SKOLEM GOES DOWN THE RABBIT HOLE

SAAD MNEIMNEH AND SAMAN FARHAT

ABSTRACT. An infinite Skolem sequence $\{s_i : i \in \mathbb{N}\}$ is such that for every $n \in \mathbb{N}$ there exist exactly two integers $a_n < b_n$ that satisfy $s_{a_n} = s_{b_n} = n$. Furthermore, $b_n - a_n = n$. We show that the first infinite Skolem sequence in a lexicographic order is related to the binary Fibonacci sequence.

1. INTRODUCTION

A Skolem sequence is a sequence of 2k integers s_1, \ldots, s_{2k} such that for every $n \in \{1, \ldots, k\}$ there exist two integers $a_n < b_n$ that satisfy $s_{a_n} = s_{b_n} = b_n - a_n = n$ [1]. We define an infinite Skolem sequence in an analogous way where every $n \in \mathbb{N}$ appears exactly twice. While not every finite k admits a Skolem sequence, it is trivial to construct an infinite Skolem sequence. In this article, we show that a special infinite Skolem sequence, the first in a lexicographic order, exhibits an interesting link to the binary Fibonacci sequence [2]. Namely, $a_{n+1} - a_n = 1 + f_n$ (equivalently $a_n = n + \sum_{i=1}^{n-1} f_i$), where f_n is the nth bit of the binary Fibonacci sequence.

2. A Special Skolem Sequence

The first lexicographic infinite Skolem sequence can be trivially constructed using a greedy algorithm. For every n in increasing order, we find the smallest i for which s_i has not been assigned, then assign s_i and s_{i+n} the value n. The algorithm in Figure 1 constructs the first $k \ge 0$ terms.

```
\begin{split} I \leftarrow \emptyset, \ i \leftarrow 1, \ n \leftarrow 1 \\ \textbf{while} \ i \leq k \\ \textbf{do} \ s_i \leftarrow n \\ I \leftarrow I \cup \{i\} \\ \textbf{if} \ i + n \leq k \\ \textbf{then} \ s_{i+n} \leftarrow n \\ I \leftarrow I \cup \{i + n\} \\ i \leftarrow \min_{j \in \mathbb{N} - I} j \\ n \leftarrow n + 1 \end{split}
```

FIGURE 1. Algorithm for constructing s_1, \ldots, s_k .

The leading 15 terms of the first lexicographic infinite Skolem sequence are shown below.

$$1\ 1\ 2\ 3\ 2\ 4\ 3\ 5\ 6\ 4\ 7\ 8\ 5\ 9\ 6\ .$$

By construction, this infinite Skolem sequence satisfies (uniquely): n < m, $a_n < a_m$, and $b_n < b_m$ are equivalent.

Lemma 2.1. If n < m, then $b_m - b_n > 1$.

Proof. We know that $b_n < b_m$, so we only need to prove that $b_m - b_n \neq 1$. Assume that $b_m - b_n = 1$, then $a_n = b_n - n = b_m - (n+1) \ge b_m - m = a_m$, a contradiction since $a_n < a_m$.

3. Gaps and Offsets

We now define for every $n \in \mathbb{N}$, an offset string T_n over the alphabet $\{1, 2\}$. First, when the algorithm of Figure 1 makes $s_i = s_{i+n} = n$, n defines a finite gap sequence $\{g_j : i < j < i + n\}$ of length n - 1 using $\mathbb{N} \cup \{-\}$ as follows: if $j \in I$, $g_j = s_j$, and if $j \notin I$, g_j is a gap symbol -. In this sequence, if the first gap symbol is g_j , then s_j will be assigned the value n+1.

Next, we identify maximal gaps from left to right and concatenate their lengths to form the offset string T_n . Figure 2 shows the gap sequences and offset strings for $n = 1, \ldots, 9$ (T_1 is the empty string ϵ).

Lemma 3.1. The gap sequence defined by n cannot have $\{g_j, g_{j+1}\} \subset \mathbb{N}$ for any j.

Proof. When the algorithm makes $s_i = s_{i+n} = n$, we know that $a_m < i$ for all m < n. Therefore, every $j \in [i+1, i+n-1]$ satisfies $j = b_m$ for some m. Having $\{g_j, g_{j+1}\} \subset \mathbb{N}$ in the gap sequence means there are two integers $m_1 < m_2$ such that $b_{m2} - b_{m1} = 1$, a contradiction to Lemma 2.1.

Theorem 3.2. For every n, the offset string T_n is obtained by starting with the empty string ϵ and applying the following substitution rules n-1 times, where S represents a string over the alphabet $\{1, 1, 2\}$ (when reading the offset string T_n we make no distinction between a 1 and a 1).

$$\epsilon \to \mathbf{1}$$
$$\mathbf{1}S \to S1$$
$$\mathbf{1}S \to S2$$
$$\mathbf{2}S \to \mathbf{1}S2$$

Proof. The proof is by induction on n. The base cases can be easily verified. Assume that the statement of the theorem holds up to n and that $s_i = s_{i+n} = n$. We consider three exhaustive cases.

$$1 \underbrace{ \begin{array}{c} 1 \\ T_{1}=\epsilon \end{array}}_{T_{1}=\epsilon} 1$$

$$1 \underbrace{12}_{T_{2}=1} 2$$

$$1 \underbrace{123}_{T_{3}=1} 2 - 3$$

$$1 \underbrace{1232435}_{T_{4}=2} - 4$$

$$1 \underbrace{1232435}_{T_{4}=2} - 5$$

$$1 \underbrace{1232435647}_{T_{5}=12} - 5$$

$$1 \underbrace{1232435647}_{T_{7}=112} - 7$$

$$1 \underbrace{12324356478}_{T_{8}=121} \underbrace{5 - 6 - 7 - 7}_{T_{8}=121} 8$$

$$1 \underbrace{1232435647859}_{T_{8}=121} \underbrace{6 - 7 - 8 - 9}_{T_{9}=212} 9$$

FIGURE 2. Gap sequences and offset strings for $n = 1, \ldots, 9$.

 $\underline{T_n = 1S}$: By the inductive hypothesis, T_{n-1} starts with 2. Therefore, $s_{i+1} = s_{i+n+2} = n+1$, and $T_{n+1} = S1$.

 $\underline{T_n = 1S}$: The gap sequence defined by n must start with an integer followed by -; it cannot start with - because this means T_{n-1} starts with 2, and hence $T_n = \mathbf{1}S$ by the inductive hypothesis. Therefore, $s_{i+2} = s_{i+n+3} = n+1$, and $T_{n+1} = S2$.

 $\underline{T_n = 2S}$: The gap sequence defined by n must start with an integer followed by - (see above case). Therefore, $s_{i+2} = s_{i+n+3} = n + 1$, and $T_{n+1} = \mathbf{1}S2$.

The importance of the offset string T_n is manifested in the following result. Define $s(T_n)$ to be the sum of all the digits that appear in T_n , then:

Lemma 3.3. $a_{n+1} - a_n = 1 + s(T_{n+1}) - s(T_n)$.

Proof. When the algorithm makes $s_i = s_{i+n} = n, s_1, \ldots, s_{i-1}$ have all been assigned, and every $m \leq n$ appears exactly twice in s_1, \ldots, s_{bn} (see Figure 2). Therefore, $b_n = 2n + s(T_n)$, which implies that $a_n = n + s(T_n)$. Finally, $a_{n+1} - a_n = 1 + s(T_{n+1}) - s(T_n)$.

4. Follow the Rabbit

We now make the link between the first lexicographic infinite Skolem sequence and the binary Fibonacci sequence. We will show that $s(T_{n+1}) - s(T_n) = f_n$, where f_n is the n^{th} bit of the binary Fibonacci sequence.

The crucial observation is that the rules in the statement of Theorem 3.1 can be combined to eliminate the use of **1** (numbers above arrows show $T_{n+1} - T_n$).

$$\begin{array}{c} \epsilon \to \mathbf{1} \xrightarrow{\mathbf{0}} 1\\ 1S \xrightarrow{\mathbf{1}} S2\\ 2S \xrightarrow{\mathbf{1}} \mathbf{1}S2 \xrightarrow{\mathbf{0}} S21 \end{array}$$

Furthermore, by renaming 1 and 2 as 0 and 1 respectively, we will generate bits of the binary Fibonacci sequence, starting from the second bit $f_2 = 0$ (the underlined bits show the correspondence with $T_{n+1} - T_n$).

$$\begin{aligned} \epsilon &\to \underline{0} \\ 0S &\to S\underline{1} \\ 1S &\to S\underline{10} \end{aligned}$$

Observe that for $n \ge 2$, $s(T_{n+1}) - s(T_n)$ is preserved and is equal to the n^{th} generated bit. We also verify that for n = 1, $s(T_2) - s(T_1) = f_1 = 1$.

We finally establish the following result:

Theorem 4.1. $a_{n+1} - a_n = 1 + f_n$ (or equivalently, $a_n = n + \sum_{i=1}^{n-1} f_i$).

References

[1] http://mathworld.wolfram.com/SkolemSequence.html

[2] http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrab.html

DEPARTMENT OF COMPUTER SCIENCE HUNTER COLLEGE OF THE CITY UNIVERSITY OF NEW YORK, 695 PARK AVENUE, NEW YORK, USA *E-mail address*: saad@hunter.cuny.edu

DEPARTMENT OF COMPUTER SCIENCE, THE GRADUATE CENTER OF THE CITY UNI-VERSITY OF NEW YORK, 365 FIFTH AVENUE, NEW YORK, USA *E-mail address*: sfarhat@gc.cuny.edu