
A systematic approach for 2D-image to 3D-range registration in urban
environments∗

Lingyun Liu and Ioannis Stamos
Hunter College of the City University of New York, New York, NY 10065

Abstract

The photorealistic modeling of large-scale objects, such
as urban scenes, requires the combination of range sensing
technology and digital photography. In this paper, we attack
the key problem of camera pose estimation, in an automatic
and efficient way. First, the camera orientation is recovered
by matching vanishing points (extracted from 2D images)
with 3D directions (derived from a 3D range model). Then,
a hypothesis-and-test algorithm computes the camera posi-
tions with respect to the 3D range model by matching corre-
sponding 2D and 3D linear features. The camera positions
are further optimized by minimizing a line-to-line distance.
The advantage of our method over earlier work has to do
with the fact we do not need to rely on extracted planar fa-
cades, or other higher-order features; we are utilizing low-
level linear features. That makes this method more general,
robust, and efficient. Our method can also be enhanced by
the incorporation of traditional structure-from-motion al-
gorithms. We have also developed a user-interface for al-
lowing users to accurately texture-map 2D images onto 3D
range models at interactive rates. We have tested our sys-
tem in a large variety of urban scenes.

1. Introduction

The photorealistic modeling of large-scale scenes, such
as urban structures, requires a combination of range sensing
technology with traditional digital photography. A system-
atic way for registering 3D range scans and 2D images is
thus essential. Recent commercial systems, such as Google
earth or Microsoft virtual earth, make 2D-to-3D registration
algorithms even more relevant. We believe that the ability to
automatically register 2D images captured by freely mov-
ing cameras to 3D urban models, is of major importance.
This ability will allow the texture-mapping of vast 2D im-
age collections onto their corresponding models. This paper
presents a system that enables the accurate registration of

∗Supported in part by NSF CAREER IIS-0237878 and NSF MRI/RUI
EIA-0215962.

individual 2D images onto a 3D model. Only linear features
are utilized by our system, making our methods applicable
to models of any type (i.e. 3D point clouds, 3D meshes,
CAD, SketchUp, etc.). Our system first extracts 3D and 2D
linear features and then groups them into major 3D direc-
tions and major vanishing points. It finally computes the
rigid transformation between the 2D images and 3D range
model by estimating matches between 2D and 3D lines. We
present results from experiments with exterior and interior
scenes of real buildings.

Several papers, including this one, provide frameworks
for automated registration of 2D images onto 3D range
scans. In particular the work of [3, 5, 10, 12] present solu-
tions for the automated registration of individual 2D images
onto 3D range models. These methods are based on extract-
ing features (e.g., points, lines, edges, rectangles or rectan-
gular parallelepipeds) and matching them between the 2D
images and the 3D range scans. On the other hand [6, 15]
describe solutions that combine 2D-to-3D registration with
multiview geometry algorithms. The current paper belongs
to the first category (i.e. registration of individual 2D im-
ages onto 3D range models). Our method can work in con-
junction with multiview geometry algorithms, since indi-
vidual 2D-to-3D registrations are essential in them [6]. We
present our contributions at the end of this section.

Despite the advantages of feature-based texture mapping
solutions, most systems that attempt to recreate photore-
alistic models do so by requiring the manual selection of
features among the 2D images and the 3D range scans, or
by rigidly attaching a camera onto the range scanner and
thereby fixing the relative position and orientation of the
two sensors with respect to each other [2, 8, 9, 13, 14]. The
fixed-relative position approach provides a solution that has
the following major limitations: a) The acquisition of the
images and range scans occur at the same point in time and
from the same location in space. This leads to a lack of 2D
sensing flexibility since the limitations of 3D range sensor
positioning, such as standoff distance and maximum dis-
tance, will cause constraints on the placement of the cam-
era. Also, the images may need to be captured at different
times, particularly if there were poor lighting conditions at

the time that the range scans were acquired. b) The sta-
tic arrangement of 3D and 2D sensors prevents the cam-
era from being dynamically adjusted to the requirements of
each particular scene. As a result, the focal length and rel-
ative position must remain fixed. c) The fixed-relative posi-
tion approach cannot handle the case of mapping historical
photographs on the models or of mapping images captured
at different instances in time. These are capabilities that our
method achieves.

In summary, fixing the relative position between the 3D
range and 2D image sensors sacrifices the flexibility of 2D
image capture. Alternatively, methods that require manual
interaction for the selection of matching features among the
3D scans and the 2D images are error-prone, slow, and not
scalable to large datasets. These limitations motivate the
work described in this paper, making it essential for pro-
ducing photorealistic models of large-scale urban scenes.

In this paper, we present a new system that can automat-
ically register 2D images with 3D range data at interactive
rates. New strategies for feature extraction and matching
are introduced. The contributions of this work can be sum-
marized as follows:

• We have developed a working system that is able to
register 2D images to 3D models at interactive rates.
This system requires minimal user interaction .

• The whole space of possible matches between 3D and
2D linear features is explored efficiently (unlike prob-
abilistic methods like [10]). That improves the possi-
bility of convergence of our algorithm.

• Earlier systems ([5, 10]) require the extraction of ma-
jor facades, rectangles, or other higher-order structures
from the 2D and 3D datasets. Our current method, on
the other hand, utilizes 3D and 2D linear features for
matching without significant grouping. This increases
the generality of our algorithm since we make fewer
assumptions about the 3D scene. Scenes with various
layers of planar facades, or without clear major facades
can thus be handled.

• This paper’s method utilizes vanishing points and ma-
jor 3D directions, but it does not require them to be
orthogonal as most earlier methods assume.

The algorithm consists of the following major steps: fea-
ture extraction (Sec. 2), internal calibration & rotation com-
putation via vanishing points (Sec. 3), and camera position
computation via feature matching (Sec. 4). Results are pre-
sented in Sec. 5.

2. Feature Extraction

In this section we describe our algorithms for extracting
features from 3D-range and 2D-image data. These features

are utilized for internal camera calibration and camera pose
computation. The fact that our system requires low-level
linear features, makes our algorithms generally applicable
to most exterior and interior urban scenes (see Sec. 5). Each
linear feature is also associated with a radius r. In other
words, a 3D feature can be considered as a cylinder and
a 2D feature as an oriented rectangle (Fig. 1). The value of
the radius is initially defined by the user, and is then adapted
based on the density of 3D and 2D lines (see following sec-
tions).

2.1. 3D Feature Extraction

The 3D line extraction step is based on the segmentation
method of [11], whereas the major directions clustering is
based on the work of [5]. (Note that if 3D information is
provided in terms of a CAD model, then the 3D line ex-
traction step is trivial.) The result of this process is a set
of line clusters L3D. Each line in a cluster has similar ori-
entation as every other line in the same cluster. The set of
line clusters are then sorted based on the number of lines
in each cluster. We do not assume knowledge of vertical or
horizontal directions for the line clusters as in our previous
method ([5]). Each 3D line is thus associated with a clus-
ter id, e.g. for the 3D lines in cluster L3D

i , their cluster id
is i. In the next step, 3D features are extracted. First, an
initial user-defined radius (e.g. 0.1m) is assigned to each
3D line. Then, a line merging step generates the final 3D
features. This reduces the number of features, and thus in-
creases the efficiency of the matching stage (Sec. 4). In
this step, each pair of 3D lines (la, lb) with the same cluster
id are merged into a new line lc (Fig. 1) iff a) the distance
between them are smaller than the sum of their radii, and
b) their projections on lc overlap. The merging procedure
is continued until there are no two remaining 3D lines that
can be merged. The final result is a set of 3D lines, each of
which is associated with a cluster id and radius.

2.2. 2D Feature Extraction

The extraction of 2D features and vanishing points is
based on well-known algorithms (e.g [10, 7]). We can thus
extract from each image a set of lines that generate vanish-
ing points V1,V2, · · · ,Vn. Each vanishing point defines
a cluster of 2D lines. The set of vanishing points are sorted
based on the number of lines in the clusters1. Each 2D line
is then associated with a cluster id (i.e. 2D lines of the clus-
ter defined by Vi have id i). Lines that are close to each
other are merged to generate the 2D features used for match-
ing. The approach is similar to the 3D feature extraction as

1Note here that both 3D line clusters and 2D line clusters are sorted
based on the number of lines they contain. Assuming that larger 3D clus-
ters match with larger 2D clusters, this sort can provide a valuable hint for
matching between 3D directions with 2D vanishing points.

la

lb

lc

la

lb

3D feature merging (la and lb merged into lc)

lc

2D feature merging (la and lb merged into lc)

Figure 1. Example of new type of 3D and 2D features and their
merging steps.

described above. Initially, a user defined radius is associ-
ated with each 2D line. In the merging step, if two lines,
say la and lb, have same cluster id, similar orientations and
overlap with each other, then they are merged into a new 2D
line lc (Fig. 1). The merging stage continues until no two
remaining 2D lines can be merged. The final result is a set
of 2D lines, each of which is associated with a cluster id and
radius.

3. Internal Camera Calibration and Rotation
Computation

The internal camera calibration parameters of each 2D
camera (effective focal length and principal point2) can be
computed by the utilization of three orthogonal vanishing
points (closed form solution). An iterative solution can also
estimate the effective focal length and principal point from
two orthogonal vanishing points [5]. Finally by matching
two orthogonal vanishing points with two orthogonal 3D di-
rections (see Sec. 2) the rotation R between the 2D camera
and 3D model can be computed.

In this paper we present an additional method for the cal-
culation of the effective focal length f and of the rotation
R. We are using two vanishing points and two major 3D di-
rections. We, however, do not assume that these directions
are orthogonal to each other. Orthogonality is prominent in
urban scenes, but is not always present. Our method starts
with an initial estimate finit of the effective focal length,
and of the principal point Pinit. finit is included in the
Exif meta-data, information that is now provided by most
digital cameras. Pinit is estimated by the center of the im-
age. Based on these estimates, an initial center of projection
Cinit is determined. This is the origin of the camera coor-

2Note that we assume that radial distortions have already been cor-
rected.

dinate system (Fig. 2).
Let us consider a vanishing point Vi extracted by the

2D images (see Sec. 2). The 3D coordinates of Vi in the
camera coordinate system are [(Vi)x − (Pinit)x, (Vi)y −
(Pinit)y, finit]T . Thus, the normalized vector D2D

i =
u(CinitVi)3 represents the 3D direction that generates the
vanishing point Vi. This direction is expressed in the cam-
era coordinate system. Our goal is to match each vanishing
point with its corresponding 3D direction extracted by the
3D range model (see Sec. 2). This correspondence leads
to the calculation of the focal length and of the rotation R.
Let us represent each 3D line cluster in L3D (Sec. 2) by its
3D direction D3D

j , j = 1 . . . n (where n is the number of
extracted 3D clusters).

The next step is to find the matching pairs of directions
< D2D

i ,D3D
j >. Consider for the moment that we know

the correspondence between vanishing points (expressed in
the camera coordinate system) and 3D directions (expressed
in the world coordinate system). It is known that with
the principal point fixed at the center of image, two pairs
(< D2D

a ,D3D
a >, < D2D

b ,D3D
b >) of matching vanish-

ing point/3D directions are enough for the computation of
the focal length f . The focal length f (which is |CP| in
Fig. 2) can be computed via the following equations (trian-
gles CVaP,CVbP and CVaVb):

|CVa|2 = |PVa|2 + f2

|CVb|2 = |PVb|2 + f2

|VaVb|2 = |CVa|2 + |CVb|2 − 2 · |CVa| · |CVb| · cos α

where α is the angle between D3D
a and D3D

b . (Note that the
vanishing points Va and Vb have been computed by using
the initial estimates finit and Pinit. The above computation
leads to the calculation of a focal length that conforms to the
3D directions D3D

a and D3D
b .) From the above equations,

we can get a quartic equation:

a · f4 + b · f2 + c = 0

where a = sin2 α, b = sin2 α(|PVa|2 + |PVb|2) −
|VaVb|2, c = (|VaVb|2−|PVa|2−|PVb|2

2)2 −
cos2 α|PVa|2|PVb|2. Solving this equation, one ob-

tains the refined focal length: f =
√√

b2−4ac−b
2a . Since

D3D
a �= D3D

b , sin α will never be equal to 0. Finally,
the rotation R is computed based on these two pairs of
matching directions [1].

Based on the above analysis, the task of our system is
to find two matching pairs of vanishing point/3D directions.
Intuitively, pairs (< D2D

a ,D3D
a >, < D2D

b ,D3D
b >) for

which the angle between D2D
a and D2D

b is not similar to

3We use the notation u(v) for describing the unit vector derived from
v.

the angle between D3D
a and D3D

b can be rejected. As a re-
sult, we have a list of matching candidates, each of which
contains two pairs of matching vanishing points and 3D di-
rections, a refined focal length and a rotation. For each one
of these candidates we can apply the algorithm described
in the next section for calculating the camera position, and
finally keep the result that provides the maximal alignment
between the 2D image and 3D model.

In the worst case scenario though all pairs of directions
have similar angles (this scenario is easily realizable in ur-
ban scenes where most angles between major directions is
90 degrees). In this case there are

(
n
2

)(
m
2

)
candidate match-

ing pairs of directions (where n is the number of 3D and m
the number of vanishing points). Even though this is not a
large search space (n and m are small in most urban scenes),
testing all hypotheses involves the computation of the trans-
lation (see next section). This is computationally inefficient
for the purposes of an interactive system, where a response
time of up to 10 seconds per image is appropriate. For these
reasons we let the user to implicitly provide the correct pair
of matching directions, by rotating the 3D model to an ori-
entation that produces a rendering that is similar (but not
exactly the same) to the real 2D image. As shown in Figs.
6(b) and 7(b), the rotated 3D view (left) is similar (but not
exactly the same) to the 2D image (right). This user-assisted
rotation can approximately align the corresponding 2D and
3D directions.

The aforementioned user interaction not only increases
the computational efficiency of the whole system, but also
makes the registration problem tractable. In general, with-
out constraining the possible locations of 2D cameras wrt
the 3D model, the 2D-to-3D registration problem becomes
intractable. This is due to the existence of a possible large
set of solutions. For example, a photograph of one of the
columns of the 3D structure of Fig. 7 can be matched with
any of the symmetric 3D columns of the real scene. By se-
lecting a synthetic view that is similar, but not exactly the
same as the 2D image, the user can provide an approximate
field of view to help the matching algorithm. In particular,
only 3D features that are viewable in the synthetic 3D view
are used for matching 2D image features. Note here that
all earlier approaches still require implicit user interaction
in order to assist in that direction. For example in [5] the
user needs to explicitly provide the match between vanish-
ing points/3D directions. In that system, the user also needs
to match facades between the 2D image and 3D model. Our
current approach is more natural and leads to faster interac-
tion time.

The final result of this module is a list of matching can-
didates, each of which contains two pairs of matching van-
ishing points/3D directions, a refined focal length and a ro-
tation. The user can cycle through them, and a camera po-
sition is computed for each matching candidate. Then, each

C

Xc

Yc

Zc

Image Plane

Zw

Yw

Xw

Ow

Va
Vb

P

f

Figure 2. Rotation and focal length computation based on two van-
ishing points and their corresponding 3D directions (not shown in
this image).

candidate is quantitatively evaluated. The following section
provides more details.

4. Camera Position Computation

A list of matching candidates, named M, is obtained
as described in the previous section. Each element in M
contains a matching pair of two vanishing points and two
3D directions, a refined focal length and a rotation. In this
section, a 2D camera position will be computed for each
candidate in M. Our method of finding the camera posi-
tion follows a hypothesis-and-test scheme by matching the
extracted 3D and 2D features based on the framework of
[5]. A number of major differences with the aforementioned
method make our algorithm more general and more robust.
In particular, our algorithm does not require the extraction
of planar facades, and does not require the grouping of low-
level features in higher-order structures. Scenes that do not
pertain clear major facades (such as the example of Figs.
7(a) and (b), where various layers of planar facades exist)
can now be successfully handled. Also since all low-level
features are used without significant grouping, more robust
results are achieved. Due to the fact that we are utilizing
the low-level linear features we have developed a new algo-
rithm for the computation of camera position (Step 2 of the
following algorithm).

We now present a detailed description of our algorithm.
First, a candidate from Mi is selected, i.e. the matching
pair of vanishing points and 3D directions are < Va,Vb >
and < D3D

a ,D3D
b >; the refined focal length is fi and the

rotation is Ri. The camera position (translation) is then
computed in the following six steps (Fig. 4):

Step 1 A hypothetical match between two pairs of 3D
and 2D lines is selected (the algorithm will go over all pos-
sible such selections). Let us call these pairs < l3D

a , l2D
a >

C

Xc

Zc

Image Plane

S

T

A

B

l3D
a

Yc

Zw

Yw

Xw

Ow

R

l2D
a

Figure 3. Camera position computation based on a match between
3D feature AB with image feature ST.

and < l3D
b , l2D

b > (l3D
a and l3D

b are 3D lines extracted from
the 3D model, and l2D

a and l2D
b 2D lines extracted from the

2D image).
Step 2 [Computation of camera position in world coor-

dinate system (translation) based on the match of l3D
a with

l2D
a] As shown in Fig. 3, A and B are the endpoints of l3D

a

and S and T are the endpoints of l2D
a . C is the center of

projection. If l3D
a matches exactly with l2D

a , then in the
camera coordinate system, C, S and A should be collinear.
The same applies for C, T and B. We thus consider C as
the intersection point of the following two lines: a) one that
passes through A having the orientation of line CS and b)
one that passes through B having the orientation of line CT.
To compute the world coordinates of C, we need to know
the orientations of CS and CT in the world coordinate sys-
tem. We know, however, the orientations of CS and CT in
the camera coordinate coordinate system, say na and nb.
We have also computed the rotation R which brings the
camera and world coordinate systems into alignment (see
previous section). We can thus compute the orientations of
CS and CT in the world coordinate system as: R · na and
R · nb. Then, the camera position is obtained by finding
the intersection of two 3D lines: a) one of which passes
through A with the orientation of R · na and b) one which
passes through B with the orientation of R · nb

4. Finally,
this computed center of projection is used to project l3D

b

onto the image plane. If the projection of l3D
b overlaps with

l2D
b (within a threshold of 80%), then the camera position

computed using (l3D
a , l2D

a) is verified by the pair (l3D
b , l2D

b).
We therefore move to the next step. Otherwise, we return
to step 1 (i.e. the match is discarded) to pick another set of
hypothetical matching lines.

Step 3 Step 2 is repeated assuming as hypothesis the
match between l3D

b and l2D
b . The newly computed center of

4A and B are both expressed in the world coordinate system

projection is used to compute the overlap between l2D
a and

the projection of l3D
a . If this overlap is less than a thresh-

old (i.e. the computed C is not verified by (l3D
a , l2D

a), we
return to step 1 (i.e. the match is discarded). Otherwise, we
proceed to the next step.

Step 4 Step 2 has thus computed a camera position C1

by the hypothesis (l3D
a , l2D

a) [verified by (l3D
b , l2D

b)], while
step 3 has computed a camera position C2 by the hypoth-
esis (l3D

b , l2D
b) [verified by (l3D

a , l2D
a)]. In this step, the

weighted average (based on the amount of overlap) of these
two camera positions is computed and saved in a list T .

Step 5 Steps 1 to 4 are repeated for all possible pairs of
pairs of 3D and 2D lines (< l3D

a , l2D
a >,< l3D

b , l2D
b >).

All verified camera positions (see Step 4) are stored in a list
T . Then, for each position in T , all 3D lines are projected
onto the image plane. For each of the projected 3D lines,
a possible matching 2D line is found by searching around
its projection. This region is bounded by the radius of the
3D and 2D lines. The number of found matches grades this
camera position. If the grade of a camera position is less
than a threshold, it is removed from the list T .

Step 6 The remaining camera positions in T are opti-
mized by two steps. First, for each camera position Ci a
refined position is found. This is achieved by searching
around a small neighborhood of Ci in order to maximize
the overlap between the matching 3D and 2D lines. Then
this refined position is further optimized by an iterative al-
gorithm. In each iteration, the current camera position is
used to generate a list of matching 2D and 3D lines from
the whole 2D and 3D feature space. A new camera position
is found by minimizing the error distance between the 2D
lines and the projections of their matching 3D lines. The
algorithm converges at the point when the error distance re-
mains constant. The camera position computed after the
two optimization steps are the final result.

The camera position in T with the maximum grade is
picked as the best one for the matching candidate Mi. This
is normally correct, but the list is still kept as well in case
that the one with the maximum grade is not the best. Then,
the user can select other positions in the list. This maximum
grade is also used as the grade for Mi. For each matching
candidate in M, a list of camera positions is computed by
these 6 steps and a grade is assigned. Then, the list M is
sorted based on the grade and the one with the maximum
grade is selected as the best one but the user also can select
other results in M.

5. Results and Conclusions

We are presenting results from real experiments in three
urban settings that we name 1 (Fig. 6), 2 (Fig. 5), and
3 (Fig. 7). Buildings 1 and 2 are the exteriors of regular
urban structures. Building 3 is the interior of Grand Cen-
tral Station, a scene of architectural complexity and beauty.

Figure 4. Camera position (translation) computation flowchart.
Through step 1 all possible pairs of matched 3D and 2D lines
(< l3D

a , l2D
a > and < l3D

b , l2D
b >) are selected (l3D

a and l3D
b are

3D lines extracted from the 3D model, and l2D
a and l2D

b 2D lines
extracted from the 2D image). Step 2 computes a camera position
based on < l3D

a , l2D
a >. The pair < l3D

b , l2D
b > is used for the

verification of this position. If the overlap between l2D
b and the

projection of l3D
b on the image is smaller than Oth (20%) (i.e. the

position is not verified) a new pair is selected (step 1). Otherwise
a similar computation is carried out for the pair < l3D

b , l2D
b >

(step 3). If steps 2 and 3 produce two verifiable camera positions,
a weighted average is computed (step 4). This average represents
the position that is generated by the hypothesis (< l3D

a , l2D
a > and

< l3D
b , l2D

b >). All verified camera positions are stored in a list T .
After all pairs have been explored, each position in T is graded by
projecting all 3D lines on the 2D image space (step 5). Positions
with high grade (greater than Gth number of matches) survive to
the final optimization step 6.

First a number of 3D range scans of each structure was ac-
quired using a Leica HDS 2500 time-of-flight laser range
scanner [4]. This scanner provides absolute 3D range mea-
surements up to a distance of 100 meters, and at an accuracy
of 6mm. Each 3D point is associated with reflectance in-
formation, that corresponds to the amount of laser-intensity
getting back to the range sensor5. We then segment each

5Note that the reflectance depends on various parameters (distance, ori-
entation and surface material) and is not the actual color of the object as
captured by a 2D digital camera.

Figure 5. Registration result of Building 2. Top row: Initial state
(before registration). The 3D range model (left column) and 2D
image (right column) are loaded and displayed in the interface.
Middle row: The state of the system after the feature extraction.
The 3D viewer (left column) shows the clustered 3D lines while
the 2D viewer (right column) shows the clustered 2D lines that are
drawn on the original 2D image. Different clusters are represented
by different colors for clarity. Bottom row: The final registra-
tion. The 2D image is automatically registered with the 3D range
data. The 3D viewer (left) shows the texture mapped 3D range
data. The 2D viewer (right) shows the matching 2D and 3D line
features (2D lines are displayed as red, while projected 3D lines
are highlighted in green). Note that objects that are not part of
the 3D model cannot be texture-mapped (corner of other building
shown in the 2D image). http://www.cs.hunter.cuny.
edu/∼ioannis/Iccv07/ contains a video of the process.

range scan, extract linear 3D features, and register the scans
in a common coordinate system.

Figs. 5, 6, and 7 provide individual registration results,
as described in our technical sections. Note than in the case
of 6(b) and 7(b) the user needs to orient the 3D range model
in a position that simulates the 2D color image. As you can
see from these figures this simulation does not need to be
exact. It is necessary for assistance in matching vanishing
points with 3D directions (Sec. 3) in order for our system to
perform in interactive rates (5-10 seconds for matching per
image). Table 1 presents quantitative results for successful
automated registrations (see caption for more details). A
3-5 pixel distance between the matched 2D and projected
3D lines is due to noise in the line extraction process. Our
texture-map results are of extremely high quality though.
Out of 18 total images tried for building 1, 13 were regis-

(a)

(b)

Figure 6. Registration results from building 1. (a) For description
see caption of Fig. 5. (b) (Top row): The 2D image is in a very
different orientation wrt the acquired 3D range model . (Middle
row): The user rotates the 3D model so that it is orientated simi-
larly (note that it does not have to be exactly matched) to the 2D
image. (Bottom row): The right image shows the 2D image along
with the matched 2D and projected 3D features (see caption of Fig.
5). The left image shows the texture-mapped 3D range model after
successful registration.

tered successfully, whereas 5 have slight errors. Out of 8
total images tried for building 2, 7 were registered success-
fully, whereas 1 has slight errors. Finally, out of 10 total
images tried for building 3, 6 were registered successfully,
whereas 4 have slight errors. In all cases the first step (Sec.
3) never fails since the scenes contain at least two vanishing
points. The second step however (Sec. 4) depends on the
quality of the extracted low-level 2D and 3D linear features.
In cases that we cannot extract features of high quality (due
to low contrast in 2D images), this method will not be able
to perform correctly. On the other hand few correct 2D-to-
3D registrations can be enhanced with multiview-geometry
solutions to bring sequences in alignment with a model (see
[6]).

We have presented a systematic way for registering in-
dividual 2D images with a 3D range model. Our methods
assume the existence of at least two vanishing points in the
scene (not necessarily orthogonal). No higher-order group-
ing of features is necessary. Our system allow us to regis-
ter 2D images with a 3D model at interactive rates. In our
future work we would like to be able to handle scenes of
general configuration not containing any major vanishing
points. This would let the exploration of registration algo-
rithms in non-urban scenes.

References

[1] O. Faugeras. Three–Dimensional Computer Vision. The MIT
Press, 1996.

[2] C. Früh and A. Zakhor. Constructing 3D city models by
merging aerial and ground views. CG & A, 23(6):52–11,
2003.

[3] K. Ikeuchi. The great buddha project. In IEEE ISMAR03,
Tokyo, Japan, November 2003.

[4] Leica Geosystems. http://hds.leica-geosystems.com/.
[5] L. Liu and I. Stamos. Automatic 3D to 2D registration for

the photorealistic rendering of urban scenes. In CVPR, vol-
ume II, pages 137–143, Washington, DC, USA, 2005.

[6] L. Liu, I. Stamos, G. Yu, G. Wolberg, and S. Zokai. Multi-
view geometry for texture mapping 2D images onto 3D range
data. In CVPR, volume II, pages 2293–2300, New York City,
June 2006.

[7] MIT City Scanning. http://city.lcs.mit.edu.
[8] K. Pulli, H. Abi-Rached, T. Duchamp, L. G. Shapiro, and

W. Stuetzle. Acquisition and visualization of colored 3–D
objects. In ICPR, Australia, 1998.

[9] V. Sequeira and J. G. Goncalves. 3D reality modelling:
Photo-realistic 3D models of real world scenes. 3DPVT, 00,
2002.

[10] I. Stamos and P. K. Allen. Automatic registration of 2-D
with 3-D imagery in urban environments. In ICCV, pages
731–737, 2001.

[11] I. Stamos and P. K. Allen. Geometry and texture recov-
ery of scenes of large scale. Comput. Vis. Image Underst.,
88(2):94–118, 2002.

F3D F2D Fi Fr M E

672 412 3065.83 3072.42 119 4.4492
583 345 3065.83 3075.34 103 4.9394
409 390 3065.83 3071.90 112 4.8973
392 230 3065.83 3069.45 93 4.2109
321 312 3065.83 3073.23 187 4.9021
456 387 3065.83 3072.12 134 4.3902
402 390 3065.83 3071.29 94 3.9827
390 219 3065.83 3069.22 87 4.2023
592 539 3065.83 3071.90 212 4.3003
390 416 3065.83 3061.39 145 3.9203
271 392 3065.83 3073.38 123 3.2900
430 456 3065.83 3076.19 209 4.1293
390 549 3065.83 3063.56 115 4.5902

438 789 1185.03 1165.65 114 4.3215
421 654 1185.03 1175.89 83 4.2142
389 520 1185.03 1172.90 88 3.8992
402 432 1185.03 1179.34 101 4.2390
389 598 1185.03 1172.90 91 4.5009
435 621 1185.03 1169.39 156 4.1290
419 535 1185.03 1178.17 182 4.4923

543 245 2805.81 2833.45 63 4.4439
569 312 2805.81 2831.32 45 3.9082
389 245 2805.81 2829.39 42 4.2312
390 190 2805.81 2839.93 50 4.9821
493 231 2805.81 2812.24 63 3.9023
301 189 2805.81 2829.39 58 3.8910

Table 1. Building 1 (13 images) - Building 2 (7 images) - Building
3 (6 images). Each row presents results from successful registra-
tion of a different 2D image with the 3D range model. The upper
part of the table presents results of the registration of 13 images
with a 3D range model of building 1. The middle part shows re-
sults from registering 7 images with a 3D range model of building
2. Finally, the lower part describes results from the registration
of 6 images with the 3D range model of building 3. The regis-
tration (matching phase) of each image requires on average 5 to
10 seconds (2GHz Xeon Intel processor, 2GB of RAM). The first
two columns show the numbers of 3D and 2D features used for
matching. ”Fi” is the initial focal length extracted from the Exif
meta-data of the image, while ”Fr” is the refined focal length. ”M”
is the number of matched features of the best transformation. Fi-
nally, ”E” is the average line-to-line distance (in pixels) after the
optimization (Step 6).

[12] A. Troccoli and P. K. Allen. A shadow based method for
image to model registration. In 2nd IEEE Workshop on Video
and Image Registration, July 2004.

[13] Visual Information Technology Group, Canada.
http://iit-iti.nrc-cnrc.gc.ca/about-sujet/vit-tiv e.html.

[14] H. Zhao and R. Shibasaki. Reconstructing a textured CAD
model of an urban environment using vehicle-borne laser
range scanners and line cameras. Machine Vis. & Appl.,
14(1):35–41, 2003.

[15] W. Zhao, D. Nister, and S. Hsu. Alignment of continu-
ous video onto 3D point clouds. IEEE Trans. Pattern Anal.
Mach. Intell., 27(8):1305–1318, 2005.

(a)

(b)

Figure 7. Registration results from the interior of building 3. (a)
For description see caption of Fig. 5. (b) (Top row): The 2D
image is viewing a small part of the 3D model. (Middle row):
The user rotates the 3D model so that it is orientated similarly
(note that it does not have to be exactly matched) to the 2D image.
(Bottom row): The right image shows the 2D image along with
the matched 2D and projected 3D features (see caption of Fig. 5).
The left image shows the texture-mapped 3D range model after
successful registration. Note that surfaces that are not part of the
3D model cannot be texture-mapped and appear as black holes.
For example the floor is missing from our range model.

