
Fibonacci in The Curriculum: Not Just a Bad Recurrence ∗

Saad Mneimneh
Computer Science

Hunter College and the Graduate Center of the
City University of New York (CUNY)

New York, USA
saad@hunter.cuny.edu

ABSTRACT
As an advocate of infusing various algorithmic and mathe-
matical aspects when teaching about programming, I have
come to realize that an early such practice is essential for
a rounded computer science education. In this paper, I
show how this can be done while focusing on one theme:
Fibonacci.

Perhaps the most common use of Fibonacci has been to
show the power of recurrence in implementing the Fibonacci
sequence, which is often accompanied by a caveat that it
is not the best implementation (very slow). Nevertheless,
the sequence, with its rabbit story and celebrated golden
ratio, is a rather exciting “gadget” for many students and
it often pays off to introduce it. Therefore, I explore ways
to use Fibonacci (the binary word) and the golden ratio
for guiding implementation, and to successfully convey an
important message of computer science that programming
is not just about writing code. This will be done in the
context of one dimensional and two dimensional arrays.

1. PART I: SKOLEM GOES DOWN THE RAB-
BIT WHOLE

When teaching about one dimensional arrays, it is of-
ten natural to think about sequences. A Skolem sequence,
named after its creator Thoralf Skolem in 1957 [5], is a se-
quence of 2k integers s1, . . . , s2k such that for every n ∈
{1, . . . , k} there exist two integers an < bn that satisfy
san = sbn = bn − an = n. Interestingly, a closely related
formulation was made in parallel by C. Dudley Langford in
1958 after observing his child play with colored cubes [2].

∗The theoretical results reported in this paper were obtained
by the author during the process of designing homework
questions for an introductory course in programming. Al-
though this work lies on the boundary of education and re-
search, the author has determined that this publication is
not the proper venue for sharing the mathematical proofs.
The proofs are elementary, but they are not strongly rele-
vant for the educational merit of the exposition.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright c⃝ 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677215.

Stories like this one make a good introduction and provide
some context when talking about abstract problems. That
was among several motivations (including the creation of a
fresh problem) in considering Skolem sequences. A Skolem
sequence for k = 4 is shown below:

1 1 3 4 2 3 2 4

Figure 1: A Skolem sequence for k = 4: s1 = s2 =
2 − 1 = 1, s5 = s7 = 7 − 5 = 2, s3 = s6 = 6 − 3 = 3, and
s4 = s8 = 8− 4 = 4.

1.1 The Birth of an Infinite Skolem Squenence
Not every finite k admits a Skolem sequence, and when it

does, it is far from trivial to construct one. This lead me to
define an infinite Skolem sequence.

Definition 1.1. (Infinite Skolem Sequence) An infinite
Skolem sequence {si : i ∈ N} is such that for every n ∈ N
there exists exactly one pair of integers an < bn that satisfy
san = sbn = n. Furthermore bn − an = n.

As I will illustrate below, constructing an infinite Skolem
sequence is much easier.

1.2 The First Lexicographic Infinite Skolem
Sequence

It is trivial to construct an infinite Skolem sequence be-
cause we can always “fill in the gaps”; for instance, with the
smallest unused number (see Figure 2). Furthermore, one
could refer to this as the first infinite Skolem sequence in a
lexicographic order. Students will appreciate this terminol-
ogy when they know it is nothing but the dictionary order.
In fact, an entertaining exercise would be to prove that the
infinite Skolem sequence thus constructed is indeed the first
in a lexicographic order. Mathematically, this is equivalent
to say n < m⇔ an < am ⇔ bn < bm.
In what follows, any reference to the infinite sequence sig-

nifies this first lexicographic (thus unique) infinite Skolem
sequence. As it turns out, this particular Skolem sequence,
given by (an, bn) for every n ∈ N, exists in the literature
under the name Wythoff pairs [6], and has been the subject
of study in many publications of the Fibonacci Quarterly.
Let us now discover what it looks like!

1.3 Discovering Skolem: A Warm Up
An immediately obvious candidate for a warm up ques-

tion is to design an algorithm that generates the first, say k,

1 1
1 1 2 2
1 1 2 3 2 3
1 1 2 3 2 4 3 4
1 1 2 3 2 4 3 5 4 5
1 1 2 3 2 4 3 5 6 4 5 6
1 1 2 3 2 4 3 5 6 4 7 5 6
1 1 2 3 2 4 3 5 6 4 7 8 5 6
1 1 2 3 2 4 3 5 6 4 7 8 5 9 6

Figure 2: The leading 15 terms of the first lexico-
graphic infinite Skolem sequence.

integers of this infinite sequence. Why is this an important
exercise? Unlike its Fibonacci counterpart, this exercise is
not possible without using additional memory (well, at least
for now), the kind that only arrays (or more advanced struc-
tures) can provide. A typical solution would create an array
of the appropriate size k and navigate through it to assign
all of its elements. An algorithm is shown in Figure 3 (in
pseudocode).

for i← 1 . . . k
do s[i]← 0 � gaps

i← 1
n← 0
while i ≤ k

do n← n+ 1 � next number
s[i]← n
if i+ n ≤ k � does it fit?

then s[i+ n]← n
while s[i] ̸= 0 ∧ i ≤ k � find next gap

do i← i+ 1

Figure 3: Algorithm for constructing s1, . . . , sk, n will
be the largest integer in the sequence.

I list below some aspects that make the implementation
tricky and, therefore, worthy of being a non-trivial exercise:

• there is a nested loop

• one needs to keep track of gaps

• the value to be assigned and the array index move at
different paces

• one has to use caution when indexing the array, es-
pecially when assigning the second value of each pair
(which may not fit)

1.4 A Real Programming Challenge
My real interest in the Skolem problem is the following:

Given n, find an, i.e. the index of the first occurrence of n in
the infinite sequence. For example, if n = 9, then the answer
is 14 (see Figure 2). The reason for my particular interest is
to eventually shed some light on an alternative solution for
the construction of Figure 3. But more importantly now,
to present the student with the typical situation where one
must use an array without knowing its size (not even at run

time, so this is not about dynamic memory allocation). In
Figure 3, when si is assigned the value n, an = i is auto-
matically revealed. However, it may not be obvious to the
student how to choose the size of the array to guarantee
k ≥ an (otherwise, n will not show up). This situation can
be avoided with the use of advanced data structures; how-
ever, I am excluding this kind of knowledge for beginners.
Therefore, the first impression is that this situation cannot
be avoided. Consequently, a wishful attempt would be to
perform the algorithm of Figure 3 and hope that the desired
n will show up (see Figure 4)!

Find(n)
for i← 1 . . . k
do s[i]← 0 � gaps

i← 1
m← 0
while i ≤ k

do m← m+ 1 � next number
if m = n

then return i � this is an

s[i]← m
if i+m ≤ k � does it fit?

then s[i+m]← m
while s[i] ̸= 0 ∧ i ≤ k � find next gap

do i← i+ 1
� now what?!

Figure 4: A wishful thinking approach.

The approach illustrated in Figure 4 is not a bad idea for
a start. Based on this implementation, one could repeatedly
perform the entire process with a larger k until n shows up.
This will be correct, but a bit clumsy. A better approach
is to guide the students to figure out an upper bound on k.
For instance, when m = n in Figure 4, we know that we
must have written at most 2(n − 1) values into the array
(m is assigned at most twice to some s[i]). Therefore, an ≤
2(n− 1) + 1 = 2n− 1, and it suffices to make k = 2n− 1 to
guarantee that m will reach n. But we can do better.

1.5 Follow the RabBIT
At this juncture, it is probably a good idea to stop writing

code and think. I usually provide the students with some
strategy to guide their thoughts and explore the problem.
This is what lead me to establish the following interesting
theorem about Skolem and the infinite (binary) Fibonacci
word [4] (stated without proof, other forms of this theo-
rem are a ready consequence of some classical results about
Wythoff pairs and the positions of the nth 1 and the nth 0
in the infinite Fibonacci word): 1

Theorem 1.2. an = n+
∑n−1

i=1 f(i) where f(n) is the nth

bit of the infinite Fibonacci word.

The students are encouraged to explore the problem by
studying the behavior of an − an−1. This is relevant be-

1The infinite Fibonacci word can be constructed by writ-
ing 10, then scanning the bits in order starting with the
first, and appending the sequence with 110 upon seeing a 1,
and 10 upon seeing a 0. The first few bits are as follows:
1011010110 . . .

cause of the following equality:

an = a1 + (a2 − a1) + (a3 − a2) + . . .+ (an − an−1)

The algorithm of Figure 3 can be easily modified to compute
this differential, and upon doing so, one can observe that
an − an−1 seems to always be either 1 or 2.

a2 − a1 = 2
a3 − a2 = 1
a4 − a3 = 2
a5 − a4 = 2
a6 − a5 = 1
a7 − a6 = 2
a8 − a7 = 1
a9 − a8 = 2

...

The good student will hopefully realize that an − an−1 is in
effect binary (two valued function of n), and that this fact
can be expressed in the following way:

a2 − a1 − 1 = 1
a3 − a2 − 1 = 0
a4 − a3 − 1 = 1
a5 − a4 − 1 = 1
a6 − a5 − 1 = 0
a7 − a6 − 1 = 1
a8 − a7 − 1 = 0
a9 − a8 − 1 = 1

...
an − an−1 − 1 = f(n− 1)

Upon making this observation, and with a hint to the infi-
nite Fibonacci word, a student should be able to formulate
Theorem 1.2 (without proving it, simply by adding up all the
rows and using the fact that a1 = 1). This in turn should
provide the idea for a better solution for our challenge be-
cause we only require the first n−1 bits of infinite Fibonacci
word, hence we can work with an array of size n− 1 (Figure
5).

Find(n)
compute f [1], . . . , f [n− 1] � a nice exercise by itself
sum← 0
for i← 1 to n− 1
do sum← sum+ f [i]

return n+ sum

Figure 5: Algorithm to find an given n.

In fact, the need for an array can be eliminated entirely.
A deeper understanding of the infinite Fibonacci word will
reveal that:

n∑
i=1

fi =
⌊n+ 1

ϕ

⌋
where ⌊x⌋ is the largest integer ≤ x, and ϕ = (1 +

√
5)/2 is

the golden ratio! Therefore, an = n+⌊n/ϕ⌋ =⌊n(1 + 1/ϕ)⌋=
⌊nϕ⌋ (and bn = n+ ⌊nϕ⌋ = ⌊n(1+ϕ)⌋ = ⌊nϕ2⌋), which was
proved by Wythoff in [6]. It now becomes interesting to redo
the algorithm of Figure 3 without using an array, but I will
leave this potential open for imagination.

From the conceptual perspective, this marks the end of
the journey to the rabbit hole, but one could offer guidance
throughout this journey with various levels of detail. The
important points are:

• we start with a warm up question

• we follow it by a challenge

• the challenge could be solved by adapting the warm
up solution

• the students are guided to study the problem in a spe-
cific way

• they are also either assumed to know about the infinite
Fibonacci word or to be told to learn about it

• upon making the connection, the students should be
able to come up with a better solution for the challenge

2. PART II: LIVING ON A RANDOM TORUS
We don’t see doughnut shapes when we look up in the sky.

So it takes a spark of imagination to consider the possibility
of living on a planet in the shape of a torus. But when
teaching introductory programming to students who have
just learned about two-dimensional arrays, all you need is
the modulo operator (defined below for x ∈ Z and n ∈ N).

x mod n = x− n
⌊x
n

⌋
The modulo operator is widely recognized as the remainder
(an integer) in the division of x by n, ranging from 0 to
n − 1. Surprisingly, in 1970 Larry Niven has explored the
possibility of living on a toroidal world in Ringworld [3].
Again, this makes an interesting opening to introduce the
students to the problem discussed herein.

2.1 The Birth of a Torus
If we denote the entry at the ith row and the jth col-

umn of an m × n array by a[i, j], where 0 ≤ i ≤ m − 1
and 0 ≤ j ≤ n − 1, then a[i, j − 1], a[i, j + 1], a[i − 1, j],
and a[i + 1, j] represent the neighbors of a[i, j]. However,
even the beginner programmer can immediately tell that a
handful of checks are needed before making access to these
neighbors, since some of them are non-existent when a[i, j]
lies on the array’s boundary. This complicates almost every
task one could imagine performed on the array; conditional
statements must be inserted everywhere.

In such a programming nightmare, the modulo operator
can be a blessing: Given an m × n array, the neighbors of
a[i, j] can be safely defined as in Figure 6. The definitions
in Figure 6 eliminate boundaries and identify row m with
row 0, and column n with column 0. The end result is the
folding of the two-dimensional array into a torus, as shown
in Figure 7.

The torus is born, and all that remains to be done is
adding some life to it! Hence, for an initial programming
exercise, let us set every a[i, j] to either a 1 (land) or a 0
(water), and count the islands and pools that form on the
torus.

Figure 6: Every a[i, j] has all the neighbors.

Figure 7: Folding a two-dimensional array into a
torus. On the left, the array, and on the right, the
folding in action showing a partially folded torus.

2.2 Islands and Pools
Following the ideas in the previous section, our torus is

given by an m×n array in which the entry a[i, j] represents
either land (a[i, j] = 1) or water (a[i, j] = 0), and where
neighbors of a[i, j] are as defined in Figure 6.

An island is intuitively understood as a set of neighboring
lands (entries with a[i, j] = 1), but a precise definition will
depend on how we expect to walk on the torus; it will also
have implications on the definition of pools, since islands
must be separated by water. A walk on the torus consists
of moving through neighbors, on land, and without crossing
any waters. Moreover, islands cannot overlap, leading to the
following definition.

Definition 2.1 (Island). An island is a maximal set
of 1s that are reachable from one another by moving through
neighbors and without crossing any 0s.

A note is in order here. The term “maximal” in the above
definition most of the times awakens the attention of the
students, as it sounds like “maximum” but is not quite the
same word. After explaining what maximal means (not a
proper subset of some other set), it is often interesting ex-
ercise to ponder on the equivalence of the two flavors: the
programmer’s perspective (more pragmatic) in which islands
do not overlap, and the mathematician’s perspective (more
of a definition) in which islands are maximal. Oddly enough,
it is the second one that gives more insight when it comes

to writing a program for counting islands (see following sec-
tion).

Similarly, neighboring waters must be part of the same
pool, and pools cannot overlap. In addition, the definition
of an island implies that the diagonally situated a[i, j] = 0
and a[(i±1) mod m, (j±1) mod n] = 0 must be in the same
pool to justify the inability to cross diagonally from one land
to another.

Definition 2.2 (Pool). A pool is a maximal set of
0s that are reachable from one another by moving through
neighbors or diagonally, and without crossing any 1s.

It is this asymmetry in the formation of islands and pools
that will create the interesting behavior discussed in the fol-
lowing sections. Figure 8 shows an example of this formation
on a random torus.

Figure 8: From a two-dimensional array to islands
and pools on the torus, showing a total of four is-
lands (black) and two pools (white). Avoid the over-
counting of islands and pools when neighbors wrap
around in modulo m and/or n.

2.3 Let’s Count: A Warm Up
The warm up question here is of course to count islands

and pools. This problem is closely related to the flood fill-
ing performed by the“bucket”tool of graphics editors, which
relies on finding connected components, a standard algorith-
mic topic. A pseudocode for counting islands and pools on
a torus is shown in Figure 9. The code is self explanatory
and assumes that students are familiar with recursion. But
since recursion is often tricky, this makes it worthy of a non-
trivial exercise: Upon seeing a land (water) for the first time,
it is marked as visited, the rest of the island (pool) is recur-
sively visited by moving through neighbors (and diagonally).
When every branch of the recursion stops, the island (pool)
is maximal, and a count is incremented.

Perhaps it is now a good juncture for examining the pseu-
docode to appreciate how the introduction of the modulo op-
erator freed us from a bundle of conditional statements (not
to mention the additional interesting effect of creating the
torus). This should help to focus on aspects of the program
that are more important than messing with if-then-else.

2.4 A Real Programming Challenge
A question that intrigued me is the following: Consider a

random torus where p is the probability of land (and hence
q = 1− p is the probability of water). For what value of p is

Visit(i, j, b) � b is 1 for islands and 0 for pools
if a[i, j] = b ∧ ¬visited[i, j]

then visited[i, j]← TRUE � mark it as visited
� recurse through neighbors
Visit(i, (j − 1) mod n, b)
Visit(i, (j + 1) mod n, b)
Visit((i− 1) mod m, j, b)
Visit((i+ 1) mod m, j, b)
� and diagonally for pools
if b = 0

then Visit((i− 1) mod m, (j − 1) mod n, 0)
Visit((i− 1) mod m, (j + 1) mod n, 0)
Visit((i+ 1) mod m, (j − 1) mod n, 0)
Visit((i+ 1) mod m, (j + 1) mod n, 0)

Count(b) � b is 1 for islands and 0 for pools
for i← 0 to m− 1
for j ← 0 to n− 1
visited[i, j]← FALSE

total← 0
for i← 0 to m− 1
for j ← 0 to n− 1
if a[i, j] = b ∧ ¬visited[i, j] � first time seen

then Visit(i, j, b) � visit the rest of it
total← total + 1 � and increase the count

return total

Figure 9: Pseudocode for counting islands and
pools. For correctness, the programming language
must return a non-negative integer for the modulo
operator. But many don’t when x < 0 in x mod n, so
a fix can replace x mod n with (x+ n) mod n to avoid
a negative x.

the number of islands equal to the number of pools (in the
average sense of course)? As in Part I, the solution for the
warm up question can be adapted to answer the challenge.
A straightforward approach would be to compute for every
p the average numbers of islands and pools, and observe
when they are approximately equal. A thought experiment
is shown in Figure 10 in pseudocode.

Try(p)
avgI ← 0 � average number of islands
avgP ← 0 � average number of pools
for i← 1 to T
initialize the torus randomly using p
avgI ← avgI+Count(1)/T
avgP ← avgP+Count(0)/T

return avgI − avgP

Figure 10: A thought experiment.

My interest in this question, beside it being experimental
leading to a result, follows from a simple fact: often a seem-
ingly correct concept can fail to yield the desired result. The
thought experiment of Figure 10 is conceptually correct, i.e.
repeated use of it with different values of p should reveal the

value of p that makes avgI − avgP ≈ 0. Wrong! And here’s
why:

• m and n must be large enough to produce the desired
effect

• It is not obvious how to try different values for p and
what granularity will guarantee to capture the desired
value.

• Almost no value of p will make avgI − avgP approx-
imately 0, as a slight discrepancy in the number of
islands and pools is magnified by the torus size mn.

Nevertheless, one could still rely on the algorithm of Figure
10 to discover, for instance, when avgI − avgP switches
sign. Still, it’s a clumsy method and it will only give an
approximate range for the desired value of p, which in turn
may fail to be identified as any special value. To rectify this
problem, the students are encouraged to explore avgI−avgP
scaled by the torus size as a function of p/q = p/(1− p) (an
alternative is to study avgI/avgP to eliminate the effect
of the torus size, but this quantity is unbounded, and it is
better to work with a bounded quantity, see below).

2.5 Ringworldians discover the golden ratio!
Humans have always been fascinated by the golden ra-

tio, to the point of abuse [1]. Similarly, the inhabitants of
Ringworld will have discovered that divine ratio simply by
observing their own world. As it turns out, an attempt to
avoid the problems outlined in the previous section leads to
the following result (again, stated without proof):

Theorem 2.3. Let avgI be the average number of islands
and avgP be the average number of pools, then:

lim
m,n→∞

avgI − avgP

mn
= pq(q − p2)

The theorem has several consequences. For large m and
n, avgI − avgP ≈ mnpq(q − p2). This also means that
avgI ≈ mnpq(q−p2) when p is small, as the number of pools
will tend to be small compared to the number of islands. A
symmetric argument shows that avgP ≈ mnpq(p2−q) when
p is large. Most importantly, and to quantify what a small
or large p would be, the theorem shows that avgI = avgP
when q = p2, and since q = 1 − p, this means p/q = ϕ, the
golden ratio! Therefore, a small p satisfies p/q ≪ ϕ, and a
large p satisfies p/q ≫ ϕ.

Corollary 2.4 (Golden Torus). For large m and n,

avgI ≈ mnpq(q − p2) p/q ≪ ϕ

avgI = avgP p/q = ϕ

avgP ≈ mnpq(p2 − q) p/q ≫ ϕ

where ϕ = (1 +
√
5)/2 is the golden ratio.

A proper guidance to explore p/q, with a hint to the golden
ratio, can improve the attempt of Figure 10 as shown in
Figure 11.

It may still be inconvenient to try several values of p,
but the range can now be controlled in a pragmatic way
through the use of ϵ. Moreover, students can be guided to try

Try(p, ϵ)
avgI ← 0 � average number of islands
avgP ← 0 � average number of pools
for i← 1 to T
initialize a large m× n torus randomly using p
avgI ← avgI+Count(1)/T
avgP ← avgP+Count(0)/T

if −ϵ < avgI−avgP
mn

< ϵ
then return p/(1− p)
else return −1

Figure 11: An improved experiment.

values of p that are a ratio of consecutive Fibonacci numbers.
When m and n are large enough (say m = n = 100) and
ϵ is small enough, the above program will return a number
close to the golden ratio (which is recognizable) or −1 (a
failure for the given p). A student can then set p/q = ϕ,
accordingly p = 1/ϕ, and observe that avgI

mn
and avgP

mn
are

approximately 0.0205. But the 0.0205 is still a mystery to
me.

And since silence is also golden, I will stop here by repeat-
ing a similar summary for this outer space journey:

• we start with a warm up question

• we follow it by a challenge

• the challenge could be solved by adapting the warm
up solution

• the students are guided to study the problem in a spe-
cific way

• they are also either assumed to know about the golden
ratio or to be told to learn about it

• upon making the connection, the students should be
able to come up with a better solution for the challenge

3. A NOTE ON THE TWO PROBLEMS
While it is not hard to believe that p/q = ϕ achieves the

desired balance of islands and pools on the torus (it can
be verified), it takes a leap of faith to believe that an =
n+

∑n−1
i=1 f(i) for all n ∈ N without a mathematical proof.

Given the approach outline herein, however, students might
not actually prove any mathematical result, though such a
direction can definitely be pursued with the better students.
The main goal of this approach remains to be the exposure
to mathematical/algorithmic context.

4. CONCLUSION
In this exposition, I showed how to infuse some algorith-

mic and mathematical aspects to guide the programming
experience. The main theme is Fibonacci (and the golden
ratio), which is a pleasant topic for many students. The
typical paradigm that I support here is to first start with
a warm up question (one that is not too trivial), then to
follow up on it with a programming challenge that can be
solved by adapting the warm up solution, but not to a sat-
isfactory level. The students are then encouraged through
hints to explore the problem in a certain way, including the
introduction of some mathematical concepts. Finally, upon

making the connection between the hints and the original
problem, the students are expected to figure out a better
solution for the challenge.

5. THE AFTERMATH
Over the years, many of my students end up appreciating

the approach outlined above. Students enter the field with
the impression that computer science is about the ability
to write programs, and that programming is a simple me-
chanical task. They later hear differently from their peers,
those who have had me as their instructor. And while they
understand that I will be pulling them out of their comfort
zone, students seek to be placed in my sections, as I have
managed to create a particular reputation for my teaching.
This remains true even for average students who do not ac-
tively look for an extra challenge. They opt to pursue this
path because they feel that they will be learning something
interesting.

It takes a while to understand the philosophy of the kind
of challenging, but at the same time guided, assignments.
Initially, the students may feel lost in terms of what is being
required from them, but they eventually get the hang of it
once they become comfortable with my style. They build a
level of independence over time, and I have observed that,
towards the end of the semester, only a few students will
gather at my door.

On a different note, I should say that my approach pays off
even when a student is not academically savvy but career ori-
ented. For one thing, many respectful software companies,
e.g. Google, follow a similar approach for their interview
process. They expect the applicant to first solve a given
problem in the most obvious way, with no regards to the ef-
ficiency or the elegance of the solution. They then raise the
level by guiding the applicant to pursue a certain direction
of thought, hopefully leading to a better solution.

Finally, I think we are in great need, more than any time,
to rescue the declining mathematical level in computer sci-
ence education. In my exposition, I illustrated specific ex-
amples of how to expose students to contexts that are math-
ematical and algorithmic in nature. But I hope that I was
able to convey the general approach of exploring such a strat-
egy as a guide for writing programs and obtaining solutions.

6. REFERENCES
[1] C. Falbo. The golden ratio: A contrary viewpoint. The

College Mathematics Journal, 36(2):123–134, 2005.

[2] C. D. Langford. Problem. Mathematical Gazette,
42:228, 1958.

[3] L. Niven. Ringworld. Random House Publishing Group,
1970.

[4] OEIS. The online encyclopedia of integer sequences.
http://oeis.org/A005614.

[5] T. Skolem. On certain distributions of integers in pairs
with given differences. Mathematica Scandinavica,
5:57–58, 1957.

[6] W. A. Wythoff. A modification of the game of nim.
Nieuw Archief voor WisKunde, 7(2):199–202, 1907.

