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CSCI 150 Discrete Mathematics

Homework 6

Saad Mneimneh, Computer Science, Hunter College of CUNY

Solution (before midnight)

—————————————————————————————————
We argued in class that there are no proofs by example, an exception being
that we may disprove a statement by providing a counter example. For in-
stance, to prove that the polynomial p(n) = n2 + n + 41 does not produce
a prime number for every integer n ≥ 0, we may show that 412 + 41 + 41 is
not prime.
—————————————————————————————————

1. Prove that the polynomial n2 − 79n+ 1601 does not produce a prime
number for every integer n ≥ 0.

Solution Consider n = 1601. Then,

n2−79n+1601 = 16012−79·1601+1601 = 1601(1601−79+1) = 1601·1523

which is not prime.

2. Prove that the sequence given by

an = 1 +
n∏

k=1

pk
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where pk is the kth prime, is not always prime. Here are the first few
values (which are prime):

3, 7, 31, 211, 2311, . . .

Solution

a6 = 1 + p1p2p3p4p5p6 = 1 + 2 · 3 · 5 · 7 · 11 · 13 = 30031 = 59 · 509

which is not prime.

—————————————————————————————————
Another scenario where the use of an example is appropriate is existential
proofs when we are interested in showing the truth of a statement of the
form:

∃n, P (n)

For example, prove that there exist a prime number that is even.

∃n, n is prime and even

In this case, we can simply “construct” an example. For instance, 2 is prime
and is even. Done!
Here’s another example: Prove that there exists two perfect squares whose
sum is a perfect square.

∃x, y, z ∈ N, x2 + y2 = z2

Similarly, we can construct an example: 9 + 16 = 25.
—————————————————————————————————

3. The Fibonacci numbers are given by the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Prove that there is a Fibonacci number that ends in the digit 7.

Solution

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 ...

4. Prove that there exists two irrational numbers x and y such that xy
is rational.
Solution Consider

√
2 and 1/

√
2. We know that

√
2 is irrational. In

addition, if a number x is irrational, then 1/x is irrational as well (we
can prove this by the contrapositive). We are done, since

√
2×1/

√
2 =

1 is rational.
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—————————————————————————————————
Sometimes, it is not easy to construct an explicit example, but we can still
prove existence. Such proofs are called “non-constructive”. Here’s an ex-
ample: Prove that x3 + x− 1 = 0 has a solution.

∃x ∈ R, x3 + x− 1 = 0

The function f(x) = x3+x−1 is a continuous function, and f(0) = −1 and
f(1) = 1. This means there must be an x, 0 < x < 1, such that f(x) = 0.
Observe that we could not construct the solution itself, but we were able to
prove that it exists.
—————————————————————————————————

5. Prove that x4 − x− 1 = 0 has more than one solution.

Solution

Let (x) = x4 − x − 1. The function f(x) is a continuous function. In
addition, f(−1) = 1 and f(0) = −1. Therefore, f crosses 0 in the
interval (−1, 0). So there must be an −1 < x < 0 such that f(x) = 0.
Similarly, f(1) = −1 and f(2) = 13. So there must be an 1 < x < 2
such that f(x) = 0. Therefore, x4−x−1 = 0 has at least two solutions.

6. Prove that there exist two irrational numbers x and y such that xy is
rational. Hint: Think of the number(√

3

√
2
)√

2

and consider all possible cases for
√
3
√
2
.

Solution

First, observe that the number above is 3. We consider two cases:

• if
√
3
√
2
is rational, then let x =

√
3 and y =

√
2. We know that

both x and y are irrational, but xy is rational.

• if
√
3
√
2
is irrational, then let x =

√
3
√
2
and =

√
2. Both x and

y are irrational, but xy = 3 is rational.
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7. Prove by contradiction that the following tiles cannot be put together
to make a perfect square. Hint: use a parity argument similar to the
one we saw in class.

Solution

A square must have 16 cells and, if we imagine a chessboard pattern,
8 of these cells will be black and 8 will be white. Therefore, there are
as many white as black cells. To proceed by contradiction, we assume
that the tiles can cover the square exactly. The second tile will have
either 3 black cells and 1 white cell, or 3 white cells and 1 black cell.
All other tiles will have an equal number of white and black cells.
Therefore, the square will have an unequal number of white and black
cells, a contradiction.

8. Prove the following using the contrapositive:

∀r ∈ R− {1}, r

r − 1
̸∈ Q ⇒ r ̸∈ Q

Does the statement remain true if we simply reverse the implication?

Solution

The contrapositive is given by:

∀r ∈ R− {1}, r ∈ Q ⇒ r

r − 1
∈ Q

Proof: r ∈ Q ⇒ r = a
b where a, b ∈ Z ⇒ r

r−1 = a/b
a/b−1 = a

a−b . Since

a− b is an integer not equal to 0 (r ̸= 1 so a ̸= b), r/(r − 1) ∈ Q.

If we simply reverse the implication, the statement remains true. To
show this, here’s the statement with the implication reversed:

∀r ∈ R− {1}, r ̸∈ Q ⇒ r

r − 1
̸∈ Q

which is equivalent to the contrapositive:

∀r ∈ R− {1}, r

r − 1
∈ Q ⇒ r ∈ Q
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which we can prove similarly by starting with r/(r − 1) = a/b and
concluding r = a/(a− b). Therefore, we can say:

∀r ∈ R− {1}, r

r − 1
̸∈ Q ⇔ r ̸∈ Q

9. Prove the following is true:

∀n ∈ N, n is even ⇒
(
n

3

)
is even

Hint: If 2x/3 is an integer, then x/3 is an integer because 2 and 3 have
no common factors.

Solution

n is even ⇒ n = 2k, where k is an integer ⇒
(
n
3

)
= n(n−1)(n−2)

3! =
2k(2k−1)(2k−2)

3! = 2[k(2k−1)(k−1)]
3 . Since

(
n
3

)
is an integer of the form

2x/3, it must be that x/3 is an integer. Therefore,
(
n
3

)
is even.

10. Which of the following sets is countable and which is uncountable (try
your best to explain your answer)?

• The set of all cups on Earth

Solution This set is finite, so it’s countable.

Note: If by “set of all cups on Earth”, we mean all cups that are
made and will ever be made, and we assume that humans will
always make cups on Earth, and that humans will never perish,
and that Earth will never perish, then this set in infinite. How-
ever, even then, it’s countable, as one could find a bijection with
N by ordering the cups, say by the timestamp of their production
(and breaking ties in some way assuming there are only finitely
many cups that can share the exact same timestamp).

• The set of all real numbers in (0,1)

Solution: This is uncountable. Using the same diagonalization
method, and given a function f : N → (0, 1), we can construct
a number x = 0.x1x2x3 . . . ∈ (0, 1), where the ith digit xi is dif-
ferent from the ith digit of f(i). In fact, one can find a bijection
from (0, 1) to R.
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• The set of all finite binary sequences

Solution

This is countable. We can order the sequences by their length.
Since there are finitely many sequences of a given length ℓ (ex-
actly 2ℓ sequences), every sequence will have a finite rank. To
see this, consider the total number of sequences with length at
most ℓ, we have

∑ℓ
i=0 2

i = 2ℓ+1 − 1 sequences. Therefore, any
sequence of length ℓ has a finite rank.

• The set R− Z
Solution

This is uncountable. Here’s a proof by contradiction: Assume
R − Z is countable. Since the union of two countable sets is
countable, then (R− Z) ∪ Z = R is countable, a contradiction.
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