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CSCI 150 Spring 2025 TA’s questions

Tasmina, Vladislav, John,
Nicholas, Zach, Zhen Tao,
Nathaniel, Femi, Soren

with help and edits by Saad
Computer Science, Hunter College

Collection 1

Topics: The sum Tn = 1 + 2 + . . . + n = n(n + 1)/2 (triangular numbers),
planar graphs, Euler’s formula for planar graphs v − e+ f = 2, Tn−1 is the
number of pairs on n objects, generalization of sum to a + (a + s) + (a +
2s) + . . .+ b = a+b

2 ( b−a
s + 1), counting pairs, permutations and n!, sum and

product notations
∑

and
∏
, manipulation of sum and product notation,

splitting sums and nested sums (also seen as nested loops), the addition rule,
the product rule.

1. (Saad) Consider the following modified version of Tn:

T−
n = 1− 2 + 3− . . .+ (−1)n−1n

where the sign of successive terms alternates. Explore T−
n for several

values of n and conjecture what it’s equal to.

2. (Nathaniel) For what values of n is Tn = n! true? How can we be sure
there aren’t any others?

3. (Saad) Consider the sum Tn,m = n+ (n+ 1) + . . .+m, where m > n.
This is the sum of all integers between n and m inclusive, and it is
called a trapezoidal number.

• Can you imagine and explain why Tn,m is called as such?

• Find a formula for Tn,m is terms of n and m.

• Express Tn,m is terms of triangular numbers.
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4. (Vlad) Suppose you have an nxn chess board and you want to place a
king and another piece such that the king cannot immediately attack
the other piece. Use addition rule along with the following procedure
to find how many ways there are to accomplish this. We will first
choose a tile to place the king and then choose a 2nd tile out of the
remaining available tiles.

(a) Suppose we first choose a corner tile. How many ways are there
to choose a corner tile? Given that we have chosen a corner tile,
how many ways are there to choose a non adjacent tile? Use the
product rule to find the number of ways to choose 2 tiles if the
first chosen tile is a corner.

(b) Suppose instead that we choose an edge tile. How many ways are
there to choose an edge tile? Given that we have chosen an edge
tile, how many ways are there to choose a non adjacent tile? Use
the product rule to find the number of ways to choose 2 tiles if
the first chosen tile is an edge.

(c) Suppose we choose a tile that is not an edge or a corner. How
many ways are there to choose a such a tile? Given that we have
chosen a tile that is not an edge or a corner, how many ways are
there to choose a non adjacent tile? Use the product rule to find
the number of ways to choose 2 tiles if the first tile chosen is not
a corner or an edge.

(d) Now you can use the addition rule to find the total number of
ways to place a king and another chess piece on the board without
the king immediately being able to attack the other piece.

(e) EXTRA try this with another chess piece replacing the king.

5. (Saad) Come up with a graph with 6 vertices and 9 edges that is planar.
Show two ways of drawing it, one with crossings and one without.

6. (Zach) Hunter College is planning on seating people in the auditorium
for a performance by some of the students, and there is a group in
particular they are trying to seat together of 34 friends and family of
some of the performers. If there are 9 seats in the front row, and there
are 5 additional seats in each consecutive row heading to the back,
what is the row closest to the stage we can seat this group? Come up
with a formula (call it T (i)) that tells us how many seats are in each
row of the auditorium. Use this formula to calculate how many seats
are in the row closest to the stage that can accommodate the group.
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7. (Zhen) In a technical interview for your dream company Chanel.ai,
you are asked to code a function with the following description:

• the function takes an array, called nums, with size equal to n+1

• the array contains all integers from 1 to n once, but ONE integer
has a duplicate

• your task is to find that duplicate number and return it

Your solution must be O(1) space complexity (AKA no frequency map,
no additional vectors, no addition sets, etc), and O(n) runtime com-
plexity (AKA no nested for-loop). If you don’t know how to write
a function, perform the mathematical procedure that’ll get you the
answer.

def find_duplicate(nums : list) -> int:

(or)

int find_duplicate(int* arr, int size);

8. (John) Consider the following summation:

S(n) =

n∑
i=0

(i+ 1)(a+ ib)

Derive an expression for S(n) in terms of n, a, and b.

Hint:
∑n

i=0 i
2 = n(n+1)(2n+1)

6

9. (Nicholas) There are 5 books on a shelf: 2 computer science books, 2
math books, and 1 english book. How many ways are there to arrange
the 5 books if you want to keep the computer science books together
and the math books together?

10. (Tasmina) You are in a class of 15 cs students and 15 math students
(including yourself). The professor has announced that everyone must
pair up for the final project, but each team must consist of one cs
student and one math student. The professor claims that there are
15! ways of making this happen. Explain why. In particular, why is
it not 15!15!, which results from permuting each category of students
to make up the teams?
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11. (Soren)

(a) How many elements are in the following sequence?

9, 16, 23, . . . , 100

(b) Using the information obtained in part (a), write this sequence
in summation notation. Evaluate its sum.

(c) Now that we’ve practiced the fundamentals, we’re going to add
a twist to this sequence:

2, 7, 9, 14, 16, 21, 23, . . . , 100

Oh no, they’re not uniform intervals! And yet, we can still work
with this! How can we express this sequence in terms of summa-
tion notation and solve for it?

(Hints are provided in light-colored text; highlight and zoom in
to read)

Hint: The sequence seems consistent when reading either set of
alternating numbers, a property of summations will be useful
here.

(d) (Optional challenge): Can you express this sequence using only
one summation?

(This one is harder than I expected, yet still has a consistent
solution. I’ve provided hints for the method I used to solve, others
surely exist)

Hint 1: We will need three terms with three coefficients: a con-
stant term, a term multiplying i, and a term with an alternating
sign. The idea behind this third term is that it alternates between
adding to and subtracting from the term; do you know how to do
this?

Hint 2: The alternating sign is done by multiplying the third
coefficient by (−1)i+1, or some other term involving i

Hint 3: Solve for the three coefficients using a system of equations
for the first three numbers of the sequence.
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Solutions

1.
T−
1 = 1

T−
2 = 1− 2 = −1

T−
3 = 1− 2 + 3 = 2

T−
4 = 1− 2 + 3− 4 = −2

T−
5 = 1− 2 + 3− 4 + 5 = 3

T−
6 = 1− 2 + 3− 4 + 5− 6 = −3

It looks like T−
n = (−1)n−1⌈n/2⌉.

2.
T1 = 1 = 1!

T3 = 3 + 2 + 1 = 6 = 3! = 3 ∗ 2

We can be confident that there are no other values where this is true
because n! grows far faster than Tn; so Tn will never ”catch up”. Later
we will learn to formally prove statements like this.

3. Start with n dots on the first row, followed by n+1 dots on the second,
and so on until m dots. This creates a trapezoidal shape. As we have
seen in class, Tn,m = n+m

2 (m − n + 1). We can also express it as the
difference of two triangular numbers: Tn,m = Tm − Tn−1, since

Tn,m = n+(n+1)+. . .+m = (1+2+. . .+m)−[1+2+. . .+(n−1)] = Tm−Tn−1

4. (a) There are 4 corners so 4 ways to choose a corner tile. If a king is
placed in a corner he can attack 3 other tiles you also can’t place
the other piece where the king is placed, so that leaves n2 − 4
tiles. By product rule there are 4(n2−4) ways to place the pieces
if the king was placed in a corner.

(b) There are 4(n − 2) so 4(n − 2) ways to choose an edge tile. If
a king is placed in an edge tile he can attack 5 other tiles you
also can’t place the other piece where the king is placed, so that
leaves n2 − 6 tiles. By product rule there are 4(n − 2)(n2 − 6)
ways to place the pieces if the king was placed in an edge tile.
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(c) There are (n−2)2 tiles left you can find that either by inspection
or by subtracting results from the previous two parts from n2.
In this situation a king can attack 8 tiles and you can’t place
another piece on the tile that the king is at leaving n2 − 9 tiles
available. By product rule there are (n− 2)2(n2− 9) ways in this
case.

(d) By addition rule, since the cases we computed in the previous
parts are distinct, adding up the answers from the previous parts
gives us the final answer.

5. Here’s a graph with 6 vertices and 9 edges that is planar. Move the
red edge from the ”inside” to the ”outside” to eliminate crossings.

6. A formula for the number of seats in each row of the auditorium is
T (i) = 9 + 5(i − 1), where 5 is the number of steps and i is the row
number. According to this forumla, i = 6 is the row closest to the
stage that can accommodate our group, because T (6) = 9 + 5(5) =
25 + 9 = 34. So, there are 34 seats in the row.

7. We know the sum of numbers from 1 to n is given by n(n+1)/2. In the
array, there’s one duplicate, let’s call it x. The sum of all the integers
in that array will then be n(n+1)/2+x. We will subtract n(n+1)/2
from the sum of the array, and we’ll get the solution. The first is a
python solution, and the 2nd is C++.

6
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def find_duplicate(nums : list) -> int:

sum_of_array = 0

n = len(nums)-1 # number of unique integers

for num in nums:

sum_of_array += num

return sum_of_array - (n*(n+1)/2)

int find_duplicate(int* arr, int size) {

int sum_of_array = 0;

n = size - 1 // number of unique integers

for (int i = 0; i < size; i++) {

sum_of_array += arr[i];

}

return sum_of_array - (n*(n+1)/2);

}

8. The first step in deriving an expression for S(n) =
∑n

i=0(i+1)(a+ib) is
to split the sums. You can either expand the terms and then combine
the separate sums, or you can realize that S(n) =

∑n
i=0(i + 1) is

already in an ideal form for splitting sums, and simply distribute the
second factor to get

S(n) =
n∑

i=0

a(i+ 1) +
n∑

i=0

(ib)(i+ 1) = a
n∑

i=0

(i+ 1) + b
n∑

i=0

(i2 + i)

We then know that

a
n∑

i=0

(i+ 1) = a
(n+ 1)(n+ 2)

2

and

b

n∑
i=0

(i2 + i) = b
[n(n+ 1)(2n+ 1)

6
+

n(n+ 1)

2

]
= b

2n(n+ 1)(n+ 2)

6

Adding the two expressions will give us

S(n) = a
(n+ 1)(n+ 2)

2
+ b

n(n+ 1)(n+ 2)

3
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9. Pretend that we didn’t care about keeping the genres of the books
together. Then, the answer would be 5!. Where did the 5 come from?
It’s from the number of objects that we have to permute. In this
harder version of this question, since we want to keep the genres of
the books together, instead of permuting on the number books, we will
permute on the number of genres. This way we guarantee that books
of the same genre will stay together. The number of permutations of
the genres is 3!. Then, within the genres themselves, there are ways
that we can permute the books. There are 2! ways to permute the 2
computer science books, 2! ways to permute the 2 math books, and
1! way to permute the english book. Therefore, our final result is 3! *
2! * 2! * 1! = 6 * 2 * 2 * 1 = 24.

10. Place all cs students in some order. Now permute all the math students
in 15! ways, and assign the ith cs student to the ith math student.
This will produce all possible ways of teaming up. If instead we per-
mute all cs students, and permute all math students, then assign them
accordingly, we overcount. For example, let’s consider a smaller in-
stance of the problem where we have three cs students (1, 2, 3) and
three math students (a, b, c). Observe that multiple permutations of
both can lead to the same teams:

(1, 2, 3), (a, b, c)

(1, 3, 2), (a, c, b)

(2, 1, 3), (b, a, c)

(2, 3, 1), (b, c, a)

(3, 1, 2), (c, a, b)

(3, 2, 1), (c, b, a)

So we overcount here by 3!.

11. (a) Observing this is a linear sequence, we can count the terms by
adjusting the sequence such that each term is a multiple of the
step value:

1s, 2s, 3s, 4s, . . . ,ns

Noticing the step value of our sequence is 7, we can subtract each
term by 2 to obtain the following (note the number of elements
did not change):

7, 14, 21, . . . , 98

8
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98/7 = 14, and we have our answer. n = 14

(b) Contrary to what the phrasing of the question implies, we do not
need summation notation to solve for the sum of this sequence
(Chapter 0 Section 3 has an explanation). We will continue with
finding summation notation and then solve for the sum using
that.

Now knowing the length of our sequence, we need to find the
summand (right side of the summation notation) and properly
index it.

We see that the intervals are by 7, so this must be the coefficient
of the index variable. (i.e. 7i+ . . . )

We can also see the the entire sequence is offset by 2, so this must
be our constant.

Thus, we have our summation (alternatives are also listed):

14∑
i=1

(
7i+ 2

)
(1a)

13∑
i=0

(
7(i+ 1) + 2

)
(1b)

13∑
i=0

(
7i+ 9

)
(1c)

We will work with expression 1a.

Using properties of summations: we can separate the summation
of a sum to be the sum of the summations, and factor out the
coefficient:

7

14∑
i=1

i +

14∑
i=1

2

We can solve this knowing how to solve for the sum of the se-
quence of the first n natural numbers.

9
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735 + 28

763

(c) The trick here is to separate this sequence into two sequences,
which are uniform. This will utilize what we’ve practiced in parts
a and b.

14∑
i=0

(7i+ 2) +

14∑
i=1

7i

14∑
i=0

7i +
14∑
i=0

2 +
14∑
i=1

7i

735 + 30 + 735

1500

(d) We are looking for a summation of the form:

28∑
i=0

(
x+ yi+ z(−1)i+1

)
We can solve this using a system of equations, modelled after the
first three terms of the sequence:

x − z = 2

x+ y + z = 7

x+ 2y − z = 9

Solving for the three variables, we get:

x =
11

4
y =

14

4
z =

3

4

Subbing these into the summation, we get our final answer:

28∑
i=0

(11
4

+
14

4
i+

3

4
(−1)i+1

)
10
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We can verify this creates the desired sequence through substitu-
tion.

There is also a trigonometric solution to this, found by Zhen Tao:

29∑
i=1

(7
2
i− 3

2

∣∣∣ sin πi

2

∣∣∣ )
The trigonometric function, combined with the absolute value
function, serves to create a factor alternating between 0 and 1.

11



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Collection 2

Topics: Addition rule, multiplication rule, 4 kinds of selection: unordered
without repetition, ordered without repetition, unordered with repetition,
ordered with repetition, k-permutations, k-combinations, problems with bi-
nary strings, problems with words, handshake lemma, counting in general...

1. (Soren) We can look to Figure 1 for this problem.

Figure 1: A dwarf that needs to find his way out

(a) A dwarf named Urist was enjoying his afternoon drink in the
tavern when, all of a sudden, he was struck by a fey mood and
needs to find his way outside the fortress for materials.

Assuming Urist cannot pass through any passage or door more
than once, nor can he pass through two passages or two doors,
how many paths can Urist take to exit the fortress?

(b) (Optional challenge) We shall remove a restriction: Urist can use
as many doors as he likes, but cannot enter the same room twice
(including the central room, which he started having entered).
Succinctly rephrased: “How many different paths can Urist take
to leave the fortress if he cannot enter any room more than once
and cannot re-enter the center room?”

12
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2. (Nathaniel) The five great names of Pharaoh:

A new pharaoh has risen over the Kingdom of Upper and Lower Egypt
and must choose a multi-part regnal name. In addition to the personal
name he already has, he must choose four new names:

A Horus Name, A Nebty Name, A Throne Name, And a Golden Horus
Name.

Each name must be 3 hieroglyphs long. There are 763 hiero-
glyphs for Pharaoh to choose from, but he must abide by the following
restrictions:

(a) The Horus Name can be any combination of 3 hieroglyphs;

(b) The Nebty Name must contain only hieroglyphs not used in the
Horus Name and cannot repeat them;

(c) The Throne Name must rhyme with his personal name (i.e. end
with the same hieroglyph);

(d) The Golden Horus Name must contain only the same hieroglyphs
as the Horus Name, in any order.

How many ways can Pharaoh choose his name?

3. Given a full shuffled deck of cards(4 suits, 13 cards of each suit) what
is the probability of:

(a) Drawing 5 cards from the deck and getting a royal flush of hearts(A,
K, Q, J, 10 of hearts in any order).

(b) Drawing 5 cards and getting any royal flush(A, K, Q, J, 10 of the
same suit in any order)

(c) Drawing 5 cards and getting a royal flush then drawing 5 more
cards and drawing another royal flush.

(d) Drawing 10 cards and getting 2 royal flushes(The answer should
be different from the previous part)

(e) Discarding the top 3 cards of the deck, then drawing 2 cards,
then discarding 8 cards, then drawing 3 cards and have the cards
that were drawn make up a royal flush?

(f) Would the answer to any of the previous change if instead of
drawing cards from the top of the deck you alternated drawing
from the top and the bottom of the deck.

13



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

For each part of this question, assume that the cards drawn from the
previous part are reshuffled into the deck.
Hint: To find the probability, find how many ways there are to shuffle
the deck given that the top cards in the deck would satisfy the condi-
tion outlined in the part. Then divide that number of ways over the
total number of ways to shuffle a deck.

4. (Tasmina) You have been transported to a fantasy world where you
are tasked with creating a city. This city contains land masses and
bridges that connect two land masses to another. You would like to
design this city such that there is an odd number of land masses, with
an odd number of bridges attached to each of them. Explain if this is
possible and identify what principle you used.

5. (Zach)

You are tasked with counting how many paths there are starting from
the left side of this diagram to the right side by starting at either A or
B and then traveling through C, D, or E, and then F, or G, and then
H, I, J, or K. The only other rules are that if you’re coming from A,
you can only travel to C or D; if you’re coming from B, you can only

14
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travel to E; if you’re coming from F, you can only travel to H or I; if
you’re coming from G, you can only travel to J or K.

Following these rules, count how many paths there are using the ad-
dition and multiplication rules.

6. (Nicholas) You are located on the bottom left corner of an 8 x 8 grid.
The end destination is the top right corner of the same grid. Given
that you can only move left or up:

(a) Count the number of paths that you can take to get to the end
destination.

(b) Count the number of paths that you can take to get to the end
destination such that you change directions an odd number of
times.

Bonus: Is it more likely to get to the end destination with an
odd number of direction changes or an even number of direction
changes?

7. (Femi) Given there is a group of 365 people, each born on a different
day of the year 2003:

(a) What is the likelihood that 2 randomly selected people were born
within a day of each other?

(b) How about the likelihood that they were born within a week of
each other?

15
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Solutions

1. (a) We can observe that there are two ways to leave the fortress, via
exits in:

A yellow room (passage → exit) These are simply countable:
there are only 4 ways to exit using this method

A blue room (passage → door → exit) These could be cou-
nted manually, but this would be tedious. Noticing the uni-
formity of the fortress, we can apply the multiplication rule
to find the number of paths. For every path there are three
decisions:

i. Choose a passage (there are 4 possible choices)

ii. Choose a door (there are 2 possible choices)

iii. Choose an exit (there are 3 possible choices)

More specifically defining the application of the multiplica-
tion rule earlier: seeing as these choices are independent of
each other (what Urist chooses in (i) does not affect the num-
ber of possible choices for (ii) or (iii); and vice versa), we can
multiply 4 · 2 · 3 to obtain 24 possible paths.

Now the important question for every usage of the multipli-
cation rule: did we overcount? We are not able to permute
our choices because the choices involve choosing distinct ob-
jects; therefore, it is impossible for us to reach the same path
by more than one decision tree. We did not overcount. We
do not need to divide 24 by anything, since every path is
unique.

Seeing as the two categories above are mutually exclusive (Urist
can only exit in a yellow room or a blue room; not both), we can
apply the addition rule to add the possible paths. 24 + 4 = 28.
We have our answer: Urist can exit the fortress via 28 different
paths.

(b) (Optional challenge) When we want to apply the multiplication
rule to find a countable quantity, one method is to look for pat-
terns that repeat. We do this by recognizing a smaller countable
quantity, then multiplying that quantity by the factor of repe-
titions (ensuring that they are in fact exact duplicates). This
solution uses this method.

Observe that, after choosing a passage and an initial door (each

16
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combined choice of which is mutually exclusive from any other
choice of passage and initial door), there are is a finite chain of
seven possible rooms to exit out of. For the sake of example, let’s
choose a passage+door choice of UL (up, then left). Therefore,
one can draw a path through the seven rooms and simply count
every possible exit that can result from the initial choice of UL:

3 + 1 + 3 + 1 + 3 + 1 + 3

15

There are 15 possible exits resulting from UL. Observing that
there are 8 possible choices of passage+door (4 · 2; UL, UR, RU,
RD, DL, DR, LU, LD), we multiply 15 · 8 to get 120 possible
exits. Add the 4 exits that can be taken without passing through
a door, and we get our total of 124 possible exit paths.

Another method is looking backwards by asking the two ques-
tions:

• How many paths exist for any blue-room exit to the center?

– For any blue-room exit, observe that there is exactly one
path for every passage+door choice above. This yields 8
paths for every blue-room exit.

• How many paths exist for any yellow-room exit to the center?

– For any yellow-room exit, observe that there is only 1
path for that side’s passage choice (which would be ex-
iting before choosing a door) and 6 paths for the other
choices of passage. This yields 7 paths for every yellow-
room exit.

Having obtained the answers to these questions, we can arrive
at the solution by multiplying the possible paths for every exit
by the number of its color-corresponding exits, then adding the
paths for both yellow and blue. Counting 4 yellow exits and 12
blue exits:

4 · 7 + 12 · 8
124

We have found our same solution of 124 possible exit paths. Find-
ing the same quantity through two distinct methods is referred

17
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to as a combinatorial proof by double counting, and it strength-
ens our conviction our solution is indeed correct. An excellent
technique for verifying our solutions on exams!

2. (a) Each hieroglyph in the Horus Name can be chosen 763 ways.
Apply the product rule and we have 7633 ways to choose the
name.

We must now break the set of possible names down into three
disjoint sets: the sets of names where the Horus Name has one
unique hieroglyph, two unique hieroglyphs, and three unique hi-
eroglyphs. For brevity, we will denote these cases as H = 1,
H = 2, and H = 3.

If H = 1, there are 763 ways to make the Horus Name.

If H = 2, there are
(
763
2

)
· 6 ways to make the Horus Name: using

the product rule, we multiply the number of ways to choose the
two hieroglyphs by the number of ways to arrange the ones we’ve
chosen (for example baa, aba, aab, abb, bab, and bba).

If H = 3, there are 763!
(763−3)! ways to make the Horus Name. This

is the same as choosing the name without repeating hieroglyphs.

You can verify that this covers the set of all possible Horus Names
by observing that

763 +

(
763

2

)
· 6 + 763!

(763− 3)!
= 7633

(b) If H = 1, we can form 762!
(762−3)! Nebty Names. If H = 2, this drops

to 761!
(761−3)! . If H = 3, it drops to 760!

(760−3)! .

(c) Since the personal name was already chosen when Pharaoh was
born, we only need to choose two hieroglyphs for 7632 combina-
tions.

(d) If H = 1, we can only form 1 Golden Horus Name. If H = 2, we
can form 3 Golden Horus Names (for example abb, bab, and bba
once the letters are known). If H = 3 we can form 3! = 6 Golden
Horus Names.

Now we must apply the product rule to get the total size of each set.

The size of the set of possible names whereH = 1 is 763· 762!
(762−3)! ·763

2·1

The size of the set of possible names where H = 2 is
(
763
2

)
· 6 · 761!

(761−3)! ·
7632 · 3
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The size of the set of possible names where H = 3 is 763!
(763−3)! ·

760!
(760−3)! ·

7632 · 6
Now we use the addition rule to add up the disjoint set. So there are

762!

(762− 3)!
· 7633 +

(
763

2

)
· 18 · 761!

(761− 3)!
· 7632 + 763!

(763− 6)!
· 7632 · 6

ways for Pharaoh to choose a name.

3. In order to get probability for any of the subquestions we should first
calculate the number of ways to shuffle a deck. There is 52 distinct
cards in a card deck so there is 52! ways to shuffle it.
Here is a way to represent a deck: [K♣, 9♡, 10♢...] in this represen-
tation cards to the left of the list are closer to the top of the deck, so
drawing from the deck represented by this list you would first draw a
King of clubs, then a 9 of hearts, then a 10 of diamonds etc...

(a) Our deck needs to be of the form: [R♡, R♡, R♡, R♡, R♡, X,X, ...X,X]
where R represents one of the ranks needed for a royal flush(10,
J, Q, K, A) and X represents any other card. We can find the
number of ways using the following procedure:

i. Order the 5 Cards that make up the royal flush of hearts: 5!

ii. Order the remaining 47 cards: 47!

This results in 5! · 47! ways, so the probability of this happening
is 5!47!

52!

(b) We follow a similar procedure to the previous part but with one
extra step:

i. Pick a suit:
(
4
1

)
= 4

ii. Order the 5 Cards that make up the royal flush of the chosen
suit: 5!

iii. Order the remaining 47 cards: 47!

This results in 4 ·5! ·47! ways, so the probability of this happening
is 4·5!47!

52!

(c) Now we also need to account for picking two suits and ordering
them. Due to the way the question is phrased the first 5 cards
must be of the same suit, followed by 5 more cards of a different
suit:

i. Pick two suits:
(
4
2

)
= 6

19



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

ii. Order the two chosen suits: 2! = 2

iii. Order the 5 Cards that make up the first royal flush : 5!

iv. Order the 5 Cards that make up the second royal flush : 5!

v. Order the remaining 42 cards: 42!

This results in 12 · 5!5!42! ways, so the probability of this hap-
pening is 12·5!5!42!

52!

(d) Unlike part c we are now allowed to draw the 10 necessary cards
in any order. For example you can have a deck like
[K♡, A♡, 10♣, A♣, Q♡, 10♡, J♡,K♣, Q♣, J♣, ...] and it would
be a valid shuffle even though you don’t draw a royal flush every
5 cards:

i. Pick two suits:
(
4
2

)
= 6

ii. Order the 10 cards that make up the royal flushes: 10!

iii. Order the remaining 42 cards: 42!

This results in 6 ·10!42! ways, so the probability of this happening
is 6·10!42!

52!

(e) This part asks us for all possible deck shuffles where the 4th, 5th,
14th, 15th and 16th cards make up a royal flush. since we can
still rearrange the 5 cards among themselves and the rest of the
cards can be arranged in any way the answer should be the same
as part b.

(f) Similarly to part e it doesn’t matter what way we draw the
cards the procedure for constructing valid shuffles will remain
the same. Thereofore none of the answers to the previous parts
would change.

4. It is not possible to have an odd number of land masses with an odd
number of bridges to them. Think about the handshake lemma. When
there is an odd number of land masses with an odd number of bridges,
you will be adding an odd number of degrees an odd number of times.
Odd x Odd = Odd. This means that you will end up with an odd total
of degrees, which violates the handshake lemma, which states that it
must be even (to be twice the number of edges).

5. To count all the possible paths, we first notice that the set of paths
starting at A and the set of paths starting at B are disjoint (because
no two paths are exactly the same when the first node is different), so
we will use the addition rule to add these two sets at the end. Fur-
ther, notice that the set of paths starting at C and the set of paths
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starting at D are disjoint for the same reason. So we use the addition
rule for those as well. Next, to count the paths from F to either H or
I we multiply 1 · 2 - we start with one choice (F) and then have two
choices (H or I). The same works when we’re traveling from G to J or
K. So, putting it all together, for A we have: For paths starting at C:
2 · 1+ 2 · 1 (because C can go to either F or G), and for paths starting
at D (coming from A) we have: 2 · 1 + 2 · 1 (using the same logic as
before). Because the paths starting at C and D are disjoint, we add
them getting: (2 ·1+2 ·1)+(2 ·1+2 ·1), yielding the number of paths
starting at A. Now, for B, it is much simpler since instead of C and D
we just have E. So, we add the number of paths starting at F and G to
get the number of paths starting at B: 2 · 1+ 2 · 1. Finally we add the
disjoint sets of paths starting at A and paths starting at B using the
addition rule to end up with: [(2·1+2·1)+(2·1+2·1)]+(2·1+2·1) = 12
total paths. 12 paths is the answer.

Another way is this: If we start at A, we can imagine making a path in
3 phases, where each phase can be done in 2 ways: In phase 1, we can
go to C/D, so that’s 2 ways. In phase 2, we can go to F/G, so that’s 2
ways. In phase 3, and regardless where we landed in phase 2, we can
also go to H/I or J/K, and that’s 2 ways as well. Using the product
rule, we have 2 · 2 · 2 = 8 ways starting at A. The same principle of
the product rule can be used to figure out that we have 1 · 2 · 2 ways
starting at B. By the addition rule, we have 8+4=12 ways in total.

6. (a) Treat your starting location as (0,0) and the end destination as
(8,8). Since we can only move left and up, to get from (0,0) to
(8,8), we will need to perform some combination of 8 Ups and 8
Lefts. The total number of combinations is equal to 16!/(8! · 8!).

(b) Observe that if you decide to make Left your first move, then
after the first direction change, you will be going up. After a
second, you will be going left, and after a third, you will be going
up again. An odd number of direction changes results in you
going up, requiring that your final move is one that makes you
go up. Through the same observation, if you make Up your first
move, an odd number of direction changes results in you going
left, requiring that your final move is one that makes you go left.

Using this information, the number of ways to get to end desti-
nation using an odd number of direction changes is the same as
the number of paths from s1 to f1 and s2 to f2.
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To get from s1 to f1, we will need to perform some combination of
7 Lefts and 7 Ups. Likewise, To get from s2 to f2, we will also need
to perform some combination of 7 Lefts and 7 Ups. Therefore,
the total number of ways to get to the end destination using an
odd number of direction changes is 14!/(7! · 7!) + 14!/(7! · 7!).
Bonus: The probability of getting to the destination using an odd
number of direction changes is number of paths with odd number of direction changes

total number of paths .
This is the result from part b divided by the result from part
a. This turns out to be 8

15 . Since there can only be either an
odd number of direction changes or an even number of direction
changes, this means that the probability of getting to the end
with an even number of direction changes is 1 − 8

15 or 7
15 . Al-

ternatively, you can find this probability by finding the number
of even direction changes using the same ideas. Therefore, it’s
actually more likely to use an odd number of direction changes.

7. (a) There are a total of
(
365
2

)
possible pairs of people that can be

selected. Of these, 364 are of two people born within a day of
each other. Thus, there is a 364/364/

(
365
2

)
= 364/ 365!

363!2! = 2
365

chance.

(b) There is the same total amount of possible pairs:
(
365
2

)
. The

amount of pairs born within a week of each other can be counted
in many ways. There are 6 possible pairs involving January 1
that are within a week of it: January 2-7. If you only count the
days after the date being checked to avoid repeating pairs, the
same can be assumed for every day up to and including December
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25. December 26, however, has 5 pairs because December 31 is
the last day of the year. December 27 has 4, 28 has 3, 29 has 2,
and 30 has 1. This makes the total amount of pairs: 2169. So,
the answer would be 2169/

(
365
2

)
.

23



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Collection 3

Sets, subsets, power set, sum of binomial coefficients, functions, onto, one to
one, bijection. More counting examples, counting using bijections, counting
multisets (unordered selection with repetition), integer solutions.

1. (John) In order to prepare for a movie screening, Oswald the Octopus
wants to clean his tentacles (8 of them) to present himself profession-
ally. Tentacle i has i suction cups and cleaning each suction cup takes
1 minute. Every time he jumps from a tentacle with a lower number of
suction cups to a tentacle with a higher amount he takes an extra 10
minutes to adjust the cleaning device. Oswald wants to finish cleaning
within an hour in order to attend the screening on time. Say that the
cleaning device is initially configured to clean a tentacle with 0 suction
cups, then in how many ways can Oswald choose to clean his tentacles
and still make it in time for his appointment?
Hint : There is an initial 10 min adjustment, and at least 1+2+. . .+8 =
36 min of cleaning, for a total of 46. Oswald can afford just one extra
adjustment time of 10 min. This means that the order by which he
will clean the tentacles must contain no more than one jump from a
lower number to a higher number of suction cups.

2. (Nicholas) How many subsets of the set {1, 2, ..., 25} have the property
that the sum of its elements will be greater than 162?

Hint : Find a bijection between all such subsets and their complements.

3. (Vlad) Let f(x) be a map (a map is like a function but one input is
allowed to have several outputs) that maps the set of real numbers to
some subset of the real numbers. Assume that you only have access
to a graph of f on a coordinate plane (with inputs x denoted on the
horizontal axis and the outputs y denoted on the vertical axis). By
only looking at the graph of f how can you prove if the following
statements are true?

(a) f is not a function.

(b) f is not one-to-one.

(c) f is not a onto.

(d) f is not a bijection.

Hint : To solve part a you could look at ”vertical line test” from your
other math classes and think about why it works.
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4. (Tasmina) Mathematicians have recently discovered a new type of set
that can either include an element, hide an element, or exclude an
element. A hidden element is denoted by a subscript of H. Given this
new type of set, what is the new formula for the power set of any such
set with n elements? Hint : Start with the set [1, 2, 3] and write all
possibilities. Do you see a pattern?

5. (Zach) Say that the Dolciani Math Learning Center at Hunter College
has 20 tutors and 15 students, thus having a 3:4 student-to-teacher
ratio. If we create a function that assigns tutors to the 15 students,
what can we say about the function in the following situations?

(a) Only 5 tutors are working today. So, 3 students are working with
each tutor.

(b) Every tutor is working today, and each is assigned to a student.

(c) Today, only 15 tutors are working and each is assigned to a stu-
dent.

(d) If we can create a bijection from the set of 15 students to the set
of 20 tutors, how can it be done? If we cannot, explain why.

6. (Nathaniel) What is the sum of the coefficients of (x+ y)4 ∗ (j + i)3?
Solve using two different methods (and without writing out the entire
product).

7. (Soren) We’re at a grocery store, and there is a self-serve area for a
variety of nuts. There are five types of nuts (peanuts, cashews, wal-
nuts, pecans, hazelnuts) and three varieties of each type of nut (plain,
salted, roasted). We want to create our own nut mix by selecting 200
individual kernels of nuts and placing them in a bag (though the mix-
ing happens after purchase, of course). How many different nut mixes
can we create?

(A hint1 is available in the footnotes, recommended after some thought)

1In my opinion, this question is in the style of the test questions: maybe initially
obtuse, though clearly familiar after some understanding. Framing the information from
the question into one of the discrete math models we’ve learned is the hard part. See if
you can make sense of the quantities and what they represent relative to each other.
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Solutions

1. We are looking for all permutations of a = (1, 2, . . . , 8) such that there
exists at most one i that satisfies a[i− 1] < a[i], let’s call this a jump.
So we are looking for all permutations that have at most one jump.
Let’s generalize this to n instead of 8. First, there is one permutation
that has no jumps at all, that’s (n, n−1, n−2, . . . , 1). So let’s count the
permutations that have exactly one jump. Assume the jump occurs
at index i, when a[i] = j. So we have a[i− 1] < j and a[i] = j. There
are n − i elements that follow j in the permutation, and they must
all be in decreasing order, so they are all less than j. In addition,
there must be another element less than j to its left. Since there are
exactly j − 1 elements less than j, it must be that n − i < j − 1 (so
i ≥ n− j + 2). We need to choose n− i elements from j − 1 to place
on the right of j (all in decreasing order). The rest of the elements are
also placed in decreasing order on the left of j, which also guarantees
that a[i− 1] < a[i]. So the number of ways we could do that is:

n∑
j=1

n∑
i=n−j+2

(
j − 1

n− i

)

= 0+

(
1

0

)
+
[(2

0

)
+

(
2

1

)]
+
[(3

0

)
+

(
3

1

)
+

(
3

2

)]
+. . .+

[(n− 1

0

)
+. . .

(
n− 1

n− 2

)]
Using the Binomial theorem, this is (21 − 1) + (22 − 1) + (23 − 1) +
. . . (2n−1 − 1) = [20 +21 + . . .+2n−1]− n = 2n − 1− n. Therefore, we
get 2n − n after adding the permutation with no jumps. When n = 8,
we have 28 − 8 = 256− 8 = 248.

2. Let S be the set of all subsets that add up to more than 162, and let
T be the set of all subsets that add up to at most 162. We will show
that there is a bijection f : S → T , as follows:

f : S → T

f(x) = {1, 2, . . . 25} − x

Therefore, if x ∈ S, then y = f(x) is its complement. To verify that
f(x) is indeed in T , observe that if x adds up to more than 162 (at least
163), then its complement adds up to at most (1+2+ . . .+25)−163 =
325− 163 = 162.
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f is onto: Let y ∈ T be a subset that adds up to at most 162. Consider
x = {1, 2, . . . , 25}−y. Obviously, f(x) = y. Now x adds up to at least
1 + 2 + . . .+ 25− 162 = 325− 162 = 163. Therefore, x ∈ S.

f is one-to-one: Observe that if f(x1) = f(x2), then the complement
of x1 and the complement of x2 are the same. This means x1 = x2.

Therefore, we have shown that we can create a bijection between these
two sets. This gives us the crucial information that the number of
subsets with a sum greater than 162 is equal to the number of subsets
with a sum less than or equal to 162. Since a subset can only either
have a sum greater than 162 or a sum less than or equal to 162, these
subsets make up all possible subsets. The total number of subsets is
225. So the number of subsets with a sum greater than 162 is equal to
225

2 = 224.

3. (a) To show that f is not a function we just need to show that f
takes one input to two or more outputs. On a graph this would
mean that for a particular value of x we can draw a vertical line
at that x and if the line intersects the graph in more than one
spot then x is mapped to two different outputs. EX: a circle
on the coordinate plane is not a function but a semicircle cut
horizontally is.

(b) To show that f is not one-to-one we need to show that multiple
inputs map to the same output. So for a particular output y if we
can draw a horizontal line through y such that it intersects the
graph in more than one point that would show that f is not one-
to-one. EX: The tangent function is not one-to-one, but f(x) = x
is.

(c) To show that a function is not surjective (onto) we need to find
an output y to which no x can be mapped using f(x). So if there
is an output y such that drawing a horizontal line through it will
result in no intersections with the graph then f is not onto. EX:
The f(x) = sin(x) function is not onto but f(x) = x ∗ sin(x) is.

(d) To prove f is not a bijection we can simply prove one of the
condition in parts b and c since to be a bijection a function has
to be both one-to-one and onto.

4. To understand this problem, review the definition of a power set. It is
2n because each element has 2 possibilities: inclusion or exclusion in a
subset. With the new hidden option, there are now 3 possibilities, so
the answer is 3n instead.
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5. (a) The function is not one-to-one, because we have the same tutor
assigned to more than one student. (i.e. f(x) = f(y) does not
imply x=y)

(b) The function is not actually a function, since there are 20 tutors
and only 15 students and some students must be assigned more
than one tutor. (i.e. f(x) takes on more than one value for some
x in the domain)

(c) The function is not onto since there are 5 tutors not assigned to
any student. (i.e. some elements of the co-domain don’t have an
element of the domain that maps to it)

(d) A bijection is not possible since there are more tutors than there
are students. It is impossible to assign a unique tutor to each
student. (i.e. the sizes of the domain and co-domain are not
equal)

6. (a) First, we can solve this by calculating and summing the coeffi-
cients of each term and then multiplying. This gives us:(

4

0

)
+

(
4

1

)
+

(
4

2

)
+

(
4

3

)
+

(
4

4

)
= 1 + 4 + 6 + 4 + 1 = 16

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 1 + 3 + 3 + 1 = 8

16 ∗ 8 = 128

(b) We can also solve this by remembering that the sum of the coeffi-
cients is the same as the value of the equation when every variable
is equal to 1. Therefore

(x+ y)4 ∗ (j + i)3 = (1 + 1)4 ∗ (1 + 1)3 = 24 ∗ 23 = 27 = 128

Pascal’s Triangle in the next section will give us a third way to
check this answer.

7. So this is an integer partition problem of 200 items into 15 categories
(5 types of nuts × 3 varieties). Observing this, the rest is using the
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integer partition technique we’ve been taught:

x1 + x2 + . . .+ x14 + x15 = 200

k = 200

n = 15

n− 1 = 14︸ ︷︷ ︸
category dividers

∗ ∗ ∗ . . . ∗ ∗∗︸ ︷︷ ︸
200

||| . . . |||︸ ︷︷ ︸
14(

214

14

)
There are a total of

(
214
14

)
different nut mixes we can make. That’s a

lot of possibilities in 200 kernels.
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Collection 4

Pascal triangle, Binomial coefficients, Binomial theorem, anagrams...

1. (Saad) What is the coefficient of x7y3 in (x + y)10? What about the
coefficient of x7y2?

2. (Saad) How many anagrams exist for ”SAAD MNEIMNEH” (we must
keep the space, i.e. have two words)?

3. (Saad) How many words of length n can we make using the alphabet
{a, b, c}. Solve this by first deciding how many positions in the word
will be ”a”, then setting the rest using {b, c}. Finally use the addition
rule and the Binomial theorem to get to the final answer.

4. (Soren) A person wants to create a tune of ten notes using two acoustic
drums (for the sake of this problem we are not considering rhythm,
only pitches). They are sitting in front of both these drums, with a
low-pitched drum to be struck by their left hand, and a high-pitched
drum to be struck by their right hand. Each drum can only produce
one note, and for each of the ten notes this person has a choice of
striking the low-pitched left drum or the high-pitched right drum.

(a) Write this scenario in terms of a binomial expression, using your
choice of variables (alongside a brief English definition of each
variable).

(b) How does this expression relate to the Pascal’s triangle?

(c) If we were to expand this expression, what would each term mean
in English in terms of the problem? (i.e. “This term repre-
sents...”)

(d) How many distinct tunes can this person make?

5. (Vlad) Let’s make a Pascal’s pyramid. For a Pascal triangle, given a
row consisting of:

(
n
0

)(
n
1

)
...
(
n
n

)
, let n be the row’s height. Think of rows

as ”slices” of the triangle. For a Pascal’s pyramid, a slice at height n
is a triangle, stacking these triangles on top of each other forms the
pyramid. For a height of n, a slice will look like this:
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(
n

0,n,0

)
...(

n
0,3,n−3

)
. . .

(
n

n−3,3,0

)(
n

0,2,n−2

) (
n

1,2,n−3

)
. . .

(
n

n−2,2,0

)(
n

0,1,n−1

) (
n

1,1,n−2

) (
n

2,1,n−3

)
. . .

(
n

n−1,1,0

)(
n

0,0,n

) (
n

1,0,n−1

) (
n

2,0,n−2

) (
n

3,0,n−3

)
. . .

(
n

n,0,0

)
Where

(
n

x,y,z

)
= n!

x!y!z! and x+ y + z = n

For this example let a generic trinomial be labeled as
(

n
x,y,z

)
. Notice the

following patterns: As you go to the right on the slice, x increases by
1 for every step, while z decreases by 1, and as you go up, x decreases
by one and y increases by one and z stays the same.

(a) What is the sum of trinomial coefficients at height n?

(b) Make a statement about the sides of the triangle for each slice.
Why does this occur?

(c) Find a rule for generating the pascal’s pyramid slice at height n
given a slice at height n − 1. What is the intuition behind this
rule?

6. (Zach) State the binomial theorem. What are the terms in the sum
(2 + 3)5? What is the sum equal to?

7. (Tasmina) It’s prom night and everyone has a choice of a corsage.
There are 10 white corsages, 15 red ones, and 20 blue ones.

(a) Let’s say there’s enough people to account for all corsages. How
many different combinations of people with corsages are there?

(b) Now let’s say there’s only 10 people. Now how many ways are
there to choose different combinations of people with corsages?

8. (John) Consider a square pyramid where each of the four triangular
faces is a pascal’s triangle (up to height 10).
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Solutions

1. The coefficient for x7y3 is
(
10
3

)
by the Binomial theorem. The coeffi-

cient for x7y2 is 0 because x7y2 is not a term of the binomial (x+y)10.

2. There are 13 characters in total (including the white space). In ad-
dition, ”A” repeats twice, ”M” repeats twice, ”N” repeats twice, and
”E” repeats twice. So the number of anagrams is 13!/(2!2!2!2!). How-
ever, this will include those anagrams which start or end with space,
which we do not want. So we must subtract 2× 12!/(2!2!2!2!). So we
obtain (13− 2)12!/(2!2!2!2!).

Another approach is to simply find the anagrams of ”SAADMNEIM-
NEH” and then slice it in two parts by choosing a position out of the
11 positions for space. So we get 11× 12!/(2!2!2!2!).

3. The number of positions that can be ”a”, let’s call it k, can vary from
0 to n. There are

(
n
k

)
ways for choosing those positions. The rest of

the positions can be set using {b, c} in 2n−k ways. Using the addition
rule, we have (

n

0

)
2n−0 +

(
n

1

)
2n−1 + . . .+

(
n

n

)
2n−n

By the Binomial theorem, this is (2 + 1)n = 3n, which is the expected
answer.

4. An important property of this problem to observe is an implicit as-
sumption of the nature of music: different orders of notes result in
different tunes. This means every tune of ten notes is unique, unless
it recreates the exact order of selection. Hopefully this was obvious
(in the same way different orders of letters creating different words is
hopefully obvious).

(a) There are 10 decisions, and 2 choices for each decision. Call the
left drum L, and the right drum R:

(L+R)10

(b) The coefficients of the expanded above expression would exactly
match the 10th row of the Pascal’s Triangle:

1 10 45 120 210 252 210 120 45 10 1
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(Reproducing this as shown isn’t expected; I do this for visual’s
sake. What is important is to recognize the Pascal’s Triangle
where you see it, because it allows one to borrow its properties:
alternating sums, symmetry, row sums being powers of 2, etc.)

(c) For, say the 210L4R6 term, we could say: “The term 210L4R6

represents 210 tunes that have 4 left strikes and 6 right strikes.”
It is important to observe that, in this problem, the binomial co-
efficients are referring to the total number of tunes with a specific
number of Ls and Rs, though each tune is unique (as mentioned
earlier).

(d) 210 distinct tunes. We can reach this expression a variety of ways:
observing 10 decisions of 2 choices, the sum of the 10th row of
the Pascals’ triangle, etc.

5. (a) The sum of all trinomial coefficients is the sum of all the ways
to make a string with n characters where every character has 3
options. So the total should be equal to 3n.

(b) Each side of the triangle looks like a row of Pascal’s triangle at
height n. This happens because each side has one of the coef-
ficients x, y, z equal to 0. So one of the coefficients in the de-
nominator will be 0!. Assume we’re looking at the side where
z = 0, this implies that y + z = n which implies y = n − z so(

n
0,y,z

)
= n!

y!z! =
n!

z!(n−z)! =
(
n
z

)
=

(
n
y

)
(c)

(
n

x,y,z

)
=

(
n−1

x−1,y,z

)
+
(

n−1
x,y−1,z

)
+
(

n−1
x,y,z−1

)
where if any of the terms

x, y, z are less than 0 the expression
(

n
x,y,z

)
= 0. The intuition

behind this expression is as follows: Tof ind the number of ways
to make an anagram with x xs, y ys and z zs we could:

i. add an x to an anagram with x− 1 xs y ys and z zs

ii. add a y to an anagram with x xs y − 1 ys and z zs

iii. add a z to an anagram with x xs y ys and z − 1 zs

These cases give disjoint sets so by addition rule we can add them
to get our answer.

6. The binomial theorem is: (x+y)k =
(
k
0

)
x0yk+

(
k
1

)
x1yk−1+...+

(
k
k

)
xky0.

So, we have: (2+3)5 =
(
5
0

)
2035+

(
5
1

)
2134+

(
5
2

)
2233+

(
5
3

)
2332+

(
5
4

)
2431+(

5
5

)
2530 = 2035 + 5 ∗ 2134 + 10 ∗ 2233 + 10 ∗ 2332 + 5 ∗ 2431 + 2530 =

243 + 810 + 1080 + 720 + 240 + 32 = 3125
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7. (a) This is a simple anagrams problem. In total, there are 10+15+20
corsages, or 45. White corsages repeat 10 times, red ones 15
times, and blue ones 20 times. Thus, the number of anagrams is
45!/(10!15!20!).

(b) This may seem difficult at first but think about the number of
possibilities for the people. Since there are 10 people and the least
number of a single corsage is 10 (10 white corsages), that means
all the people have equal probability of wearing any of the three
corsages. Thus, this becomes a simple integer solutions problem,
where we have a box of white corsages (w), a box of red corsages
(r), and a box of blue corsages (b), all of which add up to 10
corsages in total. These can be represented as w + r + b = 10.
Since the conditions for each is already set to be greater than or
equal to zero (since we don’t require anybody to have a white
corsage), this becomes

(
10+3−1
3−1

)
=
(
12
2

)
=66.
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