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Abstract—We present a method for discovering the structure
of trees in 3D point clouds by linking wavelets with shape gram-
mars. Given a range scan of a tree we find a grammar that can
reproduce that tree, and others like it, with sub-voxel accuracy.
The grammar inferred is stochastic, allowing us to generate
many permutations of related trees. The method of multi-
resolution analysis, employed by the discrete wavelet transform,
gives great insight into tree structure. Trees are self-similar
and exhibit similar branching patterns at different resolutions.
The wavelets make these patterns explicit by decomposing
the tree into different levels of detail. The multi-resolution
structure of the wavelet transform also allows us to infer
an L-System grammar. The productions in the grammar are
derived from the progressive levels of refinement in the wavelet
transform. Each production maps a vector in the low resolution
image to a set of vectors in the higher resolution image. Our
method utilizes the Fast Wavelet Transform opening the door
to real-time inference of procedural models. The grammar
inferred is concise and generative, allowing for compression
and graphics applications of our algorithm. We demonstrate
novel applications of the grammar for shape completion, scan
enhancement and geometry propagation.

Keywords-inverse procedural modeling, tree modeling,
wavelets, l-systems

I. INTRODUCTION

Modern range sensors capture dense point clouds, contain-
ing millions of points from urban scenes. Points belonging
to trees are notoriously difficult to process. Trees are replete
with self-occlusions, making it nearly impossible to recover
the entire structure from a single vantage point. Structured
range scans organize points into a 2D connectivity grid
which can be useful for finding surface normals and neigh-
bors. However, in scans of trees this connectivity information
is riddled with discontinuities and gives little indication of
the actual tree structure.

Nonetheless, trees exhibit a salient and self-similar
branching structure. We propose an algorithm to discover
this self-similarity. A wavelet transform of the input model
gives a multi-resolution view of the tree. In this transfor-
mation space, it is possible to recognize correspondences
across various levels of detail, and thus elucidate the self-
similarity present in the tree. The correspondences across
different scales make up the rules of a shape grammar. The
grammar gives a high-level description for the branching
structure of the tree, but does not encode the foliage.

The inferred grammar can be used for compressing,
propagating, symmetrizing, or enhancing the input model.
The fast wavelet algorithm is extremely efficient. Grammars
can be inferred almost instantaneously. We imagine a host of
applications that exploit the high-level structural encoding
provided by the shape grammars we infer. For example,
natural-seeming virtual worlds of arbitrary size can be
automatically generated from a single scan. Low-resolution
scans can be enriched in real-time giving immersive and
compelling pictures.

II. RELATED WORK

Developing procedural models for vegetation has been
the subject of research for many years [1]. Lindenmeyer
systems, or L-systems, have tremendous expressive power
for concisely describing many plant forms that appear in
nature. L-Systems can be notoriously difficult to control.
To give the user more control over the procedural methods
the work of [2] uses the Metropolis algorithm to precisely
regulate grammars by sampling from the production space.
An interactive, tablet-based approach is presented in [3],
where users can sketch outlines and detailed trees are gen-
erated following the outline by simulating competition for
space and light amongst the branches. In [4] tree models are
derived from video sequences. In [5] a library of L-Systems
is combined with tree detection and classification techniques
to find and compress tree structures. Traditionally, deriving
an L-system for a given model requires both botanical and
grammatical expertise. In recent years, however, efforts have
been made to automatically infer a grammar from a given
model. For example, the work of [6] uses the concept of
docking sites and model symmetry to generate a context-
free grammar for 3D models. This approach requires precise
symmetry in the input. Using a 4D clustering of pair-
wise similarities, [7] automatically generate context-free L-
systems from 2D images.

For scans from a laser sensor, a number of tree extraction
methods have been presented in the literature. In the work
of [8] all points are projected to the ground plane. Detecting
trees is reduced to clustering in the ground plane. Trees
rise vertically from their roots and when the point cloud
is projected down to the ground plane the tree roots will be
the centers of each cluster in this plane. An online method
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Figure 1. A variety of tree forms analyzed using the algorithm presented in this paper. From left to right are Pine, Delonix, Laegerstroemia and Terminalia
tree species. See Section III-E for how we construct these trees from the input point clouds.

for classifying vegetation points using sequential algorithms
and a hidden Markov model formulation is presented in [9].

Much attention has been focussed on detecting symmetry
for reconstruction, registration, and compression applica-
tions. For example, in [10] clustering in a transformation
space constructed from local features like curvature, allows
the authors to discover both precise and partial symmetries.
Taking a graph-based approach, [11], make graphs from the
k-nearest neighbors of selected key points with low slippage
features, and then search for graph similarities to find sym-
metries. Extending upon the recognition of symmetry is the
search for self-similarity. Roughly speaking, self-similarity
is resemblance of a model with itself at different scales or
in different places [12]. Self-similarity is both more general
than symmetry, and more common in the natural world. A
recent paper by [13] used self-similarity features for 3D
correspondence and registration of dense point clouds.

Instead of the local features of [10] or the graph-similarity
employed by [11], in our approach, self-similarity is dis-
covered by using the wavelet transform [14]. A filter bank
system of high and low pass filters decomposes the input
into various levels of detail. For a general reference on
super resolution see [15]. The wavelet transform can be seen
as tiling the time-frequency plane. Because downsampling
is performed before each iteration of filtering the tiling
corresponds to repetitive division by two. Each tile stretches
from a power of two to a subsequent power of two. For this
reason, we refer to these tiles as dyads.

The main contributions of our paper with respect to
previous work include

(a) We infer both voxel and L-System productions by
connecting grammar rules and levels of detail in the
wavelet transform .
(b) The only input needed for our system is a single
range scan of a tree.
(c) The inferred high-level grammar is employed in
compression, transmission, enhancement, and sym-
metrization applications.
(d) All of the above is achieved without requiring user

interaction, expert guidance, or training data.

III. ALGORITHM

Given a point cloud of a tree extracted using the methods
presented in [8], [9], or manually, our algorithm begins by
quantizing the point cloud. The wavelet transform of the
voxel set is computed. Compression is achieved by remov-
ing small wavelet coefficients. The multi-scale structure of
wavelet transform decomposes the input into various levels
of detail. Mapping between different levels of detail in
the wavelet transform yields shape grammars. We derive a
simple shape grammar reminiscent of an octree, which we
are calling a voxel grammar. An L-system grammar is also
derived by running the minimum spanning tree algorithm
in each wavelet dyad. The inferred grammars are applied
for geometry propagation, enhancement and symmetrization.
The following sections explain the algorithm in detail and
Figure 2 depicts the pipeline graphically.

A. Quantization

To apply the wavelet transform we must quantize the point
cloud into discrete voxels. We could quantize the points
using the frame of reference of the scanner, essentially just
discretizing the x,y, and z coordinates as they were captured.
The problem with this approach is that the direction of the
x and y axes will be dependent on the relative placement of
the scanner and the tree being scanned. Because the scanner
returns only a partial view, the same tree could yield vastly
different quantizations when seen from different angles. So
instead of quantizing the raw input points, we first transform
them. The z-axis is the known vertical direction. The root
is determined to be the point with the lowest z value. We
then rotate the points, so that the y-axis is the projection
of the vector from the scanner to the root, on the plane
perpendicular to the z-axis passing through the root. Now
the x direction has meaning: it is the horizontal span of
the most complete view of the tree. Similarly, the y-axis is
now perpendicular to the vertical axis, and aligned with the
vector between the scanner and the tree root. Now different



Figure 2. The algorithm begins by taking the wavelet transform on the voxelized point cloud (left image is a 2D projection of the input point cloud)
yielding the middle image, shown in 2D here. Then, Prim’s minimum spanning tree algorithm is executed in each wavelet dyad. The vectors that make up
each tree are mapped to the subsequent dyads along the diagonal, thus automatically generating an L-System for the input tree.

y-coordinates represent different distances from the scanner.
This allows us to easily extract 2D projections which respect
the natural shape of the tree.

The size of the voxel grid must be selected with care.
Obviously, larger grid sizes lead to long computation times.
However, if the voxel grid is too small then artifacts of
the grid will be present in the trees. These artifacts will
manifest as 90 or 45 degree angles in the tree branches. An
example of a poorly quantized tree is shown if Figure 3. In
our experiments a grid of 643 was usually sufficient, but for
larger inputs we used a 1283 grid.

Figure 3. The quantization leads to right angle branching in the trees
grown in the wavelet dyads. See Section III-E for full explanation.

B. Wavelet Transform

We apply the wavelet transform on the input. We compute
the 3D transform on the whole voxel set. For visualization
purposes we also compute the 2D wavelet transform on the
projection to the plane perpendicular to the y-axis. 2D and
3D images can be transformed into standard or nonstandard
wavelet decompositions, see page 5 in [16]. The nonstandard
decomposition is quicker to compute, and in the standard
transform the dyads off the diagonal are distorted. We use
the standard transform in this paper.

C. Voxel Grammar
The wavelet transform decomposes the input into levels

of detail. When the input is a voxel grid, each voxel in one
level of detail corresponds to eight voxels in the subsequent
higher resolution level. The dyadic tessellation of the time-
frequency plane makes the relationships between different
levels of detail explicit. The organization is similar to an
oct-tree.

We construct a voxel grammar by mapping a voxel in
one dyad to the eight voxels in the subsequent dyad. We
iterate across each level of detail generating rules that map
voxels from coarse details to finer ones. Each rule is a
mapping from one voxel to eight voxels. See Figure 4 for a
graphical depiction of this process. If we have many rules
for a given voxel value we choose one of the applicable rules
stochastically. Applying the voxel grammar to the finest level
of detail gives a synthetic set of wavelets. These wavelets can
be used for a super-resolution reconstruction of the input.

Figure 4. Graphical explanation of how a voxel in one wavelet dyad is
mapped to 8 voxels in the subsequent wavelet dyad, forming a rule in the
voxel grammar.

D. Super-resolution Reconstruction
We derive a super-resolution version of the input by

augmenting the wavelet transform with synthetic wavelets



Figure 5. Grey points are the 2D wavelet transform of the input and
synthetic wavelets generated using the voxel grammar, presented in Section
III-C, are shown in maroon. For visualization purposes we are showing the
2D wavelet transform of the voxels.

derived by the voxel grammar. A wavelet transform of
t�ree along with the synthetic wavelets generated by the
voxel grammar is shown in Figure 5. The reverse wavelet
transform on the augmented set of wavelets yields an image
at twice the resolution of the original. Unlike a simple up-
sampling the super-resolution image is detailed and smooth.
Since trees are self-similar and the high-level details are
derived from low-level ones the super-resolution image gives
an accurate version of the real-world tree, quite plausibly it
is more accurate than the input. Artifacts from the scanner
like the grid pattern of laser samples only exist at one level of
detail and are mostly ignored by the voxel grammar. In this
way, the super-resolution image lessens these distractions
and leaves us with a richer, fuller picture, as shown in
Figures 6 and 7.

Figure 6. Synthetic wavelet super-resolution compared with a simple up-
sampling. For visualization purposes we are showing the 2D projection
perpendicular to the y-axis of the full 3D point clouds. The tree on the left
is shown at super-resolution, and on the right the same tree is shown after
up-sampling the voxels.

E. Minimum Spanning Tree in each Dyad

A voxel grammar is a useful abstraction, however, an
L-System is a more expressive procedural framework for
describing trees. L-Systems have been used to model many

Figure 7. Another example of synthetic wavelet super-resolution compared
with a simple up-sampling.

species of vegetation, as well as algae, and other organisms
[1]. Normally, L-systems are derived by experts familiar with
both botany and shape grammars. We provide a method to
automatically generate an L-System given only a 3D scan
of the tree to be described. The voxel grammar presented in
Section III-C mapped one voxel to eight voxels, but to derive
the L-System we will map a vector to a set of vectors. To
find these vectors we run Prim’s algorithm to compute the
minimum spanning tree (MST) in each dyad of the wavelet
transform computed in Section III-B. Before the MST can
be computed the wavelet space must be transformed into
a weighted graph. To accomplish this, every voxel in the
transform whose value is above some threshold, in our
experiments we use 0.3, becomes a node in the graph. The
weights are set to the Euclidean distances between the voxel
grid coordinates above the threshold. Each tree is rooted at
the lowest significant node in the dyad. The result of running
the MST algorithm on these weighted graphs can be seen
in Figure 8. We render these trees in 3D and set the cross-
sectional area of the branches according to Leonardo Da
Vinci’s famous observation that the thickness of a branch is
the sum of the thicknesses of the branching branches.

F. L-System Rules from Wavelet Progression

Armed with the spanning trees of each dyad it is now
feasible to derive a proper L-System grammar using methods
similar to those described in Section III-C. As before, each
spanning tree is mapped to the neighboring dyad along
the diagonal in the time frequency plane. Now, however,
instead of associating a single voxel with a set of voxels,
we associate a vector with a set of vectors. To map between
vectors in neighboring dyads we must find the corresponding
areas of each dyad. Figure 8 shows arrows between the
dyads indicating the mappings. Specifically, given a vector
from points α to β in the spanning tree of the jth dyad we
associate the vectors whose start or end points fall within
the rectangle bounded by points r1 and r2. Where



Figure 9. At left is the point cloud input to our algorithm, the hue is given by the height (z-value) of the points. The middle image shows the vectors of
Minimum Spanning Tree (MST) each with a random color. The image on the right shows the 3D mesh generated from the MST.

Figure 8. The results of running the minimum spanning tree algorithm in
each wavelet dyad. For visualization purposes we are showing the results
on the 2D projection of the point cloud, though the algorithm operates in
3D. The arrows show the mapping between vectors in subsequent wavelet
dyads. The rectangle form by r1 and r2 is the area in from which the right
hand side of the grammar production will be inferred. See section III-F for
details.

doffset = 2j+1 − 2j (1)
r1 = (min(αx, βx) + doffset,min(αy, βy) + doffset) (2)
r2 = (max(αx, βx) + doffset,max(αy, βy) + doffset) (3)

Two examples of rules obtained in this manner are shown
in Figure 10. Each rule maps a single predecessor vector to
one or more successor vectors.

Figure 10. Visual representation of 2 L-rules derived from mapping neigh-
boring trees in the wavelet dyads. The left columns show the predecessor
vector and the right column shows the successor vector(s). Below the visual
representations are the L-system productions. See Section III-F..

G. Rule Space

All the productions together with an axiom constitute the
grammar. For most applications a dyad from the input can be
chosen as an axiom. To have the most faithful productions
one should choose the largest dyad. When more compression
or variety is desired it makes sense to choose smaller dyad.
When the grammar will be applied for geometry propagation
then the dyad from the input should first be perturbed as
explained in Section IV-C. To apply the grammar one must
find a rule to match each vector in the axiom or the current
production. There is no guarantee that each vector in the
current production will match a predecessor vector in the
rule set perfectly. To get the next production we must first
search in the rule space for the most appropriate rule. The
four dimensions of the rule space are given by the heading
of the parent vector and its length. We use the standard
Euclidean distance in this 4D space to find the best fitting
rule from the inferred L-System. See Figure 10. The rule
is applied by filling a synthetic wavelet with the right hand
side vectors from the best fitting L-System production. We



Table I
COMPRESSION RESULTS ON DIFFERENT TREE SPECIES (WE USED INPUT

RANGE SCANS FROM [5]). THE LOSSLESS COMPRESSION RATIO IS
CALCULATED AS THE NUMBER WAVELET COEFFICIENTS EQUAL TO

ZERO OUT OF THE TOTAL NUMBER OF COEFFICIENTS. THE LOSSLESS
COMPRESSION RATE IS THE NUMBER OF WAVELET COEFFICIENTS

BELOW A THRESHOLD γ . IN OUR EXPERIMENTS WE SET γ = 0.2, AS WE
FOUND THIS THRESHOLD YIELDED SIGNIFICANT COMPRESSION

WITHOUT INTRODUCING MANY ARTIFACTS.

Species Lossless Lossy
Bischofia Polycarpa 64% 94%
Delonix 68% 96%
Ficus Virens 68% 92%
Lagerstroemia 69% 95%
Mahogany 73% 95%
Palm 80% 95%
Pine 81% 96%
Terminalia 75% 95%
Willow 69% 95%

then apply the inverse wavelet transform and run the MST
algorithm in the super resolution voxels. The process can
be iterated to enhance trees to arbitrary size as described in
Section IV-B.

IV. APPLICATIONS

A. Compression

Wavelets are well known for their ability to compress
images [17]. Both lossy and lossless compression were em-
ployed on our range images. When using lossy compression
the user may set a threshold, γ to determine the quality
or the amount of compression desired. We set γ = 0.2,
which yields significant compression, while not introducing
serious artifacts into the reconstruction. Lossless compres-
sion rates on the tree images ranged from 40% - 60% and
lossy compression rates ranges from 90% - 96%. All this
compression occurs before we further process the wavelet
transform to infer an L-System. The inferred L-System is
itself another layer of data compression. Unless the axiom
of the L-System is the entire input image, the L-System
will represent a lossy compression. But not just lossy. The
motivation of this paper was the fact that a grammar is
high-level representation of a structure. The grammar is
concise which gives us compression, but it is also generative.
This generative capacity of the L-System gives a number of
interesting applications in graphics. Figure 11 shows three
successive generations of the same tree.

B. Enhancement

L-System productions can be applied iteratively each
time yielding a more intricately detailed structure. In this
way even a low-resolution scan can yield an impressive
high-resolution image. This enhancement capability can be
useful for mobile or networked applications with limited
bandwidth. A server needs only to deliver the compressed
L-System rule set and its axiom, and the client can apply
the productions to give as many levels of detail as desired. It

Figure 11. Three successive generations of a tree. The middle tree is
created by applying the grammar to the rightmost tree, and the leftmost
tree is created by applying the grammar to the middle one.

must be noted, that after many iterations the structure will no
longer accurately reflect the real object. For example, while
the tiny branches of a tree often present similar patterns to
the larger branches, the plant cells that make up the branches
are structured according to a different pattern.

Figure 12. The rightmost tree is an enhanced version of the middle tree,
computed using the L-System described in Section III-F. The L-System
productions were derived by mapping between the leftmost tree and the
middle tree. The process can be iterated generating arbitrarily large trees
from relatively small input scans.

C. Propagation

Another advantage of the grammar representation is the
ability to achieve similar yet distinct models. Trees can
be tedious to construct by hand. Nonetheless, trees often
occur in forests, or lining streets where the same species is
repeated many times. Simply copying one tree model over
and over again gives an artificial appearance. By staying
in the abstract space of the shape grammar and varying the
productions or the way they are applied, many different trees
that all seem similar can be rendered with little effort. To
ensure variety random perturbations can be applied to the
starting axiom so that a different set of productions will be
chosen. Different trees generated using the same L-System
are shown in Figures 13 and 14.

D. Symmetrization

Each range scan presents only a single view of a tree.
The sampling of points is biased towards those facing the
scanner. Symmetrizing the tree, by reflecting about the plane
perpendicular to the scanner and centered at the tree root,



Figure 13. Three different trees generated using the same L-System.
Geometry can be propagated by applying the same L-System on slightly
altered versions of the axiom.

Figure 14. Another example of geometry propagation.

mitigates this bias. Specifically, if r is the root of the tree
and s is the scanner position, This symmetrization technique
gives a tree that appears full and complete. Unfortunately,
when viewed from the plane of reflection this approach gives
the rigid symmetry seen in the rightmost image of Figure
15 and 17. However, when symmetrization is performed as
a pre-processing step to our algorithm, the resulting trees
do not exhibit the oversampling bias in the direction of the
scanner or the rigid symmetry of the reflected point clouds.
For example see the three views of the tree in Figure 18.

E. Evaluation

The wavelet transform is efficient to compute, operating
in O(n) time. In our current implementation the most time-
consuming step is the generation of the minimum spanning
trees. Optimizing by integrating an approximate nearest
neighbors algorithm would ameliorate this bottleneck. As
it stands the algorithm runs in a few seconds on voxel grids
of size 643, and about 30 seconds on grids of size 1283.

The trees constructed by our algorithm are concise and
generative, while retaining the overall character of the trees
from which they were derived. For example, see Figure 19,
to see a tree generated by an inferred grammar next to the
tree from which the grammar was derived.

V. CONCLUSION AND FUTURE WORK

The method of multi resolution analysis presented here is
especially well-suited to point clouds of trees because their

Figure 15. A tree point cloud with sampling biased towards scanner, and
the symmetrized point clouds. When viewed from the plane of reflection
the artifice of this naı̈ve symmetrization technique is clear, as in the left
image.

Figure 16. Another example of the naı̈ve symmetrization technique.

hierarchical branching results in similar structures across
many scales of resolution. However, trees are not the only
such structures. Many terrains also exhibit self-similarity
across many scales of resolution. The algorithm given above
could be used to encode, enhance, compress or recreate point
clouds from terrains captured by an aerial survey.

To avoid the issues with quantization discussed in Section
III-A, the quantization step could be replaced with a sur-
face reconstruction on the input point clouds. The wavelet
transform could then be computed on the surface, rather
than the voxels, using the method presented in [18]. The
voxel grammar would become a vertex grammar, but the
L-System derivation and the algorithm applications could
remain practically unchanged.

ACKNOWLEDGEMENTS

We would like to thank Baoquan Chen and the Visual
Computing Research Center for supplying many of the tree
point clouds analyzed in this paper. This work has been
supported in part by the following NSF grants: IIS-0915971,
CCF-0916452 and MRI CNS-0821384.



Figure 17. Three views of a tree before symmetrization. Notice the
uneven distribution of branches when viewed from different angles. The
vectors shown here were obtained by running the Minimum Spanning Tree
algorithm as described in Section III-E.

Figure 18. Three different views of the same tree. There is no viewing
angle where the reflection will be apparent, because here the symmetrization
is performed as a pre-processing step. The resulting trees do not have the
rigid and unnatural look of the symmetrized point clouds shown in Figures
15 and 16
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