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Abstract
Recently developed Structure from Motion (SfM) recon-

struction approaches enable the creation of large scale 3D
models of urban scenes. These compact scene representa-
tions can then be used for accurate image-based localiza-
tion, creating the need for localization approaches that are
able to efficiently handle such large amounts of data. An
important bottleneck is the computation of 2D-to-3D cor-
respondences required for pose estimation. Current state-
of-the-art approaches use indirect matching techniques to
accelerate this search. In this paper we demonstrate that
direct 2D-to-3D matching methods have a considerable
potential for improving registration performance. We de-
rive a direct matching framework based on visual vocabu-
lary quantization and a prioritized correspondence search.
Through extensive experiments, we show that our frame-
work efficiently handles large datasets and outperforms cur-
rent state-of-the-art methods.

1. Introduction
Image-based localization is an important problem in

computer vision. Its applications include localization and
navigation for both pedestrians [22, 31, 13] and robots
[6, 5], Augmented Reality [1, 3], and the visualization of
photo collections [26]. Image-based localization is also an
important part in the pipeline of higher-level computer vi-
sion tasks such as semantic object annotation [9] and can
be used as an initial pose estimate to speed up large-scale
reconstructions from Internet photo collections [27].

Traditionally, large-scale image-based localization has
been treated as an image retrieval problem. After finding
those images in a database that are most similar to the query
image, the location of the query can be determined relative
to them [22, 31]. The huge progress achieved in the field
of image retrieval enables the use of an increasing num-
ber of images for the representation of real world scenes
[25, 19, 20]. However, the localization accuracy obtained
this way cannot be better than the precision of the GPS
positions available for the database images. To achieve a
higher localization accuracy, more detailed information is
needed which can be obtained from a 3D reconstruction
of the scene. Using these models additionally permits to

Figure 1: Our approach for image-based localization accu-
rately registers query images (bottom right) to a 3D scene
model of an entire city (top left, close-up view) using an
efficient 2D-to-3D matching framework.

estimate the orientation (and thus the complete pose) of
the camera and yields a much more structured representa-
tion of the scenes. Recent advances in SfM research [27]
now make it possible to construct models on a city-scale
level consisting of millions of points in only a few hours
[8, 29, 21], creating the need for image-based localization
methods that can handle such large datasets.

Essential for image-based localization using 3D models
is to establish correspondences between 2D local features in
the query image and 3D points in the model. The common
approach is to use the feature descriptors, e.g. SIFT [17],
for the 3D points computed during the reconstruction, for-
mulating the correspondence search as a descriptor match-
ing problem. Following the terminology from [16] we re-
fer to 2D image features and their descriptors as features
and to 3D points and their descriptors as points. We distin-
guish between direct and indirect 2D-to-3D matching. Di-
rect matching tries to find the 3D point corresponding to a
2D feature by searching for the nearest neighbors of that
feature’s descriptor in the space containing the 3D point de-
scriptors, while indirect methods use an intermediate con-
struct to represent points and their descriptors which does
not preserve the proximity in descriptor space. Classical di-
rect matching approaches such as approximative tree-based
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Figure 2: Illustration of our direct 2D-to-3D matching framework consisting of three modular components. By associating
3D points to visual words, we quickly identify possible correspondences for 2D features which are verified in a more detailed
linear search. The final 2D-to-3D correspondences are then used to localize the query image using n-point pose estimation.

search [17, 18] provide excellent matching results for di-
rectly matching descriptors from the image to descriptors
from the model. However, search becomes prohibitively ex-
pensive in very large and dense descriptor collections. Re-
cent approaches have therefore proposed indirect matching
schemes to handle such huge databases. Examples include
techniques that use image retrieval to find similar images
which contain a set of possibly matching 3D points (2D-
to-2D-to-3D-matching) [13] or that match points from the
model to features in the image based on mutual visibility
information (3D-to-2D matching) [16]. Although substan-
tially faster than direct tree-based 2D-to-3D matching, those
approaches are not yet as effective, as evidenced by the
lower number of images that can be registered with them.

In this paper, we show experimentally that 2D-to-3D
matching offers considerable potential for improvement
over current state-of-the-art localization approaches. Mo-
tivated by this result, we propose a framework for effi-
cient direct 2D-to-3D matching based on associating 3D
points with a visual vocabulary obtained from clustering
feature descriptors, and we explore different association
strategies. We limit the search space for each query de-
scriptor to the point descriptors contained in its correspond-
ing visual word, which enables us to estimate that descrip-
tor’s search cost. We show how both the registration and re-
jection times can be improved through a prioritized search
which first considers all query features whose visual words
lead to cheap correspondences searches. We verify all those
findings through extensive experiments and derive useful
design guidelines for use in practical applications.1

The paper is structured as follows. The remainder of this
section discusses related work. Sec. 2 explains the setup for
the experiments conducted in this paper. In Sec. 3 we exper-
imentally show the potential of direct 2D-to-3D matching.
Based on those results, we derive a framework for efficient
direct matching in Sec. 4 and evaluate it in Sec. 5.

Related Work. One of the earliest image localization
frameworks has been proposed by Robertson & Cipolla,
who estimate the position of images relative to a set of 200

1Code is available at http://www.graphics.rwth-aachen.de/localization

rectified views of facades manually registered onto a city
map [22]. In a similar approach, Zhang & Kosecka use
SIFT features [17] to match a query image against a set of
reference images with known GPS coordinates [31], utiliz-
ing the two best matching images to triangulate the position
of the camera. Schindler et al. achieve image localization
on a city-scale, modeled by 30, 000 GPS-annotated images
[23], by accelerating image retrieval with a vocabulary tree
[19] containing only features unique to their location. In
contrast, Zamir & Shah show how to exploit repetitive fea-
tures found in large urban environments to attain a higher
accuracy for the GPS estimates of the query images [30].
To efficiently handle even larger sets of around 1 million
geo-tagged images, Avrithis et al. combine features from
similar images into so-called scene maps, thereby reducing
the number of documents to be considered during retrieval
[2]. Hays & Efros utilize mean-shift to express the location
of an image as a probability distribution over the surface of
the Earth, using a database with more than 6 million geo-
tagged images for planet-scale localization [11].

Some applications such as robot localization require a
higher localization accuracy than the GPS-level precision
provided by the approaches described above, which can be
achieved using a 3D map of the environment. Se et al. si-
multaneously reconstruct the environment and localize their
robot in this map using a stereo camera mounted onto the
robot [24]. Modern SLAM methods enable this approach
to scale to larger scenes, while still permitting real-time lo-
calization and mapping [3, 5, 6]. Irschara et al. show that
image retrieval techniques can be used to accelerate pose es-
timation against large 3D models obtained from SfM meth-
ods using the 3D points belonging to the features in the re-
trieved images to establish 2D-to-3D correspondences [13].
The camera pose is then estimated using a 3-point-pose al-
gorithm [7]. Since the use of image retrieval techniques
effectively limits the query images that can be registered
to views similar to the images used for the reconstruction,
Irschara et al. propose to generate a set of synthetic camera
views using the 3D model. Original and synthetic images
are then combined to form the database for the retrieval step.
A GPU implementation of the vocabulary tree approach is



Dataset # Cameras # 3D # Descrip- Size # Query
Points tors (MB) Images

Dubrovnik 6044 1,886,884 9,606,317 1172 800
Rome 15, 179 4,067,119 21,515,110 2626 1000
Vienna 1324 1,123,028 4,854,056 593 266

Table 1: The datasets used for evaluation. Size details the
memory used for all descriptors (128 bytes per descriptor).

used to achieve real-time performance. Furthermore, the set
of images in the database is reduced to a distinct subset of
the original and synthetic images that covers all 3D points,
effectively reducing the size of the inverted files and thus re-
trieval time. Similarly, Arth et al. use subsets of 3D points
defined by the images in which they occur to accelerate the
computation of 2D-to-3D correspondences for localization
on mobile phones [1].

While all of the approaches discussed above try to find
the camera pose by matching 2D features in the query im-
age to points in the database, Li et al. apply the matching
step into the opposite direction [16]. They propose a pri-
oritization scheme to avoid having to match every point in
the model against the query image. This way, the priority
of a point is directly related to its importance for the recon-
struction, i.e. the number of cameras from the reconstruc-
tion it is visible in. Starting with a subset of points with
high priority that covers all cameras, every point that can be
matched against the features of the query image increases
the priority of the points that can be seen in a camera with
it. The matching process stops if enough correspondences
are found. Li et al. also show that using a reduced set of
points of highest priority is better than using all 3D points,
as it permits to register more images while reducing the time
needed for registration. As their method does not constrain
the set of possible views, they are able to demonstrate that
their method outperforms the algorithm by Irschara et al. in
terms of the number of images that can be registered.

In this paper, we also focus on accurate localization.
We propose an efficient 2D-to-3D matching approach that
achieves better registration performance than both [16] and
[13], while reaching competitive to superior runtimes.

2. Experimental Setup
In the following, we introduce the datasets and evalu-

ation measures used throughout this paper. Based on this
setup, we experimentally show in Sec. 3 that direct 2D-to-
3D matching offers considerable potential for improvement
over current indirect approaches and use these findings to
derive a direct matching framework in Sec. 4.

Datasets. We evaluate all methods on the three datasets
presented in [13, 16], kindly provided by Li et al. [16].
The two larger datasets, Dubrovnik and Rome, were recon-
structed using photos taken from Flickr, while the images
used to build the Vienna dataset were systematically taken
with a single calibrated camera. The query images have a
maximum dimension (height and width) of 1600 pixels. For

Vienna, they were obtained by selecting 266 images from
the Panoramio website that depict parts of the model [13].
Li et al. obtained query images for Dubrovnik and Rome by
removing a random subset of images from the reconstruc-
tions, together with their descriptors and all 3D points that
are visible in only one other camera not included in the set.
Details on the datasets can be found in Table 1. Since Li et
al. removed points that were too ill-conditioned or behind
cameras before publishing the data, the Dubrovnik and Vi-
enna datasets contain slightly fewer 3D points than in [16].

The three datasets are representatives for different sce-
narios: The Vienna model depicts parts of urban scenes con-
structed from photos taken at uniform intervals. Dubrovnik
represents a large urban scene constructed from a more clus-
tered set of views that is usually found when using photos
from Internet photo collections, and Rome consists of re-
constructions of a set of distinct landmarks.

Evaluation measures. The main criteria for evaluating all
localization approaches are the number of images that they
can successfully register, as well as the average time they
need to register or reject an image. As proposed in [16],
we accept a query image as registered if the best pose es-
timated by RANSAC from the established 2D-to-3D corre-
spondences has at least 12 inliers. Except for the results in
Table 2, every experiment was repeated 10 times to account
for variations due to the random nature of RANSAC. In
those cases, we report the mean number of images that can
be registered together with its standard deviation, as well as
the variation of the mean recognition times.

3. 2D-to-3D Matching
As discussed in Sec. 1, most current localization meth-

ods use an indirect way of establishing correspondences
between 2D features and 3D points. As a result, those
approaches trade off registration performance for faster
search. This trade-off is well-known. However, it has so
far escaped attention how large the potential for improve-
ment through direct 2D-to-3D matching actually is. In or-
der to demonstrate this potential, we perform the follow-
ing systematic experiment: To establish 2D-to-3D corre-
spondences, we use the kd-tree based approach proposed
by Lowe [17], based on the FLANN library [18]. We rep-
resent each 3D point by the mean of its SIFT descriptors
obtained from the reconstructions. A 2D-to-3D correspon-
dence is accepted if the two nearest neighbors pass the SIFT
ratio test with the threshold set to 0.7. Contrary to [16], we
find that this direct application of the test gives excellent re-
sults. If more than one 2D feature matches to a 3D point, we
keep only the correspondence with the most similar descrip-
tor (measured by the Euclidean distance). The 6-point DLT
algorithm [10] is used in a RANSAC loop [4] to estimate
the 3D pose of the camera. We enforce that all inliers lie in
front of the camera. Since several query images have an ex-



Dubrovnik Rome Vienna
registered images rejected registered rejected registered rejected

# reg. # corr. inlier corr. RNSC. total time # reg. time time # reg. time time
Method images ratio [s] [s] [s] [s] images [s] [s] images [s] [s]

tr
ee

-b
as

ed

flann 50 leaves 789 545.3 0.60 1.29 0.34 1.63 8.92 978 2.66 5.36 218 2.52 8.84
flann 100 leaves 793 581.8 0.62 1.64 0.39 2.04 11.54 978 2.82 8.52 219 2.25 4.64
flann 200 leaves 794 609.9 0.64 2.40 0.31 2.71 12.21 981 3.49 5.69 219 2.61 2.93
flann 300 leaves 795 620.1 0.64 3.11 0.30 3.40 14.45 983 3.97 6.27 220 3.44 2.72
flann 500 leaves 794 629.1 0.65 4.55 0.21 4.76 23.86 985 5.28 3.28 220 5.06 3.65

V
PS

all descriptors 785 537.0 0.64 0.66 0.15 0.81 2.19 979 1.53 4.07 211 1.83 9.95
mean 774 472.9 0.62 1.08 0.53 1.61 2.36 972 2.13 1.28 210 2.05 9.19

medoid 762 412.5 0.62 0.50 0.34 0.84 1.58 961 1.05 3.74 203 2.23 9.40
mean per vw 782 523.8 0.64 0.99 0.32 1.31 5.25 976 2.23 6.50 212 2.46 6.87

integer mean per vw 783 523.0 0.64 0.56 0.31 0.87 5.35 976 1.33 5.92 211 2.02 7.59
medoid per vw 778 480.7 0.63 0.52 0.14 0.66 4.34 972 1.17 7.27 211 1.81 8.25

P2F [16] 753 - - - - 0.73 2.70 921 0.91 2.93 204 0.55 1.96

Table 2: Comparison of different direct 2D-to-3D matching approaches. For every dataset, we list the number of successfully
registered images (#reg. images), as well as the average time needed to register / reject an image. For the Dubrovnik dataset,
we furthermore report for successfully registered images the average number of correspondences (#corr.), the average inlier
ratio, the average time needed to compute the correspondences (corr.) and the average time RANSAC needs to estimate the
pose (RNSC.). As can be seen, direct 2D-to-3D matching considerably increases the number of images that can be registered,
compared to the state-of-the-art [16]. In the following, we propose further improvements to also reduce its runtime.

tremely low inlier ratio, RANSAC is stopped after 1 minute.
For every dataset, we try to register its query images. Re-
sults for different variants of the tree-based search (impos-
ing different limits on the number of visited leaf nodes) can
be found in Table 2. Since the behavior of the methods is
similar on all datasets, we only give detailed results for the
Dubrovnik dataset. As the comparison with the indirect P2F
method proposed by [16] shows, direct matching bears sig-
nificant potential as it is able to register many more images
(795 vs. 753 for Dubrovnik, 985 vs. 921 for Rome, and 220
vs. 204 for Vienna). However, the runtime of tree-based
direct search is not competitive. In the following, we there-
fore explore direct matching methods in order to derive an
approach that keeps the good registration performance of
traditional tree search but facilitates fast localization.

4. Vocabulary-based Prioritized Search (VPS)
The query images used in our experiments contain about

10k features on average. As becomes evident by the number
of correspondences found (c.f . Table 2), tree-based search
thus spends about 93% of its search time on features that
do not lead to correspondences. For the case of 3D-to-
2D matching, [16] show how to prioritize the descriptor
matching step based on an estimate of the likelihood that
a 3D point will lead to a correspondence. For 2D-to-3D
matching, there is however no way of determining a-priori
whether or not a 2D feature will lead to a correspondence.
Therefore, we propose a prioritization scheme that is based
on an estimate of the matching cost of each feature.

Figure 2 illustrates our proposed framework. We store
the 3D points and their descriptors in a visual vocabulary
for faster indexing. Similarly, each feature in the query im-
age is assigned to a visual word. The feature’s first and
second approximate nearest neighbors are found by linear

search through all 3D points associated with that word, and
the ratio test is again used to accept 2D-to-3D correspon-
dences. The number of descriptors stored in a visual word
thus gives a good estimate of the matching cost for this par-
ticular query feature. To speed up descriptor matching, we
propose to process the features in ascending order of their
matching costs, starting with features whose activated vi-
sual words contain only few descriptors. The search stops
once Nt correspondences have been found, which are then
used for subsequent pose estimation.

In the remainder of this paper, we experimentally evalu-
ate parameters and design variants of the proposed frame-
work in order to answer the following questions: (1) How
do we have to choose a set of descriptors to obtain a good
representation of the 3D points? (2) What is the effect of
the prioritized search on the performance? (3) How can re-
jection times be optimized? (4) What influence does the
choice of the visual vocabulary have? (5) How do the vari-
ants compare to current state-of-the-art methods? (6) What
localization accuracy can be achieved with different pose
estimation algorithms?

5. Experimental Evaluation of VPS
For all of the following experiments, we again use the

6-point DLT algorithm in combination with RANSAC for
pose estimation. Unless specified otherwise, we use a
generic set of 100k visual words obtained from an image
set not related to the used datasets. All visual words were
obtained with the approximate k-means method from [20].
In all our experiments we use a common quantized repre-
sentation for the SIFT descriptors, converting floating point
descriptor entries to integer values in the range [0, 255]. The
advantage of this representation is that it requires four times
less memory compared to a floating point representation.



all descriptors integer mean per vw
Nt # reg. linear search [s] RANSAC [s] total [s] # reg. linear search [s] RANSAC [s] total [s]

D
ub

ro
vn

ik

50 778.90± 1.52 0.04 0.05 0.23± 0.00 775.80± 1.48 0.03 0.05 0.21± 0.00
100 783.90± 1.60 0.10 0.08 0.31± 0.01 782.00± 0.82 0.08 0.08 0.28± 0.01
150 783.90± 1.10 0.16 0.08 0.36± 0.01 781.80± 1.40 0.12 0.08 0.32± 0.01
200 784.40± 1.26 0.20 0.08 0.40± 0.01 782.50± 1.35 0.15 0.08 0.35± 0.01
∞ 784.60± 1.17 0.47 0.08 0.68± 0.01 782.50± 1.08 0.34 0.08 0.54± 0.01

R
om

e

50 972.00± 1.41 0.06 0.02 0.18± 0.00 971.30± 1.25 0.05 0.02 0.16± 0.00
100 976.90± 1.29 0.15 0.05 0.29± 0.00 974.60± 1.65 0.11 0.05 0.25± 0.00
150 977.80± 1.32 0.23 0.06 0.39± 0.01 976.50± 1.51 0.17 0.06 0.33± 0.01
200 979.20± 1.75 0.30 0.07 0.46± 0.01 976.90± 1.52 0.22 0.07 0.38± 0.00
∞ 980.10± 0.88 0.81 0.07 0.98± 0.00 976.90± 1.20 0.57 0.07 0.74± 0.00

V
ie

nn
a

50 200.40± 1.26 0.02 0.13 0.28± 0.01 199.10± 1.20 0.02 0.10 0.26± 0.01
100 207.70± 1.06 0.06 0.30 0.50± 0.02 206.90± 0.88 0.05 0.28 0.46± 0.02
150 208.20± 0.92 0.09 0.30 0.52± 0.03 207.90± 0.74 0.07 0.29 0.50± 0.03
200 208.80± 1.23 0.11 0.29 0.54± 0.04 208.20± 1.14 0.08 0.30 0.52± 0.03
∞ 207.90± 1.29 0.24 0.27 0.65± 0.03 208.20± 0.42 0.17 0.28 0.59± 0.03

Table 3: Improving the registration times: Results obtained when stopping the search for correspondences when Nt cor-
respondences are found. The results show that a cutoff of Nt = 100 preserves the good registration performance while
significantly reducing the runtime for successfully registered images. For all experiments, a minimal inlier ratio of 20% for
RANSAC was assumed.

(1) 3D point representations. We evaluate different pos-
sible representations of 3D points through their correspond-
ing descriptors. The simplest representation is to use all de-
scriptors for each 3D point. In this case, we adopt the linear
search such that the two nearest neighbors found belong to
different 3D points. A much more compact representation
can be obtained by using the mean / medoid of the point
descriptors. The means / medoids are assigned to all visual
words activated by any of the points’ descriptors to reduce
the discretization artifacts introduced by quantizing the de-
scriptor space. The mean / medoid per vw representation
first assigns the descriptors of a point to visual words. If
more than one descriptor of the same 3D point is assigned
to one visual word, we represent this set of descriptors by its
mean / medoid. This representation finds a compromise be-
tween using all descriptors and a single descriptor per point.
Contrary to mean / medoid, it is able to adapt to the set of
visual words while saving memory by not using all descrip-
tors. A slight modification, integer mean, rounds the entries
of the means of descriptors to the nearest integer values.

Table 2 compares the different representations in the ex-
perimental setup of Sec. 3, with Nt =∞. As can be seen,
representations adapting to the subdivision induced by the
visual words clearly outperform those where the representa-
tive descriptor is selected independently of the quantization.
Medoid descriptors perform worse than means of descrip-
tors, while there is nearly no difference between mean and
integer mean, except faster correspondence search for the
latter since integer arithmetics can be used. The best rep-
resentation for the 3D points can thus be obtained by using
all descriptors or integer mean per vw.

(2) Prioritized search. The prioritized search proposed
in Sec. 4 first searches for correspondences in those parts
of descriptor space that contain fewer descriptors, which
are most likely regions with a sparser distribution. This

might bias the correspondence search towards false corre-
spondences since a sparser distribution makes it much more
likely that an unrelated feature and 3D point might pass the
ratio test. Table 3 details the effect of different choices for
Nt on both registration performance and registration times.
We do not report rejection times, as the number of corre-
spondences found for rejected images is usually so low that
the threshold Nt is rarely reached. Choosing Nt=100 pre-
serves the good registration performance, while resulting in
significantly faster search times. Note that the average time
spent on RANSAC-based pose estimation does not change
significantly for Nt≥100, indicating that the average inlier
ratio for registered images does not change too much be-
tween different values for Nt. We therefore conclude that
the threshold on the number of correspondences does not
bias the search towards false correspondences.

(3) Improving the rejection times. As shown in Table 2,
the average time needed to reject an image is very large,
especially for the Vienna dataset. This is due to the low
initial inlier ratio of 12/N when N correspondences are
found but no pose can be estimated. Since rejection time
is also critical for some applications, we set the initial in-
lier ratio for RANSAC to max(12/N,R), which limits the
maximal number of samples taken by RANSAC. The value
for R should be chosen such that it significantly reduces
the number of RANSAC iterations, while not rejecting too
many images that could otherwise be registered. Results
for Nt=∞ and different values for R are shown in Fig. 3,
based on which we select R = 0.2.

As all query images belonging to our evaluation datasets
can potentially be registered, we test the robustness of our
method against false positives by trying to register query
images from the other datasets. While none of those im-
ages could be registered, we notice that the rejection times
for images from other datasets are substantially lower than
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Figure 3: Improving the rejection times: The figure shows the relationship between RANSAC’s minimal inlier ratio parameter
and both the number of images that could not be registered and the average time needed to reject an image for (a) Dubrovnik,
(b) Rome, and (c) Vienna. The horizontal blue line denotes the number of images that P2F [16] cannot register; the red line
shows the average time P2F needs to reject an image. As can be seen, setting the minimal inlier ratio to 20% has almost no
effect on our approach’s registration performance, while significantly reducing its rejection times.

all descriptors, Nt = 100, R = 0.2 integer mean per vw, Nt = 100, R = 0.2
#reg. linear RAN- reg. rej. #reg. linear RAN- reg. rej. # desc.

Vocabulary images search [s] SAC [s] [s] [s] images search [s] SAC [s] [s] [s]
Dubrovnik (G) 783.90± 1.60 0.10 0.08 0.31± 0.01 2.22± 0.26 782.00± 0.82 0.08 0.08 0.28± 0.01 1.70± 0.18 6706575
Dubrovnik (S) 782.90± 1.29 0.08 0.05 0.25± 0.01 1.35± 0.30 781.50± 0.97 0.06 0.06 0.24± 0.01 0.93± 0.12 6414463

Rome (G) 976.90± 1.29 0.15 0.05 0.29± 0.00 1.90± 0.10 974.60± 1.65 0.11 0.05 0.25± 0.00 1.66± 0.10 14577088
Rome (S) 973.60± 1.26 0.11 0.05 0.25± 0.01 1.59± 0.14 970.80± 1.48 0.08 0.05 0.23± 0.00 1.42± 0.07 14205926

Vienna (G) 207.70± 1.06 0.06 0.30 0.50± 0.02 2.40± 0.06 206.90± 0.88 0.05 0.28 0.46± 0.02 2.43± 0.08 3420234
Vienna (S) 212.80± 1.40 0.05 0.28 0.46± 0.03 1.65± 0.09 210.60± 0.70 0.04 0.28 0.45± 0.01 1.60± 0.03 3191015

Table 4: Results of using a generic (G) visual vocabulary and a vocabulary specifically trained (S) for the dataset. Specific
vocabularies mainly improve registration and rejection times without significantly affecting the registration performance.

for images belonging to the same set. This is caused by a
smaller number of correspondences found for those images,
such that 12/N >R=0.2 holds, which in turn significantly
accelerates RANSAC.

(4) Influence of the vocabulary. So far, all tests were per-
formed with a generic set of 100k visual words trained on
an unrelated image set. In order to check how the choice of
visual vocabulary affects performance, we trained for every
dataset a specific set of 100k visual words from all descrip-
tors of all 3D points in the corresponding model. Fig. 4
compares the distribution of the number of descriptors per
visual word for the generic vocabulary (top row) with the
distribution for the specifically trained one (bottom row).
We observe that the specific vocabularies contain less empty
visual words, providing a better representation for the 3D
point descriptors. Table 4 shows the effect on registration
performance and runtimes. As can be seen, the specific vo-
cabularies result in an improved registration speed, visible
in both the linear search and in the RANSAC stage. How-
ever, they can only improve registration performance for Vi-
enna by 5 images and do not lead to increased registration
rates for the Dubrovnik and Rome datasets.

We also tested vocabularies with 10k and 1M visual
words and found that the quantization provided by 1M vi-
sual words was too fine, resulting in too few correspon-
dences per image. Using 10k had little positive impact on
the number of images that could be registered, while the
linear search became much more expensive.

(5) Comparison with state-of-the-art. Table 5 compares
our approach (choosing Nt = 100, R = 0.2, and the

generic set of visual words) to published results of cur-
rent state-of-the-art methods for localization. P2F (points-
to-features) denotes the prioritized feature matching pro-
posed by Li et al. [16]. P2F+F2P is an improvement also
proposed by Li et al., matching features from the images
against points in the database when P2F failed. Results
from the GPU-based image retrieval method by Irschara et
al. [13] are only available for the Vienna dataset. For the
other datasets, we report the vocabulary tree-based image
retrieval implementation from [16], using either all features
in the database images or only features belonging to 3D
points. Both implementations retrieve the 10 top ranked
images for each query image and then perform a pairwise
matching between the images followed by pose estimation.

Our experiments were performed on an Intel i7-920 pro-
cessor with 2.79GHz and the results from [16] were re-
ported for a 2.80GHz Xeon processor, both using a single
thread. The results from [13] were obtained on an Intel Pen-
tium D 3.2GHz with a GeForce GTX 280 graphics card.

As can be seen from this comparison, our approach
clearly outperforms all other published methods on the
Dubrovnik and Rome datasets, both in terms of the num-
ber of registered images and in the time needed to register /
reject an image. For the Vienna dataset, we reach compara-
ble performance to P2F, with faster registration and slightly
higher rejection times.

(6) Localization accuracy. The previous experiments have
shown that our approach can register considerably more im-
ages than P2F [16] based on the 12-inlier criterion. It could
be argued that those additional images may have a very
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Figure 4: Distribution of the number of descriptors per visual word for (a) Dubrovnik, (b) Rome and (c) Vienna. The top row
displays the results for a generic vocabulary, the bottom row for a vocabulary specifically trained for each reconstruction.

Method Dubrovnik Rome Vienna
# reg. registr. rejection # reg. registr. rejection # reg. registr. rejection

images time [s] time[s] images time [s] time [s] images time [s] time [s]
all descriptors 783.9± 1.60 0.31± 0.01 2.22± 0.26 976.9± 1.29 0.29± 0.00 1.90± 0.10 207.7± 1.06 0.50± 0.02 2.40± 0.06

integer mean per vw 782.0± 0.82 0.28± 0.01 1.70± 0.18 974.6± 1.65 0.25± 0.00 1.66± 0.10 206.9± 0.88 0.46± 0.02 2.43± 0.08
P2F [16] 753 0.73 2.70 921 0.91 2.93 204 0.55 1.96

P2F+F2P [16] 753 0.70 3.96 924 0.87 4.67 205 0.54 3.62
Voc. tree (all)[16] 668 1.4 4.0 828 1.2 4.0 - - -

Voc. tree (points)[16] 677 1.3 4.0 815 1.2 4.0 - - -
Voc. tree GPU [13] - - - - - - 165 ≤ 0.27

Table 5: Comparison of the methods proposed in this paper with other state-of-the-art localization approaches. As can be
seen, our approach achieves superior registration performance at faster registration times.

large localization error. In order to verify whether this is
the case, we evaluate our approach’s localization accuracy
using a metric model of the Dubrovnik dataset provided by
Li et al. [16]. Localization errors are computed by estimat-
ing the average camera position for each registered image
over 10 repetitions and measuring the distance in meters
between the average position and the ground truth position.

Besides the standard 6-point DLT algorithm for pose es-
timation (p6p), we also experiment with two other pose esti-
mation strategies: (1) When an image’s focal length is avail-
able from the EXIF tag, we use the 3-point-pose solver by
[7] to estimate the camera pose instead of the 6-point solver
(p3p/p6p). (2) We employ a 4-point-pose solver that ex-
plicitly estimates the focal length and radial distortion of
the camera [14] in order to refine the results obtained from
the DLT algorithm (p6p+p4pfr). For this experiment, we
use the MATLAB implementation provided by [14] which
needs around 60ms for a single pose estimate.

Table 6 shows the results of this experiment. For most
images, localization is far more accurate than for P2F (as
evidenced by the median and quartiles), with only very few
images having a large localization error. We manually in-
spected all those images that have a localization error above
400m. Similar to [16], we found that the large deviations
are due to errors in the focal length estimate of the cameras,
in most cases caused by 3D points on a plane parallel to the
image plane. Another source of error are badly localized
3D points that are kilometers away from the images used
to reconstruct them. In some query images, only those are
found as correspondences, again leading to a low localiza-
tion accuracy. The p4pfr solver [14] can be used to improve
the localization error in such cases, since it reduces the de-

grees of freedom in the estimate of the internal camera cal-
ibration. Using the p3p-based methods, we found that 5 of
the images with a localization error larger that 400m had a
focal length estimate in their EXIF tag. Comparing those
to the estimates from the ground-truth reconstruction, the
focal length estimates differed significantly for 4 of the im-
ages. Still, using the focal length estimates from the EXIF
tags of the images reduced the error for most images. Both
of those modifications, p3p and p4pfr, can therefore be rec-
ommended for practical applications.

6. Conclusion & Future Work
In this paper we have demonstrated that direct 2D-to-

3D descriptor matching yields registration results superior
to the previously developed indirect methods. We have
presented a modular framework for direct matching that
is easy to implement and to extend. By exploring the de-
sign space of our framework through extensive experiments,
we have shown how our approach can be adapted to of-
fer faster image-based localization than the current state-
of-the-art at significantly higher registration rates. In ad-
dition, our method yields localization results that are more
accurate for most images. The comparison with tree-based
descriptor search shows that there is still a considerable re-
maining potential for direct 2D-to-3D matching, waiting to
be unlocked in future work. Another interesting question is
the scalability of direct 2D-to-3D matching to even larger
datasets, especially if their descriptor spaces eventually be-
come too dense for the traditional SIFT ratio test. In this
case, it might be necessary to remove confusing descrip-
tors [15] or to initially allow ambiguous matches which are
resolved by RANSAC [12]. The memory needed to store
such large datasets is another important aspect. Here, re-



# reg. #images with error
Method images Mean [m] Median [m] 1st Quartile [m] 3rd Quartile [m] Max [m] < 18.3m > 400 m

P2F [16] (p6p) 753 18.3 9.3 7.5 13.4 ∼ 400 655 -
all descriptors (p6p) 783.9± 1.60 53.9 1.4 0.4 5.9 7934.3 685 16

integer mean per vw (p6p) 782.0± 0.82 47.0 1.3 0.5 5.1 7737.1 675 13
all descriptors (p6p+p4pfr) 783.9± 1.60 21.6 0.8 0.2 3.0 2336.1 705 10

integer mean per vw (p6p+p4pfr) 782.0± 0.82 17.2 0.8 0.2 3.6 875.6 700 9
all descriptors (p3p/p6p) 773.0± 2.98 15.6 1.5 0.5 5.7 799.3 696 8

integer mean per vw (p3p/p6p) 773.0± 1.41 17.7 1.5 0.5 5.6 1899.8 692 8
all descriptors (p3p/(p6p+p4pfr)) 773.0± 2.98 15.7 1.3 0.4 5.4 776.9 694 7

integer mean per vw (p3p/(p6p+p4pfr)) 773.0± 1.41 14.9 1.3 0.4 5.2 777.5 695 7

Table 6: Localization errors for Dubrovnik using Nt = 100, R = 0.2, and the generic vocabulary. As can be seen, our
approach achieves a higher localization accuracy than P2F [16] for most images. Although p6p pose estimation returns some
extreme outlier results, those can be corrected by an additional p4pfr estimation step on p6p’s inliers. p3p also improves both
localization accuracy and runtime and is recommended as a replacement for p6p whenever the focal length is available.

cently developed binarization methods such as [28] promise
to drastically decrease memory consumption, while also en-
abling faster descriptor comparisons.
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