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Abstract—The interaction of two RNA molecules is a common mechanism for many biological processes. Small interfering RNAs

represent a simple example of such an interaction. But other more elaborate instances of RNA-RNA interaction exist. Therefore,

algorithms that predict the structure of the RNA complex thus formed are of great interest. Most of the proposed algorithms are based

on dynamic programming. RNA-RNA interaction is generally NP-complete; therefore, these algorithms (and other polynomial time

algorithms for that matter) are not expected to produce optimal structures. Our goal is to characterize this suboptimality. We

demonstrate the existence of constant factor approximation algorithms that are based on dynamic programming. In particular, we

describe 1/2 and 2/3 factor approximation algorithms. We define an entangler and prove that 2/3 is a theoretical upper bound on the

approximation factor of algorithms that produce entangler-free solutions, e.g., the mentioned dynamic programming algorithms.

Index Terms—RNA-RNA interaction, approximation algorithms.

Ç

1 INTRODUCTION

THE interaction of two RNA molecules involves an
interplay between the folding of individual molecules

on one hand, and the binding of the two molecules on the
other hand. An example of such interaction is RNA
interference (RNAi), where a small interfering RNA (known
as siRNA) can be used to silence a given gene by targeting
its messenger RNA: The siRNA binds to the (possibly
folding) messenger RNA and triggers a cascade of events
that would eventually destroy it (Post Transcriptional Gene
Silencing by RNAi) [4]. While RNAi may be viewed as a
special case of RNA-RNA interaction, since siRNAs are 19-
21 nucleotides long and do not generally fold, other
complex examples of RNA-RNA interaction exist where
both RNAs fold (see Section 5).

The problem of individual RNA folding has been studied

extensively in the literature, and many polynomial time

algorithms for determining the optimal structure (e.g., with

maximum number of bonds, or more generally with

minimum energy) of a folded RNA molecule have been

developed [9], [12], [13]. Only recently, however, there have

been several concurrent yet independent efforts (including

our own) to mathematically formulate RNA-RNA interac-

tion and develop algorithms that predict the structure of the

RNA complex thus formed, e.g., [10], [2], [11], and [1].
Most of the proposed algorithms (e.g., not [10]) are

based on dynamic programming—apparently a “hard to

avoid” influence from extensive RNA folding literature.

Since mathematical formulations of RNA-RNA interaction

generally give rise to NP-complete problems [1], these

algorithms (and other polynomial time algorithms for that

matter) are not expected to produce optimal structures.

Our goal is to characterize this suboptimality.
We demonstrate the existence of constant factor approx-

imation algorithms that are based on dynamic program-

ming. In particular, we describe 1/2 and 2/3 factor

approximation algorithms. We introduce the concept of an

entangler: a special molecular substructure that may exist in

the formed RNA complex. We argue that the mentioned

dynamic programming algorithms do not produce entan-

glers, and prove that for some instances, any entangler-free

solution is at best a 2/3 factor approximation. However,

despite the theoretical suboptimality of these algorithms,

they are able to predict some known RNA complexes. In

particular, our algorithms predict to a great degree of

satisfaction the fhlA-OxyS and the CopA-CopT complexes

in the Escherichia coli bacteria.
Section 2 motivates the RNA-RNA interaction problem

through a toy example. Section 3 gives a precise mathema-

tical formulation of the problem to be solved. Section 4

describes approximation algorithms based on dynamic

programming and derives the claimed 2/3 upper bound

on the approximation factor. Section 5 provides experi-

mental results. Finally, we conclude in Section 6.

2 A TOY EXAMPLE

Consider the following two RNAs where nucleotides are
represented by patterns. A solid pattern can bond to the
same nonsolid pattern.

The two RNAs can independently fold into two optimal
structures as shown on the next page. Each RNA can have
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up to three bonds optimally. The total number of bonds in
this case is six.

However, if the two RNAs can interact and form external

bonds, then we may obtain a better structure (in terms of

the number of bonds), yielding seven bonds in total, as

shown below (another possibility is to bind the loops

instead of the tails, i.e., kissing loops):

Therefore, to capture the simultaneous folding and
binding of this interaction, one can form an RNA-RNA
interaction graph where every edge represents a possible
bond (either internal to the RNA itself, or external to the
other RNA). The RNA-RNA interaction graph for the
example above is illustrated in Fig. 1 (with edges of the
above structure emphasized).

The problem then becomes to identify a maximum

cardinality set (or, more generally, a set with maximum

weight as described in Section 3) of nonintersecting edges1

(edges sharing a node are also intersecting). This

particular formulation of avoiding intersection is moti-

vated by two facts:

. Pseudoknots are rare in RNA folded structures [9],
[13], [7].

. RNA-RNA binding occurs between a sense (50 to 30)
molecule and an antisense (30 to 50) molecule (so it is
also not likely to have knotted interactions).

3 THE RNA-RNAI PROBLEM

We generalize the idea explored in Section 2 and include a
weight for every possible bond. Therefore, the RNA-RNAi2

problem is the following: Given an RNA-RNA interaction
graph ðV ;EÞ, where nodes of V are partitioned into two
ordered sets X ¼ fx1; . . . ; xmg and Y ¼ fy1; . . . ; yng, and
every edge e 2 E has a weight , find a set of

node disjoint edges S that maximizes
P

e2S wðeÞ such that
(intersection is avoided):

. If ðxi; xjÞ 2 S and ðxk; xlÞ 2 S, then NOT i < k < j < l.

. If ðyi; yjÞ 2 S and ðyk; ylÞ 2 S, then NOT i < k < j < l.

. If ðxi; yjÞ 2 S and ðxk; ylÞ 2 S, then NOT (i < k and
j > l).

The nucleotides of RNA1 are represented by the ordered
elements of X, and the nucleotides of RNA2 are represented
by the ordered elements of Y . Therefore, it is convenient to
consider RNA1 to be the string x ¼ x1 . . .xm, and RNA2 to
be the string y ¼ y1 . . . yn. We refer to the edges of the RNA-
RNA interaction graph connecting both RNAs, i.e., of the
form ðxi; yjÞ, as binding edges. We also refer to the edges of
the RNA-RNA interaction graph internal to a given RNA,
i.e., of the form ðxi; xjÞ or ðyi; yjÞ, as folding edges for that
RNA. A solution to RNA-RNAi (whether optimal or not) is
said to have a weight equal to its achievable sum. As in the
case of RNA folding problems, this weighted formulation
provides a basic model for real RNA-RNA interaction
problems where every bond contributes a specific energy.
In an RNA world, weights are negative and the objective is
to minimize the energy, i.e., the sum of weights, but this is
an equivalent formulation.

A special case of RNA-RNAi is the uniformly weighted
RNA-RNAi where the weights are all the same. For a
uniformly weighted RNA-RNAi, maximizing

P
e2S wðeÞ is

equivalent to maximizing the cardinality of S (as described
in the toy example of Section 2). Even the special case of a
uniformly weighted RNA-RNAi (the decision version) is
NP-complete [1].3

Theorem 1. RNA-RNAi (the decision version) is NP-complete
(even when uniformly weighted).

4 BASIC APPROXIMATION ALGORITHMS

In this section, we provide some basic constant factor
approximation algorithms for the RNA-RNAi problem.
Recall from Section 3 the definitions of binding edges and
folding edges. Also recall that RNA1 can be represented as
the string x ¼ x1 . . .xm, and RNA2 can be represented as the
string y ¼ y1 . . . yn.

4.1 A 1/2 Factor Approximation Algorithm

Consider the structures obtained from performing the
following (using the given weight function):

. optimally solve RNA-RNAi while ignoring binding
edges and

. optimally solve RNA-RNAi while ignoring folding
edges for both RNAs.

The first step corresponds to optimally folding RNA1

and RNA2 independently. The second step corresponds to

optimally aligning4 RNA1 and RNA2.
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Fig. 1. RNA-RNA interaction graph (solution emphasized).

1. Intersection is interpreted here given the particular realization of the
graph, i.e., the graph cannot be redrawn to avoid intersection.

2. The terminology RNA-RNAi, which stands for RNA-RNA interaction,
is not to be confused with RNA interference (RNAi).

3. The NP-completeness result was also established independently by
the author in an unpublished manuscript (initially Southern Methodist
University Technical Report 04-CSE-03) in September 2004. The manuscript
is available from the author.

4. By alignment, we signify the binding resulting from aligning RNA1

and the complement of RNA2 with a zero scoring gap function. For
instance, cgga and gccu align perfectly. This is equivalent to finding the
largest weight common subsequence of RNA1 (of string x ¼ x1 . . .xm) and
the complement of RNA2 (of string y ¼ y1 . . . yn).



Optimal folding and optimal alignment are both well-

studied problems and can be solved in polynomial time.

Optimally folding an RNA of length n takes Oðn3Þ time and

Oðn2Þ space [9], and optimally aligning two RNAs of

lengths m and n, respectively, takes OðmnÞ time [8] and

linear space [5].

The important observation is that one of the two

obtained structures has a weight equal to at least 1/2 the

weight of the optimal solution for the corresponding RNA-

RNAi problem. Let w1 and w2 be the weights achieved by

the two structures, respectively. Let OPT be the weight of

the optimal solution S.

Lemma 1. maxðw1; w2Þ � 1
2OPT .

Proof. Consider the optimal solution. Let A be the sum of

weights of edges (bonds) formed in the folded part of

RNA1, i.e., edges in S of the form ðxi; xjÞ. Let B be the

sum of weights of edges (bonds) formed by the

alignment part of RNA1 and RNA2, i.e., edges in S of

the form ðxi; yjÞ. Let C be the sum of weights of edges

(bonds) formed in the folded part of RNA2, i.e., edges in

S of the form ðyi; yjÞ. Then, OPT ¼ AþBþ C (the

weight of the optimal solution). By the optimality of

the two structures, w1 � Aþ C and w2 � B. Therefore,

2 maxðw1; w2Þ � w1 þ w2 � Aþ C þB ¼ OPT . tu

Obviously, in the independent folding of the RNAs, the

remaining (nonfolded) nucleotides of the RNAs may be

aligned. On the other hand, in the alignment, the remaining

(nonbinding) nucleotides of the RNAs may be folded

independently. These optional steps are shown between

parentheses in the description of the algorithm below.5

Algorithm 1: 1/2 factor approximation.

1. optimally fold RNA1 and RNA2 independently

(optional: optimally align their remainders)
2. optimally align RNA1 and RNA2

(optional: optimally fold their remainders

independently)

3. choose the structure with the maximum weight.

4.2 A 2/3 Factor Approximation Algorithm

Consider the structures obtained from performing the

following (using the given weight function):

. optimally solve RNA-RNAi while ignoring binding
edges,

. optimally solve RNA-RNAi while ignoring the
folding edges for RNA2, and

. optimally solve RNA-RNAi while ignoring the
folding edges for RNA1.

As before, the first step corresponds to optimally folding

RNA1 and RNA2 independently. The second step corre-

sponds to optimally folding RNA1 while interacting with

the nonfolding RNA2. Similarly, the third step corresponds

to optimally folding RNA2 while interacting with the

nonfolding RNA1.

One of the three obtained structures has a weight equal

to at least 2/3 of the weight of the optimal solution for the

corresponding RNA-RNAi problem. Let wi, for i ¼ 1 . . . 3,

be the weight achieved by the three structures, respectively.

Let OPT be the weight of the optimal solution S.

Lemma 2. maxðw1; w2; w3Þ � 2
3OPT .

Proof. Let A, B, and C be defined as in the proof of

Lemma 1, where OPT ¼ AþBþ C. By the optimality of

the three structures, w1 � Aþ C, w2 � AþB, and

w3�BþC. Therefore, 3 maxðw1; w2; w3Þ�w1þw2þw3�
Aþ C þAþBþBþ C ¼ 2ðAþBþ CÞ ¼ 2OPT . tu

As stated in Section 4.1, optimal folding is a well-studied

problem and can be solved in Oðn3Þ time for an RNA of

length n [9]. Therefore, the only concern now is to show that

it is possible to optimally fold RNA1 while interacting with

a nonfolding RNA2 in polynomial time. This can be done by

a dynamic programming algorithm. Let the strings x ¼
x1 . . .xm and y ¼ y1 . . . yn denote the folding and nonfolding

RNAs, respectively. Let V ði; j; k; lÞ denote the weight that

can be achieved in the optimal solution S for the substrings

x½i . . . j� and y½k . . . l�. Then, we have three possibilities for

xj: xj does not bond, xj bonds with some yq (edge

ðxj; yqÞ 2 S) and k � q � l, or xj bonds with some xp (edge

ðxp; xjÞ 2 S) and i � p < j. Therefore, we have the following

dynamic programming algorithm to compute V ð1;m; 1; nÞ.
The last two cases are also illustrated pictorially:

V ði; j; k; lÞ ¼ max

V ði; j� 1; k; lÞ
V ði; j� 1; k; q � 1Þ þ wðxj; yqÞ
V ði; p� 1; k; qÞþ
V ðpþ 1; j� 1; q þ 1; lÞ þ wðxp6¼j; xjÞ

8>><
>>:

over all choices of p and q, where i � p � j and k � q � l
and w is the weight function.

If k < l, we set V ði; j; k; lÞ ¼ Fxði; jÞ, the weight of

optimally folding x½i . . . j�. The actual structure (i.e., S) can

be obtained by standard dynamic programming book-

keeping/backtracking methods.
Noting that each case divides the problem into two

independent subproblems, i.e., substrings (with one of them

being possibly empty), where folding binds only the

extremities, the formulation above can be simplified as

follows:
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5. While these steps make it possible for the algorithm to produce
nonentangler-free solutions (see Section 4.3), they do not theoretically
enhance the approximation factor; for example, consider the following
uniformly weighted instance: X ¼ fx1; x2; x3; x4g, Y ¼ fy1; y2; y3; y4g,
and E ¼ fðx1; x3Þ; ðx2; x4Þ; ðx1; y2Þ; ðx2; y2Þ; ðx3; y3Þ; ðx3; y4Þ; ðy1; y3Þ; ðy2; y4Þg.
S ¼ fðx2; x4Þ; ðx1; y2Þ; ðx3; y4Þ; ðy1; y3Þg i s o p t i m a l , w h i l e S1 ¼
fðx1; x3Þ; ðy2; y4Þg and S2 ¼ fðx2; y2Þ; ðx3; y3Þg are locally optimal and cannot
be extended.



V ði; j; k; lÞ ¼ max
V ðiþ 1; j� 1; k; lÞ þ wðxi6¼j; xjÞ
V ði; p; k; qÞ þ V ðpþ 1; j; q þ 1; lÞ

�

over all choices of p and q, where i� 1 � p � j and
k� 1 � q � l and ðp 6¼ i� 1 _ q 6¼ k� 1Þ ^ ðp 6¼ j _ q 6¼ lÞ,
V ði; j; k; k� 1Þ¼Fxði; jÞ; V ði; i� 1; k; lÞ¼0, and V ði; i; k; kÞ
¼ maxð0; wðxi; ykÞÞ.

We have OðmÞ values for p and OðnÞ values for q, and
hence, V ði; j; k; lÞ requires OðmnÞ time to compute. Since we
have Oðm2Þ substrings of x and Oðn2Þ substrings of y, this
algorithm runs in Oðm3n3Þ time and Oðm2n2Þ space.

In the independent folding of the RNAs, the remaining
(nonfolded) nucleotides of the RNAs may be aligned. On
the other hand, in a folding/alignment, the remaining
(nonbinding) nucleotides of the nonfolding RNA may be
folded. These optional steps are shown between parenth-
eses in the description of the algorithm below.6

Algorithm 2: 2/3 factor approximation.

1. optimally fold RNA1 and RNA2 independently

(optional: optimally align their remainders)

2. optimally fold RNA1 while interacting with RNA2 and

ignore folding for RNA2

(optional: optimally fold the remainder of RNA2)

3. optimally fold RNA2 while interacting with RNA1 and
ignore folding for RNA1

(optional: optimally fold the remainder of RNA1)

4. choose the structure with the maximum weight.

4.3 A Note on the Approximation Factor

In the previous sections, we relied on dynamic program-
ming algorithms (through alignments and foldings) to
obtain constant factor approximations for RNA-RNAi.
Therefore, a legitimate question is whether better constant
approximation factors can be obtained using such algo-
rithms. To answer this question, we introduce the concept
of an entangler (Fig. 2).

Definition 1 (entangler). An entangler is a set of five
nonintersecting edges that contains two folding edges ðxi; xjÞ
and ðyk; ylÞ, and three binding edges e1, e2, and e3, such that:

. e1 ¼ ðxp; yqÞ ) p 2 ði; jÞ; q 62 ðk; lÞ,

. e2 ¼ ðxp; yqÞ ) p 2 ði; jÞ; q 2 ðk; lÞ, and

. e3 ¼ ðxp; yqÞ ) p 62 ði; jÞ; q 2 ðk; lÞ,
where ði; jÞ denotes fiþ 1; . . . ; j� 1g.

Most dynamic programming algorithms for RNA-RNAi

(including the formulations in Section 4) recursively divide

the problem into two independent subproblems (i.e. with

disjoint substrings), by making a choice for at most one

edge to be included in the solution. Such algorithms do not

produce entanglers: There is no way to break an entangler

into independent subproblems, even after making a choice

for one edge (at least another edge must be excluded).7 We

claim that an entangler-free solution cannot achieve a

constant approximation factor better than 2/3.

One can definitely design a dynamic programming

algorithm that computes the optimal entangler-free solu-

tion. It will be similar to the dynamic programming

formulation described in the previous section, but perform-

ing symmetrically on both RNAs and allowing both RNAs

to fold (and interact):

V ði; j; k; lÞ ¼ max
V ðiþ 1; j� 1; k; lÞ þ wðxi 6¼j; xjÞ
V ði; p; k; qÞ þ V ðpþ 1; j; q þ 1; lÞ
V ði; j; kþ 1; l� 1Þ þ wðyk 6¼l; ylÞ

8<
:

over all choices of p and q, where i� 1 � p � j and
k� 1 � q � l and ðp 6¼ i� 1 _ q 6¼ k� 1Þ ^ ðp 6¼ j _ q 6¼ lÞ,
V ði; j; k; k � 1Þ ¼ Fxði; jÞ, V ði; i � 1; k; lÞ ¼ Fyðk; lÞ, and
V ði; i; k; kÞ ¼ maxð0; wðxi; ykÞÞ.

The above algorithm appears in [11] and [1]. Its running

time and space requirements are still Oðm3n3Þ and Oðm2n2Þ,
respectively. It is easy to show that any entangler-free

solution can be recursively broken into two independent

subproblems as dictated by the above dynamic program-

ming formulation, and hence, this algorithm computes the

optimal entangler-free solution (we do not provide a formal

argument because it is not needed for the upper bound

result). Note that this algorithm is also a 2/3 factor

approximation algorithm because all three solutions de-

scribed at the beginning of Section 4.2 are entangler-free.
We now exhibit an instance of the RNA-RNAi problem

where every entangler-free solution is asymptotically at
most a 2/3 factor approximation. This proves the claim of
this section.

Given an integer r > 0, the instance consists of
3r nonintersecting binding edges partitioned into three
groups (of 3r�1 edges each) by 2r�1 nonintersecting
folding edges on each side, i.e., of the form ðxi; xjÞ and
ðyk; ylÞ, respectively. Then, each of the three groups is
recursively partitioned in the same way. The partitioning
stops when we obtain a single entangler, i.e., when r ¼ 1.
We assume all edges have the same weight (an instance of
uniformly weighted RNA-RNAi). Fig. 3 illustrates the
instance for r ¼ 3.

It is easy to show that the number of folding edges on
each side is given by the following expression:

Xr�1

i¼0

3r�1�i2i ¼ 3r�1
Xr�1

i¼0

2

3

� �i
¼ 3r�1 1� ð2=3Þr

1� 2=3
¼ 3r � 2r:
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Fig. 2. Entangler.

6. While these steps make it possible for the algorithm to produce
nonentangler-free solutions (see Section 4.3), they do not theoretically
enhance the approximation factor; for example, consider the following
uniformly weighted instance: X ¼ fx1; x2; x3; x4g, Y ¼ fy1; y2; y3; y4g,
and E ¼ fðx2; x3Þ; ðx3; x4Þ; ðx1; y3Þ; ðx2; y2Þ; ðx3; y1Þ; ðy2; y3Þ; ðy3; y4Þg. S ¼
fðx3; x4Þ; ðx2; y2Þ; ðy3; y4Þg is optimal, while S1 ¼ fðx2; x3Þ; ðy2; y3Þg,
S2 ¼ fðx2; x3Þ; ðx1; y3Þg, and S3 ¼ fðx3; y1Þ; ðy2; y3Þg are locally optimal
and cannot be extended.

7. We do not attempt to make this notion precise because we will prove a
result in terms of entangler-free solutions rather than algorithms that
produce them.



Therefore, the optimal solution contains 3r þ ð3r � 2rÞ þ
ð3r � 2rÞ ¼ 3rþ1 � 2rþ1 edges (all of them). Obviously,
there is an entangler-free solution with 3r þ ð3r � 2rÞ ¼
2 � 3r � 2r edges (it excludes the folding edges on one
side). This is not the only possible entangler-free solution;
however, we claim that any entangler-free solution must
exclude at least 3r � 2r edges. Assuming this claim is true,
the approximation factor of an entangler-free solution is
at most

2 � 3r � 2r

3rþ1 � 2rþ1
¼ 2

3
þ �;

where limr!1 � ¼ 0.

Theorem 2. An entangler-free solution for the (uniformly

weighted) RNA-RNAi problem is asymptotically at most a

2/3 factor approximation.8

Proof. For the instance corresponding to a given r, we prove
that any entangler-free solution must exclude at least
3r � 2r edges, by induction on r. The base case is when
r ¼ 1, i.e., the instance is just an entangler. Therefore, at
least 31 � 21 ¼ 1 edge must be excluded. Now assume
the claim is true up to some value r. The instance
corresponding to rþ 1 can be viewed as follows:

The three rectangular sets represent the binding
edges. The two circular sets represent the folding
edges. Since the solution is entangler-free, at least one
of these five sets must be excluded. If a circular set is
excluded, the number of excluded edges is at least
3r � 2r for each of the three subproblems (inductive
hypothesis) in addition to 2r edges for a circular set.
Hence, the number of excluded edges is at least
3ð3r � 2rÞ þ 2r ¼ 3rþ1 � 2rþ1. If a rectangular set is
excluded, the number of excluded edges is at least

3r � 2r for two subproblems (inductive hypothesis)
in addition to 3r edges for one rectangular set.
Hence, the number of excluded edges is at least
2ð3r � 2rÞ þ 3r ¼ 3rþ1 � 2rþ1. This proves the induction
and, hence, the theorem. tu
Note that this theorem is a tight characterization of

entangler-free solutions because there is always an
entangler-free solution for the RNA-RNAi problem that
achieves a 2/3 factor approximation.

5 EXPERIMENTAL RESULTS FOR RNA-RNAI

Although the presented algorithms achieve constant approx-
imation factors, not every solution obtained by these
algorithms is realistic. For instance, RNAs do not fold
sharply and tend to fold locally. Moreover, two RNAs are
likely to interact using complementary blocks of certain
sizes. Therefore, we performed variants of the basic
algorithms of Section 4 on two example RNA-RNAi
problems; fhlA-OxyS interaction [3] and CopA-CopT inter-
action [6] in the Escherichia coli bacteria. As heuristics, we
constrained the folding and alignment in the following ways:
if xi binds to xj (edge (xi, xj)2 S), then 4 � ji� jj � 50.
Moreover, if xp binds to yq (edge ðxp; yqÞ 2 S), then p 2 ½i; j�
and q 2 ½k; l� such that

. j� i ¼ l� k ¼ B� 1,

. xiþr binds to ykþr for all r ¼ 0 . . .B� 1, and

. xi�1 and xjþ1 do not bind to y, and yk�1 and ylþ1 do
not bind to x.

Therefore, the algorithms are modified to compute block
alignments. The details of the modified algorithms are not
included (a variation on the first dynamic programming
formulation of Section 4.2 to allow lower and upper bounds
on B), but the modifications do not affect the theoretical
complexity of the algorithms.

For weights, we used wðg; uÞ ¼ 1, wða; uÞ ¼ 2, and
wðg; cÞ ¼ 3 (which are reasonably proportional to the energy
values at 37 degrees [14]). We performed the algorithm of
Section 4.1 on fhlA-OxyS with 7 � B <1 as acceptable
block sizes. We obtained the structure illustrated in Fig. 4
which is almost identical to the known structure of fhlA-
OxyS [3] (small differences in folding around the first
binding site). Stretches in the middle of the RNAs
(9 nucleotides for fhlA, and 43 nucleotides for OxyS) were
ignored for better prediction, because they were not
reported to fold or bind [3]. Keeping those stretches
maintains the same binding sites and loops of Fig. 4;
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Fig. 3. An instance of recursive entanglers with r ¼ 3.

8. An entangler can be generalized to a set of 2k� 1 nonintersecting

edges that contains k binding edges interleaved by k� 1 folding edges

(dk�1
2 e and bk�1

2 c, respectively, on each side). One can then build an

instance of kr nonintersecting binding edges recursively partitioned into

k groups by k� 1 sets of ðk� 1Þr�1 nonintersecting folding edges to

obtain an asymptotic bound of k�1
k .

Fig. 4. fhlA-OxyS.



however, results in one additional binding site and a
number of additional loops, which cannot be avoided
computationally due to the optimization nature of the
problem.

Since CopA and CopT are complementary, performing
the algorithm of Section 4.1 will produce the trivial solution
where both RNAs bind completely to form a double strand.
One can possibly multiply wðxi; yjÞ by an appropriate value
� < 1 (reducing the weight contribution of external bonds)
to cancel this effect. Doing this, however, will explicitly bias
the solution toward the independent folding of the two
RNAs first. Therefore, the use of such a multiplicative factor
is more appropriate with the algorithm of Section 4.2 (or
that of Section 4.3). We performed the algorithm of
Section 4.2 with � ¼ 1=3 and 4 � B <1. We obtained the
structure illustrated in Fig. 5 which is very close to the
known structure of CopA-CopT [6]. Namely, the folding in
the middle parts should be replaced by binding, and the
folding and binding of the extremities should be ignored.
Again, the latter cannot be avoided computationally due to
the optimization nature of the problem.

Although the choice of a block size B is important,
several block sizes may be tried in the neighborhood of
some expected or desired size. Note that a smaller block
size (less constrained) does not necessarily imply a better
result because the algorithms perform a local optimization
followed by a completion on the remaining parts (see
description of algorithms in Sections 4.1 and 4.2). Fig. 6
below illustrates the variation in weight for the solutions of
fhlA-OxyS and CopA-CopT (using the corresponding
algorithms described above) when changing the block size
(the lower bound) from 1 to 12, and shows that the choices
made above (B � 7 and B � 4) are reasonable.

More generally, the stacked pair energy model [7] may
be used instead, which favors block formation in both the
alignment and the folding, and improves prediction of RNA
secondary structure [7]. In principle, the dynamic program-
ming algorithms can be changed to reflect the stacked pair
energy model like in [1]. However, the main focus of this
paper is on the approximability of the basic RNA-RNAi
problem described in Section 3 (but the results can be
extended to other formulations).

6 CONCLUSION

The RNA-RNA interaction problem is generally NP-
complete. We present 1/2 and 2/3 factor approximation
algorithms based on dynamic programming, but there is a

need for better algorithms in terms of running time, space,

and approximability. In particular, we argue that the

mentioned dynamic programming algorithm do not pro-

duce entanglers (special molecular substructures), and

prove that an entangler-free solution is at best a 2/3 factor

approximation. However, experimental results show that

variants of these approximation algorithms provide satis-

factory structure prediction.
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