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Abstract. An infinite Skolem sequence {si : i ∈ N} is such that for
every n ∈ N there exist exactly two integers an < bn that satisfy
san

= sbn
= n. Furthermore, bn − an = n. We show that the first

infinite Skolem sequence in a lexicographic order is related to the binary
Fibonacci sequence.

1. Introduction

A Skolem sequence is a sequence of 2k integers s1, . . . , s2k such that for
every n ∈ {1, . . . , k} there exist two integers an < bn that satisfy san

= sbn
=

bn − an = n [1]. We define an infinite Skolem sequence in an analogous way
where every n ∈ N appears exactly twice. While not every finite k admits
a Skolem sequence, it is trivial to construct an infinite Skolem sequence.
In this article, we show that a special infinite Skolem sequence, the first in
a lexicographic order, exhibits an interesting link to the binary Fibonacci
sequence [2]. Namely, an+1 − an = 1 + fn (equivalently an = n +

∑n−1

i=1 fi),

where fn is the nth bit of the binary Fibonacci sequence.

2. A Special Skolem Sequence

The first lexicographic infinite Skolem sequence can be trivially con-
structed using a greedy algorithm. For every n in increasing order, we find
the smallest i for which si has not been assigned, then assign si and si+n

the value n. The algorithm in Figure 1 constructs the first k ≥ 0 terms.

I ← ∅, i ← 1, n ← 1
while i ≤ k

do si ← n

I ← I ∪ {i}
if i + n ≤ k

then si+n ← n

I ← I ∪ {i + n}
i ← minj∈N−I j

n ← n + 1

Figure 1. Algorithm for constructing s1, . . . , sk.
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The leading 15 terms of the first lexicographic infinite Skolem sequence
are shown below.

1 1 2 3 2 4 3 5 6 4 7 8 5 9 6 . . .

By construction, this infinite Skolem sequence satisfies (uniquely): n < m,
an < am, and bn < bm are equivalent.

Lemma 2.1. If n < m, then bm − bn > 1.

Proof. We know that bn < bm, so we only need to prove that bm − bn 6= 1.
Assume that bm − bn = 1, then an = bn − n = bm − (n + 1) ≥ bm −m = am,
a contradiction since an < am. ¤

3. Gaps and Offsets

We now define for every n ∈ N, an offset string Tn over the alphabet
{1, 2}. First, when the algorithm of Figure 1 makes si = si+n = n, n defines
a finite gap sequence {gj : i < j < i + n} of length n − 1 using N ∪ {−}
as follows: if j ∈ I, gj = sj , and if j 6∈ I, gj is a gap symbol −. In this
sequence, if the first gap symbol is gj , then sj will be assigned the value
n + 1.

Next, we identify maximal gaps from left to right and concatenate their
lengths to form the offset string Tn. Figure 2 shows the gap sequences and
offset strings for n = 1, . . . , 9 (T1 is the empty string ǫ).

Lemma 3.1. The gap sequence defined by n cannot have {gj , gj+1} ⊂ N for
any j.

Proof. When the algorithm makes si = si+n = n, we know that am < i for
all m < n. Therefore, every j ∈ [i + 1, i + n − 1] satisfies j = bm for some
m. Having {gj , gj+1} ⊂ N in the gap sequence means there are two integers
m1 < m2 such that bm2 − bm1 = 1, a contradiction to Lemma 2.1. ¤

Theorem 3.2. For every n, the offset string Tn is obtained by starting with
the empty string ǫ and applying the following substitution rules n− 1 times,
where S represents a string over the alphabet {1, 1, 2} (when reading the
offset string Tn we make no distinction between a 1 and a 1).

ǫ → 1

1S → S1

1S → S2

2S → 1S2

Proof. The proof is by induction on n. The base cases can be easily ver-
ified. Assume that the statement of the theorem holds up to n and that
si = si+n = n. We consider three exhaustive cases.
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1
︸︷︷︸

T1=ǫ

1

1 1 2 −
︸︷︷︸

T2=1

2

1 1 2 3 2 −
︸︷︷︸

T3=1

3

1 1 2 3 2 4 3 − −
︸ ︷︷ ︸

T4=2

4

1 1 2 3 2 4 3 5 − 4 − −
︸ ︷︷ ︸

T5=12

5

1 1 2 3 2 4 3 5 6 4 − − 5 −
︸ ︷︷ ︸

T6=21

6

1 1 2 3 2 4 3 5 6 4 7 − 5 − 6 − −
︸ ︷︷ ︸

T7=112

7

1 1 2 3 2 4 3 5 6 4 7 8 5 − 6 − − 7 −
︸ ︷︷ ︸

T8=121

8

1 1 2 3 2 4 3 5 6 4 7 8 5 9 6 − − 7 − 8 − −
︸ ︷︷ ︸

T9=212

9

Figure 2. Gap sequences and offset strings for n = 1, . . . , 9.

Tn = 1S: By the inductive hypothesis, Tn−1 starts with 2. Therefore,
si+1 = si+n+2 = n + 1, and Tn+1 = S1.

Tn = 1S: The gap sequence defined by n must start with an integer fol-
lowed by −; it cannot start with − because this means Tn−1 starts with 2,
and hence Tn = 1S by the inductive hypothesis. Therefore, si+2 = si+n+3 =
n + 1, and Tn+1 = S2.

Tn = 2S: The gap sequence defined by n must start with an integer fol-
lowed by − − (see above case). Therefore, si+2 = si+n+3 = n + 1, and
Tn+1 = 1S2.

¤

The importance of the offset string Tn is manifested in the following result.
Define s(Tn) to be the sum of all the digits that appear in Tn, then:

Lemma 3.3. an+1 − an = 1 + s(Tn+1) − s(Tn).

Proof. When the algorithm makes si = si+n = n, s1, . . . , si−1 have all been
assigned, and every m ≤ n appears exactly twice in s1, . . . , sbn (see Figure
2). Therefore, bn = 2n + s(Tn), which implies that an = n + s(Tn). Finally,
an+1 − an = 1 + s(Tn+1) − s(Tn). ¤



4 SAAD MNEIMNEH AND SAMAN FARHAT

4. Follow the Rabbit

We now make the link between the first lexicographic infinite Skolem
sequence and the binary Fibonacci sequence. We will show that s(Tn+1) −
s(Tn) = fn, where fn is the nth bit of the binary Fibonacci sequence.

The crucial observation is that the rules in the statement of Theorem
3.1 can be combined to eliminate the use of 1 (numbers above arrows show
Tn+1 − Tn).

ǫ → 1
0
−→ 1

1S
1
−→ S2

2S
1
−→ 1S2

0
−→ S21

Furthermore, by renaming 1 and 2 as 0 and 1 respectively, we will generate
bits of the binary Fibonacci sequence, starting from the second bit f2 = 0
(the underlined bits show the correspondence with Tn+1 − Tn).

ǫ → 0

0S → S1

1S → S10

Observe that for n ≥ 2, s(Tn+1)− s(Tn) is preserved and is equal to the nth

generated bit. We also verify that for n = 1, s(T2) − s(T1) = f1 = 1.
We finally establish the following result:

Theorem 4.1. an+1 − an = 1 + fn (or equivalently, an = n +
∑n−1

i=1 fi).
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