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CSCI 150 Discrete Mathematics

Homework 7

Saad Mneimneh, Computer Science, Hunter College of CUNY

Solution

Note: Some ideas in this homework are taken from the book Gentle Intro-
duction to the Art of Mathematics.

1. (Optional, to understand that the interval (−1, 1) is “as big” as the
entire set R.)

• Find a function f : (−1, 1) → R that is both one-to-one and onto.
This establishes the claim. Hint: design your function such that
it’s continuous and takes −1 to −∞ and +1 to ∞.

• In this approach, we will map (−1, 1) to R by a geometric con-
struction.

1



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

For any x ∈ (−1, 1):

(a) obtain its vertical projection on the unit circle in the upper
half plane, then

(b) make an appropriate projection of that point onto the tan-
gent line (the line y = 1), and finally

(c) project vertically onto R (the line y = 0).

Obviously, you only have to figure out (b). Show your work and
explain. Extra: can you obtain the function corresponding to
this geometric argument?

Extra Challenge: (You are not required to do this) Find a bijection
from [−1, 1] to R. This time −1 and 1 are elements of the domain.

Solution

• Both of the following functions are bijections from (−1, 1) to R:

f(x) = ln
1 + x

1− x

g(x) = tan
(π
2
x
)

Take f(x) for instance.

one-to-one:

f(x1) = f(x2) ⇒ ln
1 + x1
1− x1

= ln
1 + x2
1− x2

⇒ 1 + x1
1− x1

=
1 + x2
1− x2

(log itself is one-to-one)

⇒ (1+x1)(1−x2) = (1+x2)(1−x1) ⇒ 1+x1−x2−x1x2 = 1+x2−x1−x1x2

⇒ x1 − x2 = x2 − x1 ⇒ 2xi = 2x2 ⇒ x1 = x2

onto: For any y ∈ R, we can find an x such that ln 1+x
1−x = y.

Simply solve for x to obtain x = wy−1
ey+1 , and observe that x ∈

(−1, 1) because ey ≥ 0.

• Geometric interpretation:

– Vertical projection on semi-circle

– Projection on tangent using center of circle

– Vertical projection on y = 0
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We can actually obtain the function corresponding to the above
geometric construction. First, the height of the point on the semi-
cricle can be obtained using Pythagoras theorem: x2 + h2 = 1.
Therefore h =

√
1− x2. Second, by similar triangles, we have:

x

h
=

f(x)

1

which means f(x) = x/
√
1− x2.

• Extra challenge: We can construct a bijection from [−1, 1] to
(−1, 1). This means, by function composition, there is a bijection
from [−1, 1] to R. Here’s the function:

f(x) =


1/2 x = −1
1/4 x = 1

1/2i+2 x = 1/2i

x otherwise

So we use the infinite sequence 1/2, 1/4, 1/8, 1/16, 1/32, . . . to map
−1, 1, 1/2, 1/4, 1/8, . . . (shifting). This takes care of −1 and +1. Then
any x that is not of the form 1/2i will map to itself.

2. We learned in class that for any set A, |A| < |P(A)|. For instance,
this means that P(N), the set of all subsets of N is uncountable. Let
PF (N) be the set of all finite subsets of N.

PF (N) = {X ∈ P(N)
∣∣ X is finite}

For instance, the subset {2, 4, 6} ∈ PF (N) but the subset {1, 3, 5, . . .} ̸∈
PF (N). Show that PF (N) is countable.

Note: Here’s an ordering that does not work: order the elements of
PF (N) (finite subsets of N) by their size (since each is finite, the size
is well defined):

ϕ, {1}, {2}, {3}, {4}, . . .
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Do you see the problem?

Hint: Every finite subset has a largest element.

Solution

PF (N) is countable. We list the subsets based on their largest element.

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . .

There are 2i−1 sets that have i as the largest element. Therefore,
the rank of any set that has i as its largest element is at most 1 +∑

j = 1i2j−1 = 1 + (20 + 21 + . . .+ 2i−1 = 1 + (2i − 1) = 2i.

3. We will now show that P(N) is uncountable even though we already
know this fact. This is an opportunity to practice the diagonal method.
To do this, we will first represent each subset S of N by an infinite bi-
nary word in which the ith bit is 1 if i ∈ S and 0 otherwise. To practice
this notion try to fill in the table:

infinite binary word subset of N
00000 . . . ∅
100000 . . . {1}
011100000 . . . {2, 3, 4}
010101000 . . . {2, 4, 6}
1010101010 . . . {1, 3, 5, 7, . . .}
1001001001 . . . {3k − 2 | k ∈ N}
111111 . . . N

Now we need to show that there is no bijection from N to the set of
infinite binary words. Reproduce the diagonal argument to show this
fact.

Note: Think about this, but you are not required to provide an answer:
Why doesn’t this diagonal argument disprove the fact that PF (N) of
question 2 is countable?

Solution

Table filled above.

Given a bijection from N to the set of infinite binary words, we achieve
a contradiction by constructing an infinite binary word x such that
there is no i ∈ N with f(i) = x. This can be done by making the ith

bit of x different from the ith bit of f(i), simply by flipping bits.
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4. Consider the following grid of 20 white dots

o o o o o

o o o o o

o o o o o

o o o o o

We color 9 dots black. Prove that three of the black dots make a line.

Solution

There are 9 black dots in 4 rows. By the pigeonhole principle, one row
must contain ⌈9/4⌉ = 3 black dots. These dots are on a line.

5. How many numbers in {1, 2, . . . , 546} are not divisible by 2 and not
divisible by 3 and not divisible by 7?

Hint: Negate the requirement, find the answer using inclusion-exclusion,
then fix it to answer the original question.

Hint: Check your answer against 546× (1/2)× (2/3)× (6/7) (this does
not always work by the way depending on the choice of numbers).

Solution

Let’s count the number of integers divisible by 2 or 3 or 7. If we let S2

be the set of integers divisible by 2, and similarly, define S3 and S7,
then we want |S2 ∪ S3 ∪ S7|. By the inclusion-exclusion principle, this
is

|S2|+ |S3|+ |S7| − |S2 ∩ S3| − |S2 ∩ S7| − |S3 ∩ S7|+ |S2 ∩ S3|capS7

=
546

2
+

546

3
+

546

7
− 546

6
− 546

14
− 546

21
+

546

42

= 273 + 182 + 78− 91− 39− 26 + 13 = 390

Note that I did not use ⌊ ⌋ above because all divisions are exact.
Finally, the number we want is 546− 390 = 156.

6. Prove by induction that for all integers n ≥ 0,
∑n

i=0(4i + 1) = 2n2 +
3n+ 1.

Solution

Base case: When n = 0, we have
∑0

i=0(4i + 1) = 4 · 0 + 1 = 1 =
2 · 02 + 3 · 0 + 1
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The inductive hypothesis is P (k) :
∑k

i=0(4i+ 1) = 2k2 + 3k + 1.

Inductive step: We need to show the inductive step: ∀k ≥ 0, P (k) ⇒
P (k + 1), where P (k + 1) is

∑k+1
i=0 (4i+ 1) = 2(k + 1)2 + 3(k + 1) + 1.

k+1∑
i=0

(4i+1) =
k∑

i=0

(4i+1)+ [4(k+1)+1] = 2k2+3k+1+ [4(k+1)+1]

= 2k2+3k+1+(4k+4+1) = (2k2+4k+2)+(3k+3)+1 = 2(k+1)2+3(k+1)+1
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Problem 1

A homogeneous subset of N is one where all the elements have the
same parity. A student in CSCI 150 decided to prove that the set all
homogeneous subsets of N is uncountable. The student proposed that
every homogeneous subset of N can be represented as an infinite binary
word with all its 1s either in even positions or in odd positions. For in-
stance, {1, 3, 5, 7, 9 . . .} can be represented by the infinite binary word
1010101010 . . . . . ., and {2, 4, 10} by 0101000001000 . . ., and ϕ = { }
by 000 . . ., and so on.

With B being the set of all infinite binary words satisfying the above
condition, the student mimicked Cantor’s diagonalization proof in or-
der to construct a infinite binary word w such that there is no i ∈ N
with f(i) = w. He did this by flipping bits along the diagonal (as
shown below).

(Hypothetical function f : N → B)

N B

1 1010101010 . . .
2 0101000001000 . . .
3 000 . . .
...

...

w = 001 . . .

(a) What’s wrong with the student’s proof?

Solution

The constructed word w may not be in B. For instance, it might
end up having two consecutive 1s, corresponding to one even and one
odd integer in N. Therefore, w may not correspond to a homogeneous
subset of N. So the proof is wrong.

(b) Fix the student’s proof.
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Solution

We can fix the proof by changing pairs of bits, as follows:

00 → 01

01 ⇒ 00

10 ⇒ 00

This way, the constructed word w will be different from every word in
B, but will only have 1s in even positions. Therefore, w will correspond
to a homogenous set.
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Problem 2

A 3 digit number is good iff it does not have 1 in the first digit, and
does not have 2 in the second digit, and does not have 3 in the third
digit. How many good 3 digit numbers are there?

(a) Solve this question using the product rule by identifying the pos-
sibilities for each of the three digits.

(b) Do the same using the inclusion-exclusion principle. Hint: consider
the negation to get the “or” logic. In other words, find the number of
bad 3 digit numbers, then adjust your answer to find the number of
good 3 digit numbers.

(c) Assume now that all 3 digits must be different. How many 3 digit
numbers are good? Hint: which technique is more suitable, that of
part (a) or part (b)?

Solution

(a) # ways

1. Choose the first digit. . . . . . . . . . . . . . 8 (̸= 0, ̸= 1)

2. Choose the second digit . . . . . . . . . . . . 9 ( ̸= 2)

3. Choose the third digit . . . . . . . . . . . . . 9 (̸= 3)

8× 9× 9 = 648

There are 648 ”good” 3-digit numbers.

(b) Inclusion-Exclusion: counting ”bad” 3-digit numbers.

1**: 10× 10 = 100

*2*: 9× 10 = 90

**3: 9× 10 = 90

12*: 10

1*3: 10

*23: 9

123: 1
Number of bad 3-digit numbers = 100 + 90− 10− 10− 9 + 1 = 252
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Total number of 3-digit numbers: 9× 10× 10 = 900
Number of good 3-digit numbers = 900− 252 = 648

(c) Repeating the work in part (b):

1**: 9× 8 = 72

*2*: 8× 8 = 64

**3: 8× 8 = 64

12*: 8

1*3: 8

*23: 7

123: 1
Number of bad 3-digit numbers = 72 + 64 + 64− 8− 8− 7 + 1 = 178
Total number of 3-digit numbers: 9× 9× 8 = 648
Number of good 3-digit numbers = 648− 178 = 470
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Problem 3

There is a 1 × ℓ rectangle. For simplicity, we will assume that ℓ is a
positive integer.

(a) We place ℓ+1 points in the rectangle. Prove that two of the points
must be within a distance of

√
2.

Solution

This is a typical pigeonhole setting. Divide the rectangle into ℓ 1× 1
squares. Placing ℓ+1 points means that one square will have at least
two points. The largest distance in the square is

√
2. Therefore, two

of the points must be within a distance of
√
2.

(b) Show by an example that you can place ℓ+1 points in the rectangle
such that the distance between any two of them is at least

√
2.

Solution

The ℓ + 1 points will be placed on the perimeter of the rectangle.
With the conceptual square divisions above, we start by placing the
first point in the upper-left corner of the first square. We place the
second point in the lower-left corner of the second square, and so on by
alternating between upper-left and lower-left. The final point will end
up in either the lower-right or upper-right corner of the last square.

It is easy to verify that the closest two points are a a distance of ex-
actly

√
2.

(c) Show by an example that you can place ℓ points in the rectangle
such that no two of them are within a distance of

√
2.

Solution

With the placement of points as described in part (b), move the second
point horizontally to the right by ϵ. Move the third point in the same
way by 2ϵ. Keep this pattern until the point before last is moved by
(ℓ−1)ϵ (se we need (ℓ−1)ϵ ≤ 1). The last point is simply removed (to
end up with ℓ points). Now, none of the points are within a distance
of

√
2.
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