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CSCI 150 Discrete Mathematics

Homework 9

Saad Mneimneh, Computer Science, Hunter College of CUNY

Solution

1. An alien species communicates using a three-letter alphabet {x, y, z}.
In their language, words must obey one rule: zz cannot be part of
any word; otherwise, the speaker will go to sleep and never finish the
sentence. Describe the number of words of length n by a recurrence.
Let an be the number of words of length n, and express an in terms
of an−1 and an−2.

Hint: Do as we did with the tiling problem, i.e. consider different
cases based on how you start a word, then for each case figure out in
how many ways you can finish it.

Solution

There are 4 possible ways a word in this language can start

x . . .

y . . .

zx . . .

zy . . .

where “. . .” represents a word in the language of a smaller length.
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Therefore, if we denote by an the number of words of length n, we
have by the addition rule:

an = an−1 + an−1 + an−2 + an−2 = 2an−1 + 2an−2

This recurrence can then be solved using the characteristic equation
method.

2. Consider a version of the Tower of Hanoi where each disk is duplicated,
so we have 2n disks with 2 disks of each size. The rules of the game
are the same. Let an be the number of moves needed to solve this
2n−disk problem.

(a) Find a recurrence for an.

Solution

We make two moves for each move of the original Tower of Hanoi. In
other words, we always move the two copies of every disk together.
This gives an = an−2 + 2 + an−1 = 2an−1 + 2.

(b) Guess a solution for an is terms of n (by exploring), and prove it
by induction.

Solution

We can easily guess that the number of moves must be exactly twice
the number of moves in the original puzzle.

a0 = 0, a1 = 2, a2 = 6, a3 = 14, . . .

Therefore, an = 2(2n − 1). Here’s a proof by induction:

Base case: when n = 0, a0 = 0 = 2(20 − 1).

Inductive step: The inductive hypothesis is that P (k) : ak = 2(2k − 1)
is true. We want to prove that ∀k ≥ 0, P (k) ⇒ P (k + 1). Using the
recurrence:

ak+1 = 2ak−1+2 = 2[2(2k−1)]+2 = 2k+2−4+2 = 2k+2−2 = 2(2k+1−1)
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3. Consider a sequence where a0 = 1, a1 = −2, and an = −2an−1 − an−2

for n ≥ 2.

(a) Guess an as a function of n and prove it by strong induction.

Solution

a0 = 1, a1 = −2, a3 = 4, a4 = −5, . . .

We guess that an = (n+ 1)(−1)n. To prove it:

Base case:

a0 = (0 + 1)(−1)0 = 1

a1 = (1 + 1)(−1)1 = −2

Inductive step: The inductive hypothesis is that P (k) : ai = (i +
1)(−1)i is true for all 0 ≤ i ≤ k. We want to prove that ∀k ≥
1,∧0≤i≤kP (i) ⇒ P (k + 1). Consider ak+1:

ak+1 = −2ak−ak−1 = −2(k+1)(−1)k−[(k−1)+1](−1)k−1 = 2(k+1)(−1)k−k(−1)k−1

= 2(k+1)(−1)k+1−k(−1)k+1 = (2k+2−k)(−1)k+1 = [(k+1)+1](−1)k+1

The proof works as long as k − 1 ≥ 0, so that ak−1 is defined. There-
fore, the base case stopping at n0 = 1 is enough.

(b) Use the characteristic equation method.

We have x2 = −2x − 1 which is equivalent to x2 + 2x + 1 = 0 and
(x + 1)2 = 0, which has two solutions that are the same p = q = −1.
Therefore, an = c1(−1)n + c2n(−1)n. Using a0 and a1, we find that
c1 = c2 = 1 and get an = (n+ 1)(−1)n.

4. Consider the following recurrence,

an =
1

2
an−1 + 1

where a1 = 1.
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(a) Guess a pattern for an and prove it by induction.

Solution

a1 = 1

a2 =
1
2 + 1 = 3

2

a3 =
1
2
3
2 + 1 = 3

4 + 1 = 7
4

a4 =
1
2
7
4 + 1 = 7

8 + 1 = 15
8

...

an = 2n−1
2n−1 = 2− 1

2n−1

Here’s a proof by induction:

Base case: a1 = 2− 1
21−1 = 2− 1

20
= 2− 1 = 1

Inductive step: The inductive hypothesis is that P (k) : ak = 2− 1
2k−1

is true, and we want to prove that ∀k ≥ 1, P (k) ⇒ P (k+1). Consider
ak+1 and use the recurrence:

ak+1 =
1

2
ak + 1 =

1

2

[
2− 1

2k−1

]
+ 1 = 1− 1

2k
+ 1 = 2− 1

2(k+1)−1

(b) Convert the recurrence for an into the form an = Aan−1 +Ban−2

by eliminating the constant 1 in the recurrence. Solve for an using the
characteristic equation.

Solution

an =
1

2
an−1 + 1

an−1 =
1

2
an−2 + 1

Therefore, an − an−1 =
1
2an−1 − 1

2an−2.

an =
3

2
an−1 −

1

2
an−2

The characteristic equation is x2− 3
2x+

1
2 = 0, so consider the equation

2x2 − 3x+ 1 = 0
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which has the two solutions p = 1 and q = 1/2. Therefore,

an = c1(1)
n + c2

(1
2

)n

a1 = c1+c2/2 = 1 a2 = c1+c2/4 = 3/2 This gives c1 = 2 and c2 = −2,
resulting in an = 2− 2 1

2n = 2− 1
2n−1 .

(c) Find an using the generating function method (follow the example
illustrated in class).

Solution

f(x) = a1x+ a2x
2 + a3x

3 + . . .

f(x) = a1x+ (12a1 + 1)x2 + (12(a2 + 1)x3 + . . .

f(x) = (a1x+ x2 + x3 + . . .) + 1
2(a1x

2 + a2x
3 + . . .)

f(x) = x(1 + x2 + x3 + . . .) + x
2 (a1x+ a2x

2 + . . .)

f(x) = x
1−x + x

2f(x)

f(x)[1− x
2 ] =

x
1−x ⇒ f(x) = x

(1−x)(1−x
2
) =

A
1−x + B

1−x
2

Matching the numerator A(1 − x/2) + B(1 − x) with x, we find that
−A/2−B = 1 and A+B = 0, so A = 2 and B = −2. Therefore,

f(x) =
2

1− x
− 2

1− x/2

= 2(1 + x+ x2 + . . .)− 2(1 +
x

2
+

x2

4
+ . . .)

So the coefficient of xn is an = 2− 2 1
2n = 2− 1

2n−1 .

5. Consider 2n points on the circumference of a circle. In how many ways
can we join the points pairwise by n chords such that no two chords
intersect? Call this number an, find a recurrence for it, then solve it.

Solution

Pick any of the 2n points on the circumference of the circle. By joining
this point to another one on the circle, we must end up with an even
number of points on each side of the segment. This number can be
0, 2, 4, ..., 2n − 2. We can then recursively do the same thing for each
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side. Therefore, if an is the number of ways we can join the 2n points,
we must have

an = a0an−1 + a1an−2 + . . . an−1a0

Since a0 = 1 (with no points there is only one way), this is exactly the
Calatan number recurrence. Therefore, an = 1

n+1

(
2n
n

)
.
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Problem 1 (optional)
Consider the following sequences starting at a0, a1, . . .:

5,−10, 20,−40, . . .

1, 7, 49, 343, . . .

(a) For each of the sequences above, find a recurrence of the form an = Aan−1

for n ≥ 1, and solve for an as a function of n.

Solution
The recurrences are: an = −2an−1 with a0 = 5, and an = 7an−1 with
a0 = 1, respectively. For the first recurrence, we get an = 5(−2)n, and for
the second recurrence, we get an = 7n.

(b) For each of the sequences above, find a recurrence of the form an =
Aan−1 + Ban−2 for n ≥ 2, by considering the recurrence from part (a) for
an and an−1; the solution is not unique, depending on how you combine re-
currences, so find the solution that corresponds to adding up the recurrences.

Solution
Consider the first recurrence:

an = −2an−1

an−1 = −2an−2

So we get: an + an−1 = −2an−1 − 2an−2. Therefore, an = −3an−1 − 2an−2,
n ≥ 2. Similarly, for the second recurrence, we have an = 6an−1 + 7an−2,
n ≥ 2. Note: Solving using the characteristic equation will retrieve the exact
same solutions as in (a).

(c) There are infinitely many recurrences of the form an = Aan−1 + Ban−2

that work since we can write an = cpn + 0 · qn for q ̸= p. Find a recurrence
of the form an = Aan−1 + Ban−2 for n ≥ 2 that works for both sequences
at the same time.

Solution
We need p = −2 and q = 7 to be the two solutions of the characteristic
equation. Therefore, we need

(x+ 2)(x− 7) = 0
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This gives x2 = 5x+14. Therefore, the recurrence an = 5an−1+14an−2 will
work for both.

Problem 2 (optional)
Consider the following recurrence:

an = an−1 − an−2

where a0 = 0 and a1 = 1.

(a) Using the recurrence and the initial conditions, generate the first 18
numbers of the sequence {an}. Try to guess a way to compute an immedi-
ately by simply knowing n.

Solution
Here are the first few terms in the sequence:

0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . .

This is a repetition of the pattern 0, 1, 1, 0,−1,−1. Therefore, we can say
the following:

an =


0 an ≡ 0, 3 (mod6)
1 an ≡ 1, 2 (mod6)
−1 an ≡ 4, 5 (mod6)

(b) Solve for an. Hint: observe that an has the form an = Aan−1 +Ban−2.

Solution
When we form the characteristic equation, we get x2−x+1 = 0, which has
the following solutions:

1 + i
√
3

2

So an = c1

(
1+i

√
3

2

)n
+ c2

(
1−i

√
3

2

)n
. Solving for c1 and c2 using a0 and a1,

we get c1 = −c2 = c = −i
√
3
3 .

(c) Your expression for an in part (b) will contain the imaginary number i.
Use the binomial theorem to obtain a nicer expression for an:

an =
1

2n−1

[(n
1

)
30 −

(
n

3

)
31 +

(
n

5

)
32 − . . .

]
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Solution

an =
c

2n
[(1 + i

√
3)n − (1− i

√
3)n]

an =
c

2n

[∑
k

= 0n
(
n

k

)
(i
√
3)k −

n∑
k=0

(
n

k

)
(−i

√
3)k

]
The even power will cancel each other, so we get:

an =
c

2n

[ ∑
k odd

(
n

k

)
(i
√
3)k −

∑
k odd

(
n

k

)
(−i

√
3)k

]

an =
c

2n

[ ∑
k odd

(
n

k

)
(i
√
3)k +

∑
k odd

(
n

k

)
(i
√
3)k

]
an =

c

2n−1

[ ∑
k odd

(
n

k

)
(i
√
3)k

]

an =
−i

√
3

3 · 2n−1

[ ∑
k odd

(
n

k

)
(i
√
3)k

]
an =

−1

3 · 2n−1

[ ∑
k odd

(
n

k

)
(i
√
3)k+1

]
an =

−1

2n−1

[ ∑
k odd

(
n

k

)
ik+1

√
3
k−1

]
The even powers of i will provide the alternating signs, and the even power
of

√
3 will provide the powers of 3.
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