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CSCI 150 Discrete Mathematics

Homework 10

Saad Mneimneh, Computer Science, Hunter College of CUNY

Solution

1. Find the greatest common divisor of 100 and 254 using prime factor-
ization. What is their least common multiple?

Solution

100 = 22 · 52

254 = 2 · 127

The greatest common divisor can be obtained by choosing the smallest
power for each prime factor. We have 21 · 50 · 1270 = 2.

2. Find the greatest common divisor of 100 and 254 using the Euclidean
algorithm and express it as a linear combination of 100 and 254 like
this: gcd(254, 100) = 254r − 100s, where r, s ≥ 0.

Solution

254 100 54 46 8 6 2 0

1 0 1 -1 2 -11 13 -50
0 1 -2 3 -5 28 -33 127

We conclude that gcd(254, 100) = 254 · 13− 100 · 33.
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3. Let Fn be the nth Fibonacci number. What is gcd(F2024, F2023)?

Solution

We can easily argue that gcd(F2024, F2023) = 1, because the remain-
der of the division of Fn by Fn−1 = Fn−2, since Fn = Fn−1 + Fn−2.
Therefore, the Euclidean algorithm will produce a Fibonacci sequence
in reverse, starting with F2024.

F2024, F2023, . . . , 1, 0

4. What do the following pairs of integers have in common: two consecu-
tive numbers, two consecutive odd numbers, two consecutive Fibonacci
numbers, two prime numbers, a prime number p and an integer a such
that p ̸ |a, and a prime number p and an integer a < p?

Solution

They are all co-prime.

• If d|n and d|n+ 1, then d|(n+ 1)− n = 1, so d = 1.

• If d|n and d|n+2, then d|(n+2)−n = 2, so d ∈ {1, 2}. But since
n is odd, d = 1.

• See above exercise for consecutive Fibs.

• If p and q are both primes, then they only share one common
divisor: 1.

• If p is prime and p ̸ |a, then a and p share only 1 as a common
divisor.

• If p is prime and a < p, then p is prime and p ̸ |a (see above).

5. Show that if a|bc and gcd(a, b) = 1, then a|c.
Solution

Since a|bc, then bc is a multiple of a, and we can write bc = ma. By
the Fundamental Theorem of Arithmetic, all prime factors of a must
show up on the left. But since gcd(a, b) = 1, these factors must all be
contributed by c. Therefore, a|c.

6. Given n > 1, let p be a prime number such that n < p < 2n (by the
way, there is always a prime between n and 2n). Does p divide

(
2n
n

)
?

Explain.
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Solution

The answer is Yes. Observe that p divides (2n)! = 1 . . . p . . . 2n, but p
does not divide n!n!, since otherwise, p must divide one of the factors
in {1, 2, 3, . . . , n}, which are all less than p. Therefore, p divides the
ratio, since it divides the numerator but not the denominator.

7. Imagine you have points on a circle labeled 0, 1, 2, . . . , 126, so point
126 is followed by point 0. You start at point 0, and you repeatedly
jump by 5, so you first land on point 5, then 10, then 15, etc... How
many jumps do you need to land on point 1? Try to think about the
mathematical concept needed to figure this out without guessing.

Solution

This can be captured by 5x ≡ 1 (mod127). So all we need is to find
the inverse of 5 modulo 127 (which exists since 5 and 127 are coprime).
This can be done using the Euclidean algorithm:

127 5 2 1 0

1 0 1 -2
0 1 -25 51

So the inverse of 5 modulo 127 is 51. We can verify: 5 · 51 = 255 =
2 · 127 + 1.

8. For each of these relations, specify whether it is reflective, symmetric,
anti-symmetric, and transitive.

• The subset relation on the power set of some set S

• The relation ≤ on R
• The relation < on Z
• The relation “shared a class with” on the set of students at Hunter
College, where two students share a class if there is a class they
are both enrolled in this semester.

• The relation given by

{(a, c), (a, f), (a, h), (b, h), (c, f), (c, h), (d, h), (e, h), (f, h), (g, h)}

• The relation R on N where (a, b) ∈ R means a|b
• The relation R on N where (x, y) ∈ R means x < y + 2
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Solution

I will not provide proofs for the following claims:

• Reflexive, anti-symmetric, transitive.

• Reflexive, anti-symmetric, transitive.

• Not reflexive, anti-symmetric, transitive.

• Reflexive, symmetric, not transitive.

• Not reflexive, anti-symmetric, transitive.

• Reflexive, anti-symmetric, transitive.

• Reflexive, not anti-symmetric, not symmetric, not transitive.

9. Consider the following relation on N× N (the set of ordered pairs of
positive integers):

(a, b) ≡ (c, d) ⇔ ab = cd

Prove that this is an equivalence relation and prove that for any integer
n ∈ N, there exist classes of equivalence of size n. Hint: Think about
why this is the same as saying that there exist integers that have n
divisors.

Are there finitely many or infinitely many classes of equivalence of size
1? of size 2?

Solution

This relation is reflexive since (a, b) ≡ (a, b). It is also symmetric,
since (a, b) ≡ (b, a). Finally, it is transitive since, if (a, b) ≡ (c, d) and
(c, d) ≡ (e, f), then (a, b) ≡ (e, f).

Now, consider the set of powers of 2: {1, 2, 4, 8, . . .}. Each number is
of the form 2n−1, for n ∈ N = {1, 2, 3, . . .}. The integer 2n−1 has n
divisors {1, 2, 4, . . . , 2n−1}. This means there are n pairs of integers
whose product is equal to 2n−1 (this is true when n is even and when
n is odd). Here are some examples:

n = 4, {1, 2, 4, 8} : (1, 8), (8, 1), (2, 4), (4, 2)

n = 5, {1, 2, 4, 8, 16} : (1, 16), (16, 1), (2, 8), (8, 2), (4, 4)

So for every n, there is a class of equivalence of size n. There is only 1
class of equivalence of size 1: {(1, 1)}. There are infinitely many classes
of equivalence of size 2: {(1, 2), (2, 1)}, {(1, 3), (3, 1)}, . . . (primes).
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10. Every non-empty subset of N (whether it’s finite or infinite) has a
minimum. One can’t say the same about Z. Find a total order relation
≺ on Z such that every non-empty subset of Z has a minimum under
the ≺ relation.

Solution
Consider the following relation on Z:

x ≺ y ⇔


|x| < |y|, or

|x| = |y| and x < y

This is anti-symmetric:
x ≺ y ⇒

(either) |x| < |y| ⇒ |x| ≠ |y| and |y| ≮ |x| ⇒ y ̸≺ x

(or) |x| = |y| and x < y ⇒ |y| = |x| and y ̸< x ⇒ y ̸≺ x

This is also transitive: if x ≺ y and y ≺ z, then (4 cases)

• |x| < |y| and |y| < |z| ⇒ |x| < |z| ⇒ x ≺ z

• |x| < |y| and |y| = |z| ⇒ |x| < |z| ⇒ x ≺ z

• |x| = |y| and |y| < |z| ⇒ |x| < |z| ⇒ x ≺ z

• |x| = |y| and x < y and |y| = |z| and y < z ⇒ |x| = |z| and x < z ⇒
x ≺ z

Therefore, the relation ≺ is a partial order relation (in fact it is total since
every pair of integers is ordered by ≺). Under this relation, every subset of
Z has a minimum, since the absolute value cannot decrease indefinitely and
for any given absolute value, there are at most two integers that can achieve
it.

Note: Another solution to this problem is to consider any bijection f : Z →
N, and define the relation ≺ on Z as:

x ≺ y ⇔ f(x) < f(y)
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