© Copyright 2024 Saad Mneimneh It's illegal to upload this document or a picture of it on any third party website

CSCI 150 Discrete Mathematics Homework 5

Saad Mneimneh, Computer Science, Hunter College of CUNY

Solution

1. Think of the most fascinating theorem that you have ever encountered. It could be a simple one, or it could be very sophisticated. Whatever the statement of that theorem is, let's call it *P*. Consider the following proposition:

pigs can fly $\Rightarrow P$

- Why is the above proposition true?
- How come this is not a proof of P itself?

Solution

32200 Mine

The proposition is true since "pigs can fly" is false. Recall that both $0 \Rightarrow 0$ and $0 \Rightarrow 1$ are true propositions. Therefore, P cannot be determined to be true or false from the fact that $0 \Rightarrow P$ is true.

,621 TO P' 2. For each of the following, find whether it is always true, always false, or neither:

$$0 \land P$$

$$1 \land P$$

$$0 \lor P$$

$$1 \lor P$$

$$0 \Rightarrow P$$

$$1 \Rightarrow P$$

$$P \lor \neg P$$

$$P \land \neg P$$

$$P \Rightarrow \neg P$$

aberta

Solution

5aad Mineinni

Always true: $1 \lor P$, $0 \Rightarrow P$, $P \lor \neg P$. Always false: $0 \land P$, $P \land \neg P$. Neither: the rest

3. Let P and Q be two propositions and consider the following proposition:

$$(P \Rightarrow Q) \lor (Q \Rightarrow P)$$

Show that the above proposition is always true:

• by means of a truth table:

Solution								
Ċ	P Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \lor (Q \Rightarrow P)$				
	0 0	1	1	1				
	$0 \ 1$	1	0	1				
	$1 \ 0$	0	1	1				
	$1 \ 1$	1	1	1				

• by replacing any proposition of the form $X \Rightarrow Y$ by $\neg X \lor Y$ and using the associative property of \vee .

$$(P \Rightarrow Q) \lor (Q \Rightarrow P)$$
$$(\neg P \lor Q) \lor (\neg Q \lor P)$$
$$\neg P \lor (Q \lor \neg Q) \lor P$$
$$\neg P \lor 1 \lor P$$
$$(\neg P \lor 1) \lor P$$
$$1 \lor P$$
$$1$$

eogli To Pos

4. An integer n is a multiple of 3 if n = 3k, and is not a multiple of 3 if n = 3k + 1 or n = 3k + 2 (these are all possible cases), where $k \in \mathbb{Z}$. Consider the following statement:

 $\forall n \in \mathbb{Z}, \ (n^2 \text{ is not a multiple of } 3 \Rightarrow n \text{ is not a multiple of } 3)$

(a) Prove the statement is true by working with its contrapositive.

(b) By finding n^2 for each possible case listed above for n, conclude a stronger result:

$$\forall n \in \mathbb{Z}, (n \text{ is a multiple of } 3 \Leftrightarrow n^2 \text{ is a multiple of } 3)$$

Solution

2000 Min

(a) The contrapositive:
$$\underline{n \text{ is a multiple of } 3}_{\neg Q} \Rightarrow \underbrace{n^2 \text{ is a multiple of } 3}_{\neg P}$$

proof: n is a multiple of $3 \Rightarrow n = 3k$, where $k \in \mathbb{Z} \Rightarrow n^2 = 9k^2 = 3(3k^2) = 3k'$, where $k' \in \mathbb{Z} \Rightarrow n^2$ is a multiple of 3.

(b) Here are all the cases: $n = 3k, n^2 = 9k^2 = 3(3k^2)$ $n = 3k + 1, n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ $n = 3k + 2, n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$

Therefore, n is a multiple of 3 iff n^2 is a multiple of 3.

Observe that one could also establish:

$$(n = 3k + 1) \lor (n = 3k + 2) \Rightarrow n^2 = 3k' + 1$$

which can read: n is not a multiple of $3 \Rightarrow n^2$ is not a multiple of 3. That's $\neg P \Rightarrow \neg Q$ which is equivalent to $Q \Rightarrow P$. 5. Prove by a counter example that the following statement is false

 $\forall n \in \mathbb{Z}, (n^2 \text{ is a multiple of } 4 \Rightarrow n \text{ is a multiple of } 4)$

20R1

Solution

Let n = 2/ Then $n^2 = 4$, which is a multiple of 4, but n is not.

6. Prove by contradiction that $\sqrt{3} \notin \mathbb{Q}$.

Suppose $\sqrt{3}$ is rational. Then $\sqrt{3} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and the fraction is not reducible (i.e. a and b have no common divisors except 1).

$$\sqrt{3} = \frac{a}{b} \Rightarrow 3 = \frac{a^2}{b^2} \Rightarrow a^2 = 3b^2 \Rightarrow a^2$$
 is a multiple of $3 \Rightarrow a$ is a multiple of 3

 \square

$$b^2 = \frac{a^2}{3} \Rightarrow b^2 = \frac{3k \cdot 3k}{3} = 3k^2 \Rightarrow b^2$$
 is a multiple of $3 \Rightarrow b$ is multiple of 3

Therefore, a and b have 3 as a common divosor and we have reached a contradiction.

- 7. Consider $(P \land Q) \Rightarrow R$ and $P \Rightarrow (R \lor \neg Q)$. Show that they are equivalent:
 - by means of a truth table
 - by reasoning about when exactly each of them is false (without a truth table).

Solution

Solution						
PQI	$R \mid P \land Q$	$ (P \land Q) \Rightarrow R$	$R \lor \neg Q$	$P \Rightarrow (R \lor \neg Q)$		
000	0	1	1	1		
001	0	1	1	1		
010	0	1	0	1		
011	0	1	1	1		
100	0	1	1	1		
101	0	1	1	1		
110	1	0	0	0		
111	1	1	1	1		
- A	,					
C-De						
		,	1			
T		4	Ł			

- $(P \land Q) \Rightarrow R$ is false only when $(P \land Q)$ is true and R is false. So when P = 1, Q = 1, and R = 0.
- $P \Rightarrow (R \lor \neg Q)$ is false only when P is true and $(R \lor \neg Q)$ is false. So when P = 1, Q = 1, and R = 0.

0

8. Assume that all of the following are true

$$(P \lor Q) \Rightarrow R$$
$$Q \lor R$$
$$R \Rightarrow P$$

Show by contradiction that P is true.

Solution

5aad Mineimineh

Assume P is false.

Ċ

Since $R \Rightarrow P$ is true, then R must be false. Now, since $Q \lor R$ is true, then Q must be true. We now have P = 0, Q = 1, and R = 0. This makes $(P \lor Q) \Rightarrow R$ false, a contradiction.