to have an overall comparison.

Bed Toilet
Night
Stand Bathtub Chair Dresser Sofa Table Desk Bookshelf

Average
mAP

Frustum Proposal
Runtime

3D Detection
Runtime

Total
Runtime

Frustum PointNets [9] (RGB-D) 81.1 90.0 58.1 43.3 64.2 32.0 61.1 51.1 24.7 33.3 53.4 60 ms 60 ms 0.12 s

OURS RGB-D (FPN+3D ResNetFCN6 V1) 78.5 84.5 34.5 42.4 47.2 18.2 40.3 30.4 12.4 18.0 40.6 110 ms 48 ms 0.16 s
OURS RGB-D (FPN+3D ResNetFCN6 V2) 79.9 91.6 38.8 56.7 48.1 22.3 43.2 34.1 15.1 19.8 45.0 110 ms 100 ms 0.21 s
OURS Depth only (FPN+3D ResNetFCN6 V1) 77.1 76.1 32.4 42.0 45.9 14.1 35.8 25.3 11.7 16.8 37.7 110 ms 48 ms 0.16 s
OURS Depth only (FPN+3D ResNetFCN6 V2) 78.6 89.0 37.2 45.7 46.3 20.3 37.0 32.5 12.9 17.7 41.7 110ms 100 ms 0.21 s

Table 11 shows the comparison of the number of parameters and inference time for
our Frustum VoxNet V2 system and other systems. The instance segmentation time of
our approach is faster than Frustum PointNets [9] as we have fewer parameters. When
applying the pipeline technology, our system can have a pretty fast inference speed, making
it applicable to systems requiring real-time inference.

Table 11. Number of parameters and inference time comparison between Frustum Pointnet and our
systems V1 and V2. For YOLO v3, input resolution is 416 by 416 and the model FLOPS is 65.86 Bn.

Methods # Parameters Runtime (ms)

—–
Frustum
Proposal

3D
Detection

Frustum
Proposal

3D Instance
Segmentation

3D
Detection Total

Frustum PointNets [9] (FPN + Pointnet V1) 28 M 19 M 60 - 60 120
Frustum PointNets [9] (FPN + Pointnet V2) 28 M 22 M 60 88 19 167

Ours w/o Pipeline (FPN + 3D ResNetFCN6 V1) 42 M 2.5 M 110 - 48 158
Ours w/o Pipeline (FPN + 3D ResNetFCN6 V2) 42 M 5.5 M 110 52 48 210

Ours w/o Pipeline (YOLO v3 + 3D ResNetFCN6 V1) N/A 2.5 M 29 - 48 77
Ours with Pipeline (YOLO v3 + 3D ResNetFCN6 V1) N/A 2.5 M 29 - 48 48
Ours w/o Pipeline (YOLO v3 + 3D ResNetFCN6 V2) N/A 5.5 M 29 52 48 129
Ours with Pipeline (YOLO v3 + 3D ResNetFCN6 V2) N/A 5.5 M 29 52 48 52

4.6. Visualizations of 3D Segmentation Results

In Figure 18, we compare the 3D segmentation results of our system with the ground truth.

Figure 18. Visualizations of 3D segmentation results: Left is the ground truth. The middle is the prediction based on the
frustum generated from the RGB color image. The image’s red color is the predicted segmentation for a false positive Chair
during the 2D detection stage. Segmentation prediction based on the frustum generated from the DHS image is shown in
the right image.

Sensors 2021, 21, 1213 26 of 29

4.7. Visualizations of 3D Detection Results Compared between V2 and V1

In Figure 19, we compare the 3D detection results between the Frustum VoxNet V1
and V2. From the results, we can find that using the instance segmentation results as the
3D detection network input can significantly improve the 3D detection result.

Figure 19. Visualizations of 3D detection results: In the upper one, the frustum is generated through the color image. In
the bottom one, the frustum is generated based on DHS image. The middle is the 3D detection results from the Frustum
VoxNet V1 and the right one is the results from Frustum VoxNet V2.

5. Conclusions

In this paper, we have provided novel, accurate, and efficient algorithms for solving
the fundamental problems of 3D instance segmentation and object detection. We presented
two 2D-based 3D detection systems by using 2D/3D CNNs. One of them named Frustum
Voxnet V1 performs detection only and is faster, while the second named Frustum Voxnet
V2 performs both segmentation and detection and it is more accurate. We integrate
instance segmentation in our V2 system. The instance segmentation can give us a better
understanding of the 3D image (depth or cloud point) and improve the final 3D object
detection performance. Our V2’s detection performance is improved by 11% compared to
V1 based on RGBD images. Our Frustum Voxnet V2 demonstrates comparable accuracy to
the state-of-the-art (84% of the detection performance compared to Frustum PointNets [9]),
but with more than two times improved run-time efficiency in 3D detection. This is due to
the use of networks with fewer number of parameters than competing methods. It is also
due to our ability to voxelize only parts of the 3D frustums. This leads to decreased memory
requirements and improved resolution around the objects of interest. Our methods can
operate in both depth only and RGB-D sensor modalities. Our depth only system can
achieve 93% detection performance compared to RGBD-based system in Frustum Voxnet
V2. We foresee that our methods will be used in real-time robotics applications. An avenue
of future work could be integration of our system in a robotic platform.

Our main contributions are as follows:

• We have developed novel methods for 3D objection, classification, and instance
segmentation. We have thoroughly tested their efficiency and accuracy as described
in Sections 3 and 4.

• We have significantly improved efficiency with respect to the state-of-the-art in 3D
detection, as you can see in Tables 4 and 10. Our 3D detection without segmentation

Sensors 2021, 21, 1213 27 of 29

has been presented in [14]. In this paper, we provide an enhanced system that performs
both detection and segmentation. That improves the detection performance, as shown
in Table 10, and it also includes instance segmentation results. The increased space
and time efficiency makes our method appropriate for real-time robotic applications.

• We are able to provide accurate detection and segmentation results using depth only
images, unlike competing methods such as [9], as you can see in Tables 4 and 10. This
is significant, since our methods can also work well in low lighting conditions, or with
sensors that do not acquire RGB images.

Author Contributions: Conceptualization, X.S. and I.S.; methodology, X.S. and I.S.; software, X.S.;
validation, X.S. and I.S.; formal analysis, X.S. and I.S.; investigation, X.S. and I.S.; resources, I.S.;
data curation, X.S.; writing original draft preparation, X.S.; writing review and editing, X.S. and I.S.;
visualization, X.S.; supervision, I.S.; project administration, I.S.; funding acquisition, I.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by NSF Award CNS1625843 and Google Faculty
Research Award 2017 (special thanks to Aleksey Golovinskiy, Tilman Reinhardt and Steve Hsu for
attending to all of our needs).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented is available from rgbd.cs.princeton.edu.

Acknowledgments: We acknowledge the support of NVIDIA with the donation of the Titan-X GPU
used for this work. We thank Jaspal Singh for data preparation and earlier discussion. We also would
like to thank Allan Zelener, James Kluz, Jaime Canizales, and Bradley Custer for helpful comments
and advice.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
3DBBOX 3D Bounding Box
3DCB 3D Cropped Box
BEV Bird’s Eye View
BN Batch Normalization
CNN Convolutional Neural Network
DHS Depth Height and Signed angle
FCN Fully Convolutional Neural Network
FPN Feature Pyramid Network
GN Group Normalization
IoI Intersection over Itself
IoU Intersection over Union
SGD Stochastic Gradient Descent
YOLO You Only Look Once

References
1. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

CoRR 2013, arXiv:1311.2524.
2. Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago,

Chile, 7–13 December 2015. [CrossRef]
3. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In

Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

4. Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature pyramid networks for object detection. CoRR 2016,
arXiv:1612.03144.

5. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. CoRR 2017, arXiv:1703.06870.

rgbd.cs.princeton.edu
http://doi.org/10.1109/ICCV.2015.169

Sensors 2021, 21, 1213 28 of 29

6. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009.

7. Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

8. Wei, Z.; Wang, Y.; Yi, H.; Chen, Y.; Wang, G. Semantic 3D reconstruction with learning MVS and 2D segmentation of aerial images.
Appl. Sci. 2020, 10, 1275. [CrossRef]

9. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection From RGB-D Data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

10. Chen, L.C.; Hermans, A.; Papandreou, G.; Schroff, F.; Wang, P.; Adam, H. MaskLab: Instance Segmentation by Refining Object
Detection with Semantic and Direction Features. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

11. Zelener, A.; Stamos, I. CNN-Based Object Segmentation in Urban LIDAR with Missing Points. In Proceedings of the 2016 Fourth
International Conference on 3D Vision (3DV), Stanford University, CA, USA, 25–28 October 2016; pp. 417–425. [CrossRef]

12. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

13. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.
[CrossRef]

14. Shen, X.; Stamos, I. Frustum VoxNet for 3D object detection from RGB-D or Depth images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), Aspen, CO, USA, 1–5 March 2020.

15. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. CoRR 2015,
arXiv:11506.02640.

16. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. CoRR 2016, arXiv:1612.08242.
17. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. CoRR 2017, arXiv:11708.02002.
18. Shi, W.; Bao, S.; Tan, D. FFESSD: An accurate and efficient single-shot detector for target detection. Appl. Sci. 2019, 9, 4276.

[CrossRef]
19. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2012

(VOC2012) Results. Available online: http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(accessed on 8 December 2020).

20. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft
COCO: Common Objects in Context. CoRR 2014, arXiv:1405.0312.

21. Murthy C.; Hashmi M.; Bokde N; Geem Z. Investigations of Object Detection in Images/Videos Using Various Deep Learning
Techniques and Embedded Platforms—A Comprehensive Review Appl. Sci. 2020, 9, 3280. [CrossRef]

22. Shen, X. A survey of Object Classification and Detection based on 2D/3D data. arXiv 2019, arXiv:1905.12683.
23. Gupta, S.; Girshick, R.B.; Arbelaez, P.; Malik, J. Learning rich features from RGB-D images for object detection and segmentation.

CoRR 2014, arXiv:1407.5736.
24. Stamos, I.; Hadjiliadis, O.; Zhang, H.; Flynn, T. Online Algorithms for Classification of Urban Objects in 3D Point Clouds. In

Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission,
Zurich, Switzerland, 13–15 October 2012; pp. 332–339. [CrossRef]

25. Lahoud, J.; Ghanem, B. 2D-Driven 3D Object Detection in RGB-D Images. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

26. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep Hough Voting for 3D Object Detection in Point Clouds. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019.

27. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving. CoRR 2016,
arXiv:1611.07759.

28. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection from View Aggregation.
arXiv 2017, arXiv:1712.02294.

29. Wu, Y.; Qin, H.; Liu, T.; Liu, H.; Wei, Z. A 3D object detection based on multi-modality sensors of USV. Appl. Sci. 2019, 9.
[CrossRef]

30. Song, S.; Xiao, J. Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images. CoRR 2015, arXiv:1511.02300.
31. Zhao, K.; Liu, L.; Meng, Y.; Gu, Q. Feature deep continuous aggregation for 3D vehicle detection. Appl. Sci. 2019, 9. [CrossRef]
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. CoRR 2015, arXiv:1512.03385.
33. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. CoRR 2014, arXiv:1411.4038.
34. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning; Proceedings of Machine Learning Research; Bach, F., Blei, D.,
Eds.; PMLR: Lille, France, 2015; Volume 37, pp. 448–456.

35. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

36. Wu, Y.; He, K. Group Normalization. CoRR 2018, arXiv:abs/1803.08494.

http://dx.doi.org/10.3390/app10041275
http://dx.doi.org/10.1109/3DV.2016.51
http://dx.doi.org/10.1109/CVPR.2018.00472
http://dx.doi.org/10.3390/app9204276
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://dx.doi.org/10.3390/app10093280
http://dx.doi.org/10.1109/3DIMPVT.2012.75
http://dx.doi.org/10.3390/app9030535
http://dx.doi.org/10.3390/app9245397

Sensors 2021, 21, 1213 29 of 29

37. Ensemble Learning. Available online: https://en.wikipedia.org/wiki/Ensemble_learning (accessed on 10 November 2020).
38. Ren, Z.; Sudderth, E.B. Three-Dimensional Object Detection and Layout Prediction Using Clouds of Oriented Gradients.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 1525–1533. [CrossRef]

39. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the International Conference on Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017.

https://en.wikipedia.org/wiki/Ensemble_learning
http://dx.doi.org/10.1109/CVPR.2016.169

	Introduction
	Problem Definition
	3D Object Detection
	3D Instance Segmentation

	Our Solutions

	Related Work
	3D Object Detection
	Dataset
	Frustum VoxNet V1 System Overview
	Frustum Voxelization
	3D Cropped Box (3DCB) and 3D Intersection over Itself (IoI)
	Generating 3DCBs Using an IoI Metric and Frustum Voxelization Based on 3DCBs

	Double Frustum Method
	Multiple Scale Networks
	3D Object Detection
	3D Bounding Box Encoding
	Detection Network Architecture
	Loss Function

	Training Process and Data Augmentation
	Efficiency Boost by Pipelining
	Experimental Results for the Frustum VoxNet V1 System
	Effects of Batch Normalization, Group Normalization, and Dropout
	Evaluation of the Whole System

	Evaluate Frustum VoxNet Results Based on Ground Truth 2D Bounding Box
	Orientation Results
	Bounding Box Center, Physical Size, and 3D Detection Results

	Visualizations of 2D and 3D Detection Results

	3D Instance Segmentation and Object Detection
	Overview of the Frustum VoxNet V2 System
	3D Instance Segmentation
	Instance Segmentation Network Architecture
	Segmentation Ground Truth Based on Voxelization
	Segmentation Loss Function

	3D Object Detection
	3D Object Detection Network Architecture and Loss Function
	3D Object Detection Network Inputs

	Training Process
	Evaluation of the Whole System
	Visualizations of 3D Segmentation Results
	Visualizations of 3D Detection Results Compared between V2 and V1

	Conclusions
	References

