
Linear Complexity Algorithms for Maximum Advance
Deflection Routing in Some Networks

Saad Mneimneh∗ and Franck Quessette†
∗ saad@alum.mit.edu, Visiting Professor, Hunter College of CUNY, New York, NY 10021, USA

† PRiSM, Université De Versailles, Versailles Cedex, France

Abstract—We consider routing in a network with no buffers at
intermediate nodes: packets must move in a synchronized manner
in every time step until they reach their destinations. If contention
prevents a packet from advancing, i.e. taking an outgoing link on
a shortest path from its current node to its destination, it is de-
flected on a different link, hence the name deflection routing. One
common strategy in the design of deflection routing algorithms is
maximum advance, which advances a maximum number of packets
at every node in every time step. We examine two settings: non ca-
pacitated networks and capacitated networks. We present linear
complexity algorithms for maximum advance deflection routing
in networks with topological properties as follows: When the net-
work is non capacitated, we require that each packet can advance
on at most two links from any intermediate node in the network.
When the network is capacitated, we require a special condition
on the links in addition to the one mentioned above. Metropolitan
and wide area networks typically satisfy those conditions.

Index Terms— Maximum advance, deflection routing, maxi-
mum matching, bipartite graphs.

I. INTRODUCTION

DEFLECTION routing is an example of the family of rout-
ing algorithms that make no use of buffers at intermediate

nodes, and hence provide an attractive solution for routing in
bufferless (e.g. all-optical) networks. For some literature on
deflection routing algorithms see [2], [3], [4], [1], and [6].

We assume that the time proceeds in discrete time steps syn-
chronized throughout the network, and that a packet traverses
one link per time step. If the current node is the final destina-
tion of the packet, the packet is absorbed and hence disappears
from the network; otherwise, the packet is forwarded on an out-
going link (no buffering). However, if contention prevents a
packet from advancing, i.e. taking an outgoing link on a short-
est path from its current node to its destination, it is deflected on
a different link, hence the name deflection routing. A common
contention resolution rule applied locally at every node in every
time step is known in the literature as maximum advance.

Maximum Advance deflection: a maximum number of
packets must advance at every node in every time step.

Therefore, a maximum advance algorithm does not deflect
packets unless the deflection cannot be avoided, and hence is
expected to make good progress over time.

We assume that links are bidirectional, and that each link can
carry per time step in each direction at most a number of packets
equal to its capacity. In a non capacitated network, each link has
a unit capacity. In a capacitated network, the capacities of all

links are given (we assume here that they are integers) and need
not be equal. The number of packets at a node at any given time
step is at most equal to the sum of link capacities at that node 1.
Since links are bidirectional, the network capacity is sufficient
for these packets to leave the node in the next time step 2.

We will denote by the advance set at a node in a given time
step, the set of packet advances made by that node in that time
step. More formally, we can represent the advance set using the
following abstraction: For every node at a given time step, we
construct a bipartite graph G = (VP , VL, E) such that there is
a vertex in VP for every packet that is not destined to that par-
ticular node, there is a vertex in VL for every outgoing link that
can advance packets in VP , i.e. that is on a shortest path to the
destination of some packets in VP , and finally there is an edge
(p, l) in E where p ∈ VP and l ∈ VL (thus a bipartite graph) if
packet p can advance on link l, i.e. if l is on a shortest path to
p’s destination. The bipartite graph G, therefore, represents the
preferences of packets to links 3. Consequently, an advance set
at a node with a bipartite graph G = (VP , VL, E) can be rep-
resented as a set A ⊆ E where an edge (p, l) ∈ A implies that
packet p will advance on link l. For a non capacitated network,
the advance set A is a matching. For a capacitated network,
the advance set A satisfies that every vertex in VP belongs to at
most one edge in A and every vertex l ∈ VL belongs to at most
c(l) edges in A, where c(l) is the capacity (an integer) of link l.

Despite the fact that maximum advance algorithms make
good progress over time, they are difficult to implement 4, as
they require finding at every node a maximum advance set (an
advance set of maximum size). For a non capacitated net-
work, this is the same as finding a maximum matching in the
bipartite graph G = (VP , VL, E), which can be solved in
O(|E|√|VP | + |VL|) time in general [9]. For a capacitated net-
work, the problem can be transformed into a matching problem
by duplicating a node l ∈ VL c(l) times. However, this makes
the problem size depend on the capacities. Alternatively, one
could model the problem as a maximum flow problem which

1Packets can reach the node only through those links and a new packet is not
injected into the network at the node unless there is enough capacity to move
that packet.

2The assumption of bidirectional links can be replaced by the more general
assumption that at every node the total capacity of the inward links is equal
to the total capacity of the outward links. For instance, in a Manhattan street
network [8], every node has two inward and two outward links of unit capacity
each.

3An edge in the bipartite graph G = (VP , VL, E) is not to be confused with
a link in the original network.

4Compare this strategy to other advance strategies like, for instance, advanc-
ing at least one packet, which is known in the literature as minimum advance
[6].

0-7803-9569-7/06/$20.00 c©2006 IEEE

127

has a higher time complexity than the maximum matching prob-
lem (see [9] for a discussion on flows and matchings).

Note that a time of O(|VP | + |VL| + |E|) is needed for con-
structing the bipartite graph. Note also that performing max-
imum advance deflection routing does not stop at the point of
finding a maximum advance set, because deflected packets need
to be routed as well, even if they will be routed arbitrarily on
the remaining available links. For this reason, the algorithm
needs to find an available link for each deflected packet. This
operation can be done in a time at most linear in the number of
outgoing links at the node.

In the rest of this paper, we only concentrate on finding a
maximum advance set. Our goal is to examine some topolog-
ical properties of the network that will make it possible to ob-
tain algorithms that compute a maximum advance set in a time
linear in the number of packets, i.e. in O(|VP |) time. Our topo-
logical properties will be as follows: When the network is non
capacitated, we require that each packet can advance on at most
two links from any intermediate node in the network. When
the network is capacitated, we require a special condition on
the links in addition to the one mentioned above. Details about
these conditions and the intuition behind them will be explained
throughout the paper. The rest of the paper is organized as fol-
lows: Section II discusses the case of non capacitated networks.
Section III discusses the case of capacitated networks. Finally,
we conclude in Section IV.

II. NON CAPACITATED NETWORKS

For a non capacitated network, we will impose the following
condition on the network.

Condition I: Let t be any node in the network. For every
node s, there exist at most two outgoing links that are on a
shortest path from s to t.

Therefore, each packet can advance on at most two links.
This is true for instance in a 2-dimentional square grid net-
work, in a m × n HR4 network [10] (a toroidal network)
where both m and n are odd, and in a Manhattan street net-
work [8] (a toroidal network where each node has two inward
and two outward links, see footnote 2). All these metropolitan
network topologies provide a motivation for Condition I. In a
general network, however, this condition does not necessarily
hold. Nevertheless, if we look at other practical networks, es-
pecially wide area networks, we find that this condition is not a
very restrictive one. For instance, Figure 1 illustrates examples
of commercial backbone networks in the USA where Condition
I is satisfied.

A direct consequence of Condition I is its impact on the bi-
partite graph G = (VP , VL, E) obtained at every node. Each
vertex in VP will have a degree of at most two, because every
packet in VP can advance on at most two links in VL. Therefore,
|VL| ≤ 2|VP | and |E| ≤ 2|VP |, and hence both |VL| and |E| are
O(|VP |), which will make it possible to obtain an O(|VP |) time
algorithm for computing a maximum advance set. Note that a
general maximum matching algorithm will have a running time
of O(|VP |1.5) under these conditions.

Fig. 1. Example backbone networks from www.caida.org

We formally capture the impact of Condition I on our bipar-
tite graph G = (VP , VL, E) in the following definition.

Definition 1: A bipartite graph G = (VP , VL, E) is called a
BG2 graph iff for every p ∈ VP , deg(p) ≤ 2.

Based on the representation described in Section I of an ad-
vance set, our problem of finding a maximum advance set at a
node in a non capacitated network satisfying Condition I will be
equivalent to computing a maximum matching in a BG2 graph.

A. The Algorithm

The following algorithm, labeled Algorithm I in Figure 2,
computes a matching A in a graph with an edge set E.

Algorithm I

A = ∅
while E �= ∅

do if ∃(p, l) ∈ E with deg(l) = 1
then A ← A ∪ {(p, l)}
else pick any (p, l) ∈ E

A ← A ∪ {(p, l)}
remove all edges in E that are
incident to vertices p or l

Fig. 2. Algorithm I

Figure 2 gives a high level description of the algorithm which
by no means is to be taken as the actual implementation. How-
ever, this description will provide a clearer and more intuitive
understanding of the algorithm. We will discuss the implemen-
tation issues and the running time of Algorithm I at the end of
section II. For now, it is enough to note that Algorithm I can
be implemented to have a running time of O(|VP |) if the graph
with the edge set E is a BG2 graph.

128

Algorithm I picks a vertex l ∈ VL with degree 1 and adds the
edge (p, l) to the matching and removes all edges incident to p
or l. If no such vertex is found, the algorithm adds an arbitrary
edge to the matching and updates the graph in the same way.
The algorithm stops when no more edges can be added to the
matching.

In terms of our routing problem, Algorithm I picks a link l
that advances one packet only, say p, and advances p on l. Intu-
itively, this is a good choice since no other packets can advance
on l. Then the algorithm updates the preferences by disregard-
ing link l (no more packets can advance on l) and packet p (p
will advance on link l). If no such link l is found, Algorithm
I performs an arbitrary advance and updates the preferences in
the same way. When no more advances can be done, the algo-
rithm stops.

A similar but more restrictive algorithm appears in [10]. The
algorithm of [10] works by repeatedly advancing a packet p on a
link l with minimum deg(l) and updating the graph accordingly.
Therefore, the algorithm of [10] is a special implementation of
Algorithm I.

Next we formally prove that Algorithm I computes a max-
imum matching in a BG2 graph. Therefore, when G =
(VP , VL, E) is the bipartite graph obtained at a node in a net-
work satisfying Condition I, the matching A computed by Al-
gorithm I will also represent a maximum advance set.

B. Correctness of the Algorithm

As argued before, to prove that Algorithm I computes a max-
imum advance set at a node in a network satisfying Condition
I, it is enough to show that it computes a maximum matching in
a BG2 graph. We start with the following simple lemma.

Lemma 1: If a graph G contains a vertex l with degree 1,
then there exists a maximum matching that contains edge (p, l)
which connects l in G.

Proof: Consider a maximum matching A that does not
contain edge (p, l). Vertex l is not matched in A since oth-
erwise (p, l) ∈ A (vertex l has degree 1). Vertex p must be
matched in A, otherwise A cannot be a maximum matching
since A ∪ (p, l) is also a matching. Unmatching vertex p and
adding edge (p, l) to A will result in a matching A′ with the
same size as A. Therefore, A′ is a maximum matching that
contains edge (p, l).

Note that Lemma 1 is true for any graph G, not necessarily a
BG2 or even a bipartite graph.

Lemma 2: Given a BG2 graph G = (VP , VL, E) where ev-
ery vertex l ∈ VL has deg(l) ≥ 2, let (p, l) be any edge in E.
Then there exists a maximum matching A that contains edge
(p, l).

Proof: Let A be a maximum matching that does not con-
tain edge (p, l). If either vertex p or vertex l is not matched in
A, then we can obtain a maximum matching that contains (p, l)
as in the proof of Lemma 1.

So assume both vertices p and l are matched in A. Let p be
matched to l0 and l be matched to p0. Consider an alternating

path p0, l, p, l0, Following this alternating path, we obtain
a matching A′ by removing edge (p0, l) from A, adding edge
(l, p) to A, removing edge (p, l0) from A, etc...

A vertex in l ∈ VL is reached at most once from VP on the
alternating path, since vertices in VL are reachable only through
edges that are in the matching A. Since every vertex l ∈ VL has
deg(l) ≥ 2, when a vertex l ∈ VL is reached on the alternating
path, an edge (l, p) for some p ∈ Vp exists, and hence the al-
ternating path continues along that edge (while adding (l, p) to
A).

Consequently, a vertex p ∈ VP is reached at most once from
VL on the alternating path because deg(p) ≤ 2 for all p ∈ Vp

(BG2 graph). If that vertex is matched in A and different from
p0, the alternating path continues along an edge (p, l) in A
(while removing (p, l) from A). Otherwise, it stops.

Since the graph is finite, the alternating path stops at a vertex
in VP that is not matched (possibly p0). Therefore, we obtain a
matching A′ with the same size as A. Therefore, A′ is a maxi-
mum matching that contains edge (p, l).

Using Lemma 1 and Lemma 2, we can now prove the follow-
ing result.

Theorem 1: Algorithm I computes a maximum advance set
at a node in a non capacitated network satisfying Condition I.

Proof: The bipartite graph G = (VP , VL, E) constructed
at the node is a BG2 graph because of Condition I. Since
the network is non capacitated, a maximum advance set cor-
responds to a maximum matching in the BG2 graph G. By
Lemma 1 and Lemma 2, Algorithm I always picks an edge in
the BG2 graph G that can be part of a maximum matching.
Therefore, when Algorithm I stops, the computed matching is a
maximum matching.

We proved that Algorithm I computes a maximum advance
set at a node in a non capacitated network satisfying Condition
I. We can further quantify this maximum, as stated in the fol-
lowing lemma in terms of the matching size.

Lemma 3: For a BG2 graph with k connected components
G1 = (VP 1, VL1, E1), ..., Gk = (VP k, VLk, Ek), the size of
the maximum matching is

k∑

i=1

min(|VP i|, |VLi|)

Proof: Consider one connected component Gi. We
will prove that the size of a vertex cover for Gi is at least
min(|VP i|, |VLi|). This will imply that the minimum size ver-
tex cover is at least min(|VP i|, |VLi|). By the König/Egerváry
theorem, for a bipartite graph, the size of the maximum
matching is equal to the size of the minimum vertex cover.
But the maximum matching in Gi cannot be greater than
min(|VP i|, |VLi|), so it is exactly equal to min(|VP i|, |VLi|).
Summing over all connected components, we obtain the result
of the lemma.

Note that Gi is a connected BG2 graph. Consider a vertex
cover C for Gi. Let S1 be the set of all vertices in VLi that are

129

in C (see Figure 3). If S1 is empty, then C must contain all
vertices in VP i (|C| = |VP i|) and we are done. So assume that
S1 is not empty.

Let S2 be the set of vertices in VP i that are connected to
l1, l2 ∈ VLi such that l1 ∈ S1 and l2 �∈ S1. If S2 is empty, then
|VLi| = |S1| (Gi is connected) and we are done.

Let S3 be the set of vertices in VLi that are not in S1 but
connected to a vertex p ∈ S2. Since every vertex p ∈ VP i

has deg(p) ≤ 2 (BG2 graph), |S2| = |S3|. Since non of the
vertices in S3 are in C by definition of S1, all vertices in S2

must be in C.
Let S4 be the set of vertices in VLi that are not in S1 nor in

S3. Without loss of generality, assume S4 is not empty. We
know that vertices in S4 are not in C by definition of S1. Since
Gi is connected, the only way for a vertex in S4 to be connected
to the rest of the graph is by an edge going to a vertex p in VP i

that is in C and that is in turn connected to S3. Let the set
of those vertices be S5. Since every vertex in p ∈ VP i has
deg(p) ≤ 2 (BG2 graph), |S5| = |S4|. As a result |C| ≥
|S1| + |S2| + |S5| = |S1| + |S3| + |S4| = |VLi| and we are
done.

S2

S5

S1

S3

S4

VPi VLi

Fig. 3. A vertex cover for Gi

C. Time Complexity of the Algorithm

Algorithm I can be implemented using the adjacency list rep-
resentation of the graph [5], where v ∈ Adj[u] iff (u, v) ∈ E.
Edges will not be removed; however, only the degrees of ver-
tices in VP and VL will be updated, thus simulating edge re-
movals. An edge will be considered removed when at least one
of its vertices has a non positive degree.

We maintain a queue of vertices in VL. Originally, the queue
contains all vertices in VL with degree 1. Each time we dequeue
a vertex l with positive degree, we look for an existing edge
(p, l). This can be done by looking for a positive degree for
vertices in Adj[l]. When such a vertex p is found, (p, l) will be
added to the advance set, the degrees of both p and l will be set
to zero (signifying the removal of all edges incident to p or l),
and finally, the degrees of all p′ ∈ Adj[l] and all l′ ∈ Adj[p]
will be updated (decremented by 1). This of course might result
in new vertices with degree 1, which will be added to the queue.

If the queue becomes empty (when no more edges (p, l) with
deg(l) = 1 exist), then a single pass over all vertices in VL is
performed, and if a vertex with positive degree is found, it is
enqueued, thus activating the queue again.

A detailed implementation of Algorithm I is found in
Appendix A. Initializing the degrees of vertices takes
O(|VP | + |VL| + |E|) time. Initializing the queue can be done
in O(|VL|) time. The total time spent on looking for edges in
FIND EDGE after a vertex is dequeued is O(|E|). The total
time spent on updating degrees in ADVANCE is O(|2E|) (up-
dates on both sides). The final pass over vertices in VL takes
O(|VL|) time. All queue operations take O(1). Therefore, the
total running time of Algorithm I is O(|VP |) in a BG2 graph.

Theorem 2: The time complexity of Algorithm I on a BG2

graph is O(|VP |) in the RAM model.

III. CAPACITATED NETWORKS

In this section, we address a more general setting for max-
imum advance deflection routing, namely a capacitated net-
work. In a capacitated network, each link l has a capac-
ity c(l) (assumed here to be an integer), and hence can carry
up to c(l) packets in one time step. The maximum advance
set no more corresponds to a matching in our bipartite graph
G = (VP , VL, E) obtained at every node. Therefore, algo-
rithms for computing a maximum matching in a bipartite graph
will not work. One has to revert to a more general maximum
flow algorithm for which the time complexity is higher than
O(|E|√|VP | + |VL|) [9].

Motivated by the same set of metropolitan networks men-
tioned previously, and the network topologies of Figure 1, we
further strengthen Condition I with the intention to obtain a sim-
ple O(|VP |) time algorithm for computing a maximum advance
set at every node in the capacitated network.

Therefore, we will assume that our capacitated network sat-
isfies a Condition II, which will be a stronger version of Condi-
tion I.

Definition 2: For a node s in the network, two outgoing links
are adjacent iff there exists a node t such that both links are on
shortest paths from s to t.

Condition II: Condition I is satisfied, and given a node s,
every outgoing link has at most two adjacent links.

The impact of Condition II on the bipartite graph G =
(VP , VL, E) obtained at every node is that G is a BG2 graph,
since Condition II ⇒ Condition I, and G satisfies that every
vertex in VL can reach at most two other vertices in VL with
paths of length 2. We formally capture the impact of Condi-
tion II on our bipartite graph G = (VP , VL, E) in the following
definition.

Definition 3: A bipartite graph G = (VP , VL, E) is called an
adjacent BG2 graph iff it is a BG2 graph and for every l ∈ VL,
l can reach at most two other vertices in VL with paths of length
2.

As a result of the definition above, a connected component
in an adjacent BG2 graph can be represented as one of the two
graphs in Figure 4, where Si is the set of packets that can ad-
vance on link li only, and Ti,j is the set of packets that can

130

advance on both links li and lj . Note that in the graphs of Fig-
ure 4, each vertex in VL (represented as a black dot), can reach
at most two other vertices in VL with paths of length 2.

Given the special representation in Figure 4 of a connected
component in our bipartite graph G = (VP , VL, E), we devise
an algorithm for computing a maximum advance set in O(|VP |)
time.

RightLeft

S0

l0

S1 S2 Sn-1 Sn

T0,1 T1,2 Tn-1,n

l1 l2 ln-1 ln

(a)

(b)

Sn-1 S2

T0,1

T1,2Tn-1,n

S0

S1Sn
l0

 l1

l2

 ln

ln-1

Tn,0

Right

Left

Fig. 4. A connected component in an adjacent BG2 graph

A. The Algorithm

Consider Algorithm II in Figure 5 that operates on an adja-
cent BG2 graph. As before, Figure 5 is just a high level descrip-
tion of the algorithm. It is possible to implement Algorithm II
to have a running time of O(|VP |) on an adjacent BG2 graph.
We will discuss the implementation issues and running time of
Algorithm II at the end of Section III.

Algorithm II advances packets in three stages. In each stage,
if a packet advances on a link, the capacity of that link is decre-
mented by 1. In the first stage, the algorithm makes advances
for packets in the sets Si on links li. In the second stage, the
algorithm makes advances for packets in the sets Ti,j on links
lj (to the right in Figure 4). In the third stage, the algorithm
makes advances for packets in the sets Ti,j on links li (to the
left in Figure 4).

The first and third stages of the algorithm are straight for-
ward because they basically entail advancing as many packets
as possible in the sets Si on links li and in the sets Ti,j on links
li, respectively. Therefore, the conditions of the first and third
stages do not need to be checked explicitly, and we can imme-
diately advance min(|Si|, c(li)) packets in Si on li in the first

stage, and min(|Ti,j|, c(li)) packets in Ti,j on li in the third
stage. On the other hand, the condition of the second stage for
a given set Ti,j may change from true to false and vise-versa.
Therefore, determining the conditions in the second stage is the
most critical aspect of the algorithm. For a given set Ti,j , we
need to determine if |Ti,j | > c(li) and c(lj) > 0, in which case,
we advance a packet in Ti,j on link lj . If no set Ti,j satisfies the
condition, we go to the third stage.

Algorithm II

A ← ∅
while ∃i such that Si �= ∅ and c(li) > 0

do pick any p ∈ Si

Si ← Si − {p}
c(li) ← c(li) − 1
A ← A ∪ {(p, li)}

� right advances
while ∃i, j such that |Ti,j | > c(li) and c(lj) > 0

do pick any p ∈ Ti,j

Ti,j ← Ti,j − {p}
c(lj) ← c(lj) − 1
A ← A ∪ {(p, lj)}

� left advances
while ∃i, j such that |Ti,j | �= 0 and c(li) > 0

do pick any p ∈ Ti,j

Ti,j ← Ti,j − {p}
c(li) ← c(li) − 1
A ← A ∪ {(p, li)}

Fig. 5. Algorithm II

By symmetry, the Right and Left conventions of Figure 4 can
be reversed. Not only that, but it is also possible for Algorithm
II to reverse the Right and Left conventions at any time during
its operation, but this is a detail that is not of great importance
here. In the next section we prove that Algorithm II computes a
maximum advance set in an adjacent BG2 graph.

B. Correctness of the Algorithm

We state and prove a simple lemma similar to Lemma 1.

Lemma 4: In an adjacent BG2 graph, if Si �= ∅ and
c(li) > 0, then there exists a maximum advance set that ad-
vances a packet in Si on link li.

Proof: Consider a maximum advance set A that does not
advance a packet in Si on link li. This implies that all the pack-
ets in Si are deflected (they can advance on li only). Let p be
an arbitrary packet in Si. We can advance p on li and deflect
another packet that advances on li in A, thus not exceeding the
capacity c(li). We obtain an advance set A′ that has the same
size as A. Therefore, A′ is a maximum advance set that ad-
vances a packet in Si on link li.

Lemma 4 justifies the first stage of Algorithm II. Note that
after the first stage in done, c(li) > 0 ⇒ Si = ∅. Next we prove

131

another simple lemma which shows that the work done in the
second stage does not violate the maximum advance strategy.

Lemma 5: In an adjacent BG2 graph, if |Ti,j | > c(li) and
c(lj) > 0, then there exists a maximum advance set that ad-
vances a packet in Ti,j on link lj .

Proof: Consider a maximum advance set A that does not
advance a packet in Ti,j on link lj . Since |Ti,j | > c(li), there
must be a packet p ∈ Ti,j that is deflected. We can advance p on
lj and deflect another packet that advances on lj in A, thus not
exceeding the capacity c(lj). We obtain an advance set A′ that
has the same size as A. Therefore, A′ is a maximum advance
set that advances a packet in Ti,j on link lj .

Note that Lemma 4 and Lemma 5 are independent, implying
that the first and second stages of Algorithm II can be inter-
leaved in any way until both stages are done. Note also that
after the second stage is done, c(lj) > 0 ⇒ |Ti,j | ≤ c(li).
The next lemma provides a justification for the last stage of the
algorithm.

Lemma 6: In an adjacent BG2 graph, if ∀ Ti,j , c(li) > 0 ⇒
Si = ∅ and c(lj) > 0 ⇒ |Ti,j| ≤ c(li), then advancing
min(c(li), |Ti,j |) packets in Ti,j on link li, for all Ti,j , results
in a maximum advance set.

Proof: Consider an advance set A that advances
min(c(li), |Ti,j |) packets in Ti,j on link li, for all Ti,j (this is
what Algorithm II performs in the third stage). We will prove
that A is a maximum advance set. Since c(li) > 0 ⇒ Si = ∅,
no packets in the sets Si can advance. On the other hand, a max-
imum advance set cannot advance more than min(c(li), |Ti,j |)
packets in Ti,j if c(lj) = 0, and in general, cannot advance
more than |Ti,j | packets in Ti,j . For all j such that c(lj) = 0,
A advances min(c(li), |Ti,j |) packets in Ti,j on link li. For all
j such that c(lj) > 0, and since |Ti,j | ≤ c(li), A advances
min(c(li), |Ti,j |) = |Ti,j | packets in Ti,j on link li. Therefore,
the number of packets that advance in A is equal to the number
of packets that advance in a maximum advance set, hence A is
a maximum advance set.

Using the above three lemmas, we can prove the following
result:

Theorem 3: Algorithm II computes a maximum advance set
at a node in a capacitated network satisfying Condition II.

Proof: Since the capacitated network satisfies Condition
II, we know that the bipartite graph G = (VP , VL, E) obtained
at a node is an adjacent BG2 graph. Therefore, Lemma 4, 5,
and 6 apply. By Lemma 4 and 5, up to the end of both the first
and the second stages, Algorithm II makes advances that are
part of a maximum advance set. Since after the first and second
stages of Algorithm II are done, ∀ Ti,j , c(li) > 0 ⇒ Si = ∅ and
c(lj) > 0 ⇒ |Ti,j| ≤ c(li), then starting from the third stage,
Algorithm II computes a maximum advance set by Lemma 6.
Therefore, Algorithm II computes a maximum advance set at
every node in a capacitated network satisfying Condition II.

C. Time Complexity of the Algorithm

It is possible to implement Algorithm II to run in O(|VP |)
time. A pseudocode for the implementation is shown in Ap-
pendix B. There are two important parts of the implementation.
The first is to construct the representation in Figure 4 for the ad-
jacent BG2 graph. This can be done in O(|VP |+ |VL|+ |E|) =
O(|VP |) time, since the graph is a BG2 graph. By appropriate
use of pointers, the representation will allow to determine Si

and Ti,j for a given li in O(1) time, and similarly, to determine
li given Si or Ti,j in O(1).

The second important part of the implementation involves the
second stage, since as argued before, the first and third stages
are trivial to implement once we have the appropriate represen-
tation of Figure 4. For the second stage we maintain a queue of
Ti,j’s that satisfy the condition |Ti,j | > c(li) and c(lj) > 0. If
the queue is not empty, we dequeue a Ti,j and advance packets
in Ti,j on link lj until Ti,j no more satisfies the above condi-
tion. By updating c(lj), the condition for some Tj,k if it exists
(it will be unique) may change. So if Tj,k now satisfies the con-
dition, we enqueue it if it is not already in the queue. Checking
whether Tj,k is in the queue or not can be done by maintaining
a Boolean for each Ti,j . Whenever the queue is empty, we go
to the third stage.

The work of the first and third stages takes O(|VP |) time
since they both advance a number of packets proportional to
their work.

The work of the second stage takes also O(|VP |) time since
every time a Ti,j is dequeued, at least one packet advances. This
is because once a Ti,j is in the queue, the condition |Ti,j | >
c(li) and c(lj) > 0 remains valid until Ti,j is dequeued (c(li)
can only decrease and c(lj) is constant while Ti,j is enqueued).
After a Ti,j is dequeued, all updates to the queue take O(1)
because the condition for at most one other Tj,k is affected.

Therefore, the total running time of Algorithm II is O(|VP |)
as stated in the following theorem:

Theorem 4: The time complexity of Algorithm II on an ad-
jacent BG2 graph is O(|VP |) in the RAM model.

IV. CONCLUSION

We presented two linear time algorithms for maximum ad-
vance deflection routing: Algorithm I for non capacitated net-
works satisfying that every packet can advance on at most two
links from its current node, and Algorithm II for capacitated net-
works satisfying a special condition on the links in addition to
the one mentioned above. Practical networks, like metropolitan
and wide area networks, tend to satisfy those conditions. Future
work will consider efficient approximation and probabilistic al-
gorithms in the absence of such conditions. Our algorithms can
also be used in buffered networks where routing tables can store
up to two outgoing links for each destination. The routing will
therefore be such that a maximum number of packets advance,
and hence a minimum number of packets are buffered, without
compromising the linear time complexity of the routing algo-
rithm.

132

REFERENCES

[1] D. Barth, P. Berthomé, T. Czarchoski, J.M. Fourneau, C. Laforest, and S.
Vial, A mixed deflection and convergence routing algorithm: Design and
performance.

[2] F. Borgonovo, L. Fratta, and J. Bannister, Unslotted deflection routing in
all-optical networks. IEEE Globecom, 1993, pp. 119-125.

[3] F. Borgonovo, L. Fratta, and J. Bannister, On the design of optical deflec-
tion routing networks. IEEE Infocom, 1994, pp. 120-129.

[4] T. Chich, J. Cohen, and O. Fraigniaud, Unslotted deflection routing: A
practical and efficient protocol for multihop optical networks. IEEE/ACM
Transactions on Networking, vol. 9, no. 1, February 2001.

[5] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms.
Second edition, MIT Press.

[6] U. Feige, R. Krauthgamer, Networks on which hot-potato routing does not
block. Distributed Computing, vol. 13, pp. 53-58, 2000.

[7] D. König, Graphen und matrices. Mathematikai és Fizikai Lapok 39, pp.
116 - 119, 1931.

[8] N. F. Maxemchuck, Routing in the Manhattan street network. IEEE Trans-
actions on Communications, vol. COM-35, No. 5, May 1987.

[9] R. Tarjan, Data Structures and Network Algorithms. Society of Industrial
and Applied Mathematics, SIAM, 1983.

[10] J. Wong and Y. Kang, Distributed and fail-safe routing algorithms in
toroidal-based metropolitan area networks. Journal of Computer Networks
and ISDN Systems, vol. 18, pp. 379-391, 1989/90.

APPENDIX A

Algorithm I

FIND EDGE(l)
for each p ∈ Adj[l]

do if deg[p] > 0
then return p

ADVANCE(p, l, Q)
for each p′ ∈ Adj[l]

do deg[p′] ← deg[p′] − 1 � no need if deg[p′] = 0
for each l′ ∈ Adj[p]

do deg[l′] ← deg[l′] − 1 � no need if deg[l′] = 0
if deg[l′] = 1

then ENQUEUE(Q, l′)
deg[p] ← 0
deg[l] ← 0
A ← A ∪ {(p, l)}

PROCESS QUEUE(Q)
while Q �= ∅

do l ← DEQUEUE(Q)
if deg[l] > 0

� there still exists an edge (p, l) incident to l
then p ← FIND EDGE(l)

ADVANCE(p, l, Q)

A ← ∅
Q ← ∅
initialize degrees for all vertices in VP and VL

for each l ∈ VL

do if deg[l] = 1
then ENQUEUE(Q, l)

PROCESS QUEUE(Q)
for each l ∈ VL

do if deg[l] > 0
then ENQUEUE(Q, l)

PROCESS QUEUE(Q)

APPENDIX B

Algorithm II

A ← ∅
Q ← ∅
construct the representation in Figure 4 of the adjacent
BG2 graph G = (Vp, VL, E)

� first stage
for every Si

do let P ⊆ Si be of size min(|Si|, c(li))
c(li) ← c(li) − min(|Si|, c(li))
A ← A ∪ [

⋃
p∈P {(p, li)}]

� second stage
for every Ti,j

do if |Ti,j | > c(li) and c(lj) > 0
then ENQUEUE(Q, Ti,j)

while Q �= ∅
do Ti,j ← DEQUEUE(Q)

let P ⊆ Ti,j be of size min(|Ti,j | − c(li), c(lj))
c(lj) ← c(lj) − min(|Ti,j | − c(li), c(lj))
A ← A ∪ [

⋃
p∈P {(p, lj)}]

� Tj,k is unique if it exists
if |Tj,k| > c(lj) and c(lk) > 0 and Tj,k �∈ Q

then ENQUEUE(Q, Tj,k)

� third stage
for every Ti,j

do let P ⊆ Ti,j be of size min(|Ti,j |, c(li))
c(li) ← c(li) − min(|Ti,j |, c(li))
A ← A ∪ [

⋃
p∈P {(p, li)}]

133

