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Automated Model Acquisition from Range Images
with View Planning

Michael K. Reed, Peter K. Allen, and Ioannis Stamos
Computer Science Department, Columbia University, New York, NY 10027
Abstract

We present an incremental system that builds accura
CAD models of objects from multiple range images. Usin
a hybrid of surface mesh and volumetric representation
the system creates a “water-tight” 3D model at each step
the modeling process, allowing reasonable models to
built from a small number of views. We also present
method that can be used to plan the next view and reduce
number of scans needed to recover the object. Results
presented for the creation of 3D models of a computer gam
controller, a hip joint prosthesis, and a mechanical strut.

1. Introduction

Recently there has been much research addressing
problem of automatically creating models from rang
images. Solving this problem has major implication in th
application areas of reverse engineering, virtual reality, a
3D Fax. A number of interesting research problems need
be studied in order to make these systems more function
Our research and the results described in this paper fo
on the following problem areas:

•Model Fidelity: It is important to recover the correc
geometry of an object whose shape isapriori unknown.

•Topological Correctness: Model building system
should create topologically correct models, withou
holes and surface inconsistencies.

•Planning the next view: Data redundancy should b
minimized while at the same time guaranteeing com
plete coverage of the object. This is important for app
cations such as 3D Fax.

This paper describes a system that incrementally bui
CAD models from multiple range images with these issu
in mind. In our method, a mesh surface is created from
range image, which is then extruded in the imaging dire
tion to form a solid. The creation of the extruded solid pro
duces a topologically-correct 3-D CAD model. A key
component of the model-building stage is the tagging
surfaces as to their type: either “properly imaged” or due
ry
en-
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ed
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occlusion artifacts. We are able to use our previous resu
in sensor planning to create continuous regions of uno
cluded viewing space which also can include sensor-sp
cific constraints. Using this planning component makes
possible to reduce the number of sensing operations
recover a model: systems without planning typically utiliz
as many as 70 range images, with significant overl
between them.

2. Background

Recent research on the acquisition, modeling and me
ing process includes Thompsonet al.’s REFAB system,
which allows a user to specify approximate locations
machining features on a range image of a part; the syst
then produces a best fit to the data using previously-iden
fied features and domain-specific knowledge as constrai
[15]. The IVIS system of Tarbox and Gottshlich uses a
octree to represent the “seen” and “unseen” parts of each
a set of range images and set-theoretic operators to me
the octrees into a final model [14]. Methods that use a me
surface to model and integrate each of a set of ran
images, such as work by Turk and Levoy [19] or by Ru
ishauseret al. [12], or to model a complete point sampling
as by Hoppe [5] or Fua [4] have also proven useful in th
task. Both Stenstrom and Connolly [13] and Martin an
Aggarwal [9] perform edge detection and projection from
intensity images, a concept that is revisited by Laurenti
in [8]. Curless and Levoy [3] present a system that rese
bles ours in that it uses a surface mesh from each ran
image as a step towards construction of a solid. The me
is used in a ray-casting operation to weight voxels in a
octree, which is then used as input to an isosurface extr
tion algorithm. This method has achieved excellent resu
at a cost of numerous (50 to 70) overlapping sensing ope
tions. In contrast, our method utilizes a planner with th
goal of reducing the number of imaging and integratio
operations.

The planning process presented in this paper operates
reasoning about occlusion, which has been strongly asso
ated with viewpoint planning in the research literature fo
some time. Kutulakos [7] utilizes changes in the bounda
between sensed surface and occlusion with respect to s
sor position to recover shape. In Connolly’s octree-bas
work [2], “unseen” space is explicitly represented and us
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to plan the next view either by ray-casting or by analyzing a
histogram of the normals of surfaces of “unseen” space. A
similar histogram-based technique is used by Maver and
Bajcsy [10] to find the viewing vector that will illuminate
the most edge features derived from occluded regions.
Whaite and Ferrie [21] use a sensor model to evaluate the
efficacy of the imaging process over a set of discrete orien-
tations by ray-casting: the sensor orientation that would
hypothetically best improve the model is selected for the
next view. More closely resembling the work presented in
this paper is that of Pito [11], which performs the raycasting
operation as well, but only at those regions in the sensor’s
space that are known to image new surfaces.

3. Model acquisition and merging

The first phase of this system acquires and models range
data, and integrates the resulting model into acomposite
model that represents all known information about the
object or scene. Each model created by our method includes
information about the space occluded from the sensor, an
important difference from systems that only model sensed
surfaces. Thisocclusion volumeis a key component of our
sensor planning process because it allows the system to rea-
son about what has not been properly sensed. The acquisi-
tion of range data is performed by a robotic system
comprised of a Servo-Robot laser rangefinder attached to an
IBM SCARA robot, with the object to be imaged being
placed on a motorized rotation stage. This is a typical con-
figuration in which the rangefinder acquires a single scan
line of data at a time in a plane perpendicular to the robot’s
z axis. After each scan line has been acquired, the robot
steps the rangefinder a small distance along its z axis. The
result of the scanning process is a rectangular range image
of the object from a particular viewpoint, the direction of
which is controlled by rotating the turntable. The rotation
stage and the laser system are calibrated so that we may
align the range images into a common coordinate system.

The point data are used as vertices in a mesh, but since
the mesh determined by a single range image is in essence a
surface model, it does not contain information that permits
spatial addressability (the ability to classify points as inside,
on, or outside the model) which is necessary for many tasks
and is inherent in solid models. Although a mesh that com-
pletely covers an object may be used to determine a solid
model, in most incremental modeling techniques the mesh
can not be closed until the end of the scanning process. This
precludes the use of a planning method or any other proce-
dure that requires a solid model.

A solution to this problem is to build a solid model from
each scanning operation that incorporates both the informa-
tion about the model’s sensed surfaces and the occlusion
information in the form of the occlusion volume. The mesh

surfaceM is “swept” to form a solid modelS of both the
imaged object surfaces and the occluded volume. The al
rithm may be stated concisely as

An extrusion operator is applied to each triangular me
elementm, orthographically along the rangefinder’s sensin
axis, until it comes in contact with a far bounding plane
The result is the 5-sided solid of a triangular prism. A unio
operation is applied to the set of prisms, which produces
polyhedral solid consisting of three sets of surfaces:
mesh-like surface from the acquired range data, a num
of lateral faces equal to the number of vertices on th
boundary of the mesh derived from the sweeping operatio
and a bounding surface that caps one end.

It is important to be able to differentiate between thes
surfaces during later model analysis and sensor planni
To do this we attach tags to each surface in the model ba
on which of the above sets the surface belongs to. All su
face elements in the model whose surface normals form
angle greater than a threshold when compared with the in
dent sensor beam should be tagged as “imaged surfac
This threshold may be found by determining the device
breakdown angleempirically, so that “imaged surface” ele-
ments describe surfaces of the object that were imag
properly and do not need to be imaged again. All th
remaining surfaces should be tagged as “unimaged surfa
so that they may be used to drive a later planning proce
As an example of the sweeping and tagging process, c
sider the mesh shown at the left in Figure 1. The sweepi
operation results in the solid shown at the right of the fig
ure, its surfaces tagged according to the process descri
above.

Each successive sensing operation will result in ne
information that must be merged with the current mod
being built, called thecomposite model. Merging of mesh-
based surface models has been done using clipping and
triangulation methods [19] [12]. These methods are nece
sary because these meshes are not closed, so specia
techniques to operate on non-manifold surfaces of appro
mately continuous vertex density are needed. In our meth

S extrude m( )
m∀

∪= m M∈,

Figure 1. Solid formed by sweeping a mesh (left of figure) in
the sensing direction. Tags for hidden surfaces are shown
with dotted arcs.

Tagged “imaged surface”

Tagged “unimaged surf
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we generate a solid from each viewpoint which allows us to
use a merging method based on set intersection. The merg-
ing process starts by initializing the composite model to be
the entire bounded space of our modeling system. The
information determined by a newly acquired model from a
single viewpoint is incorporated into the composite model
by performing a regularized set intersection operation
between the two. The intersection operation must be able to
correctly propagate the surface-type tags from surfaces in
the models through to the composite model. To demonstrate
the operation of this modeling system, the construction of
two models is shown in Figure 2: a controller for a video
game and a hip joint prosthesis For each of these, the top
row shows the extruded solid models built from each range
image (three for the controller, four for the prosthesis), and
below them is the final composite model. Using only a
small number of scans, the models show large amounts of
detail and correctly capture the geometry and topology of
each object. Each of these models has been physically built
on our rapid prototyping system.

4. The planning process

Occlusion is an important scene attribute useful to th
planning process and has previously been used in one
two ways. In the first, a discrete ray casting method
applied to the model to find how much occluded volum
will be imaged for every sensor position: the sensor po
tion that images the most occlusions is selected [2] [21
This has the disadvantage of high computational cost a
the fact that some solutions will be missed. The seco
method collects a histogram of normals of the surfaces th
comprise the occlusions, scaled by surface area [10]. T
technique is not sufficient because it does not take in
account known self-occlusion of the model’s surface
What is desired is a method that takes known self-occ
sions into account, and yet does not need to discretize
sensing positions and compute an image for each of them

Our planning component is based on previous work o
the sensor planning problem [17] [18] and is performed
continuous space. Given a target “unimaged” model su
face, the planner constructs avisibility volumeVtarget, fol-
lowing [16]. Vtarget for a targetT specifies the set of all
sensor positions that have an unoccluded view of the tar
for a specified model. This can computed in four steps:

1) ComputeVunoccluded, the visibility volume forT in the
case where there are no occlusions.

2) ComputeM, the set of occluding model surfaces b
including model surfaceF if F∩Vunoccluded≠ Ø.

3) Compute the setO of volumes containing the set of
sensor positions occluded fromT by each element of
M.

4) ComputeVtarget = Vunoccluded - ∪o , ∀o ∈ O

The volume described byVunoccludedis a half-space whose
defining plane is coincident with the target’s face, with th
half-space’s interior being in the direction of the target
surface normal. Each element ofO is generated by the
decomposition-based occlusion algorithm presented
[16], and describes the set of sensor positions that a sin
model surface occludes from the target.

It is important to note that this algorithm for determining
visibility does not use a sensor model, and in fact part of
attractiveness is that it is sensor-independent. However,
reasons of computational efficiency it makes sense
reduce the number of surfaces inM, and therefore the num-
ber of surfaces used to calculateO. SinceM is determined
by considering which model surfaces intersectVunoccluded, if
Vunoccluded is constrained then in many casesM will be
reduced as well. To constrainVunoccluded, we may consider
specifics of the sensor, for example that the sensor can o
properly image a surface when the surface inclination

Figure 2. Models for the video game controller and the hip joint
prosthesis, showing partial models and the final model next to
an image of the actual part.
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within some bounds. If, for example, the sensor’s break-
down angle dictates that it must be inclined less than some
angle 0 <θ < 90 to the surface in order to image it properly,
thenVunoccludedmay be modeled as a truncated prism, and so
the volumeVunoccluded, as well asM, is reduced in size. In a
situation where there is a single target face, all that remains
is to compute a transform that will bring the sensor into the
visibility volume for the target, and then repeat the model
acquisition process.

As an example of such a system, a CAD model is built
from distinct views of the object shown in Figure 3(i),
which is a strut-like part. The planning for the sensor orien-
tation is done by the algorithm above during the acquisition
process, with the goal of determining a small number of
views that will accurately reconstruct the object. A simple
sensor model is used that assumes the sensor has six
degrees of freedom and an infinite field of view, although it
is possible to add more specific constraints as we will show
below. This part has both curved and polygonal surfaces,
and includes holes that are very difficult to image.
Figure 3(a) and 3(b) show two models that were automati-
cally acquired from range images with a turntable rotation

of 90° between them. Figure 3(e) shows the integration
these into a composite model. We have manually des
nated a target on this composite model from those tagg
“unimaged surface”. Figure 3(g) shows the visibility vol
ume for this target assuming a spherical sensor position
geometry and a sensor grazing angle of about 45°. This vol-
ume is shown with a light and a dark region: the entire vo
ume representsVunoccluded for the target, while the light
region representsVtarget and the dark region represents th
total occlusion due to model surfaces, i.e∪o. This plan is
executed by rotating the turntable to place the sensor with
the visibility volume, in this case an additional 83°, from
which the model in Figure 3(c) is acquired. The composi
model at this point is shown in Figure 3(f). Again, a targe
is designated on the composite model and a plan produc
which is shown in Figure 3(h). The turntable is rotated 134°
to move the sensor into this visibility volume, and anothe
model is acquired, shown in Figure 3(d). The final compo
ite model is shown rendered in Figure 3(j), under the ima
of the actual part.

Figure 3. Strut part reconstruction: (a-d) models created from four distinct range scans. (e) composite model found by intersecting
(a) and (b). (f) composite models found by intersecting (c) and (e). (g) visibility volume computed from target on composite model
(e). (h) visibility volume computed from target on composite mode (f). (i) image of actual strut part. (j) final reconstruction computed
by intersection of (f) and (d).

(a) (b) (c) (d) (e) (f)

(g) (h)

(i)

(j)



5. Improving the planning process

The previous example used a manual target selection to
find the visibility volume for an unimaged surface, as well
as a simplified sensor model. We now discuss an approach
to planning the next view that will automate the viewpoint
selection process and will also include a stronger set of sen-
sor constraints. The best next viewpoint is the one that will
image the most “unimaged” surface elements in the current
composite model. We may determine an appropriate next
view as follows:

1) ComputeiVtarget for each “unimaged” surface i, keep-
ing track of the target’s surface area.

2) Intersect eachiVtarget with the sensor’s reachable
space.

3) Search this intersection for a point that will image the
most surface area associated with eachiVtarget.

The first step is the algorithm described in Section 4.
Once the visibility volume is computed, the second step
determines valid sensor positions via an intersection opera-
tion with a surface or volume representing the set of all pos-
sible sensor positions. If the sensor can be positioned
arbitrarily, then the sensing space is a volume. If the sensor
is constrained to a fix offset, as in many laser scanning sys-
tems, then the sensing space is a surface. In either case,
because we are building these visibility and sensing objects
as CAD primitives, we can easily find continuous intersec-
tions between them. The result is a decomposition of sensor
space into volumes or surfaces from which zero, one, or
more target areas are visible. The third step may be accom-
plished by a variety of methods. Typically, this type of
problem is solved by discrete sampling of sensor space,
with accumulation of the target area for each containing
Vtargetat each sample point [11].

We show some results in Figure 4 of this algorithm for
the strut part. In this case the plans use the model of the
strut after two views, and so the model is that shown in
Figure 3(e). For reasons of computational efficiency, the
model is first decimated to reduce the later computation
using a modified version of the fast and robust Simplifica-
tion Envelopes algorithm [1]. Figure 4(a) and (b) show the
results of visibility planning for imaging the largest “unim-
aged” surfaces in the decimated model. Figure 4(a) shows
the visibility volumes, i.e. alliVtarget, placing no restriction
on the sensor’s ability to orient itself. These volumes are
shown truncated for clarity, but actually extend to the limits
of the modeled space. A point that is interior to any of these
volumes is able to entirely image the corresponding model
surface. If a point is not interior to any such volume, none
of the planned-for model surfaces is fully visible for that

Figure 4. Results of visibility planning.

(a)

(b)

(c)

(d)
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point. Likewise, a point that is interior to more than one vis-
ibility volume has each of the corresponding surfaces in full
visibility: these overlapping volumes show up in the figure
as darker regions. Figure 4(b) shows the effect of including
a sensor constraint in the planning process. In this case the
constraint is that in the sensor operates orthographically in
the z direction (“up” in the examples). This is typical of
imaging systems such as ours where a light-striping
rangefinder moves perpendicular to the striping plane and a
turntable controls rotation of the part. This constraint is
integrated during the occlusion planning phase by altering
the shape ofVunoccluded that is generated for each target.

Figure 4(c) and (d) show the results of intersecting the
visibility volumes with sensor space representations.
Figure 4(c) is the intersection of a spherical sensing surface
with the visibility volumes in Figure 4(a). Figure 4(d)
shows the intersection of a cylindrical sensing surface with
the visibility volumes from Figure 4(b). Given these repre-
sentations, we can now search for regions of maximum vis-
ibility. These regions appear as darker regions in
Figure 4(c) and (d), and signifies where the visibility vol-
umes from more than one target intersect the sensor space
representation. Choosing the next imaging position can be
done by sampling this representation as described above.
The visibility planning has, thus far, been in continuous
space, allowing the possibility of a continuous-space solu-
tion rather than a discrete sampling. This is useful in situa-
tions where high accuracy is necessary for sensor
placement, which can cause problems for discrete methods.

6. Conclusion

We have presented a system that creates CAD models
from multiple range images. The method incrementally
builds models that are solids at each step of the process. It
requires a calibrated sensor in order to align the individual
models. We have developed a method to reduce the number
of scans by using a sensor planner that is able to reason
about occlusion and sensor constraints. The result is the
computation of a new viewpoint from which to create a new
model to be merged with the composite model. We believe
this method has promise for building high-fidelity models
as well being able to build approximate models from a very
small number of scans.There are a number of problems that
still need to be addressed in this research. In the model-
building phase, these are sensor resolution artifacts at
occlusion edges in the scene, which can cause problems
when using set intersection methods. In the planning phase,
there are granularity issues for the size of the surface ele-
ments, and refining the computation of the optimal view-
point.
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