
Living on a Random Torus

Saad Mneimneh

We don’t see doughnut shapes when we look up in the sky. But what if the
Earth we live on were shaped like a torus instead of a sphere? This remote, but
otherwise intriguing possibility, lead me to explore the formation of islands and
pools in a toroidal world. In this exposition, I start with a programming per-
spective on counting islands and pools, and finish by presenting a probabilistic
analysis of a random torus with a ratio p/q of land to water (p+ q = 1).

People on Earth have always been fascinated by the golden ratio ϕ = 1+
√
5

2 .
I presume the same would be true for the inhabitants of a torus. As it turns
out, in counting islands and pools, the divine law of the skies

1

p
=

{p+ q

p
=

p

q

}
= ϕ

exhibits itself on a random torus.

1 The Birth of a Torus

It takes a spark of imagination to consider the possibility of living on a planet
in the shape of a torus (a doughnut). But when teaching introductory program-
ming to students who have just learned about two-dimensional arrays, all you
need is the modulo operator (defined below for x ∈ Z and n ∈ N).

x mod n = x− n
⌊x
n

⌋
where ⌊x/n⌋ is the largest integer ≤ x/n. The modulo operator is widely rec-
ognized as the remainder (an integer) in the division of x by n, ranging from 0
to n− 1. Table 1 shows how x mod n maps Z to the set {0, 1, 2, . . . , n− 1}.

If we denote the entry at the ith row and the jth column of an m× n array
by a[i, j], where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, then a[i, j − 1], a[i, j + 1],
a[i− 1, j], and a[i+1, j] represent the neighbors of a[i, j]. However, the average

1

x . . . −1 0 1 2 . . . n− 1 n . . .
x mod n . . . n− 1 0 1 2 . . . n− 1 0 . . .

Table 1: The modulo operator wraps around as it cycles through the integers
from 0 to n− 1.

programmer can immediately tell that a handful of checks are needed before
making access to these neighbors, since some of them are non-existent when
a[i, j] lies on the array’s boundary. This complicates almost every task one
could imagine performed on the array; conditional statements must be inserted
everywhere.

In such a programming nightmare, the modulo operator can be a blessing:
Given an m× n array, the neighbors of a[i, j] can be safely defined as in Figure
1.

Figure 1: Every a[i, j] has all the neighbors.

The above definitions eliminate boundaries and identify row m with row
0, and column n with column 0. The end result is the folding of the two-
dimensional array into a torus, as shown in Figure 2.

The torus is born, and all that remains to be done is adding some life to it!
Hence, for a simple programming exercise, let us set every a[i, j] to either a 1
(land) or a 0 (water), and count the islands and pools that form on the torus.

2 Islands and Pools

Following the ideas in the previous section, our torus is given by an m×n array
in which the entry a[i, j] represents either land (a[i, j] = 1) or water (a[i, j] = 0),
and where neighbors of a[i, j] are as defined in Figure 1.

2

Figure 2: Folding a two-dimensional array into a torus. On the left, the array,
and on the right, the folding in action showing a partially folded torus.

An island is intuitively understood as a set of neighboring lands (entries with
a[i, j] = 1), but a precise definition will depend on how we expect to walk on
the torus; it will also have implications on the definition of pools, since islands
must be separated by water. A walk on the torus consists of moving through
neighbors, on land, and without crossing any waters. Moreover, islands cannot
overlap, leading to the following definition.

Definition 1 (Island) An island is a maximal set of 1s that are reachable from
one another by moving through neighbors and without crossing any 0s.

A note is in order here. I have always been an advocate of infusing algorith-
mic and mathematical aspects when teaching about programming. The term
“maximal” in the above definition most of the times awakens the attention of
the students, as it sounds like “maximum” but is not quite the same word. After
explaining what maximal means (not a proper subset of some other set), it is
often interesting to ponder on the equivalence of the two flavors: the program-
mer’s perspective (more pragmatic) in which islands do not overlap, and the
mathematician’s perspective (more of a definition) in which islands are maxi-
mal. Oddly enough, it is the second one that gives more insight when it comes
to writing a program for counting islands.

Similarly, neighboring waters must be part of the same pool, and pools can-
not overlap. In addition, the definition of an island implies that the diagonally
situated a[i, j] = 0 and a[(i±1) mod m, (j±1) mod n] = 0 must be in the same
pool to justify the inability to cross diagonally from one land to another.

Definition 2 (Pool) A pool is a maximal set of 0s that are reachable from one
another by moving through neighbors or diagonally, and without crossing any
1s.

3

It is this asymmetry in the formation of islands and pools that will create
the interesting behavior discussed in the following sections. Figure 3 shows an
example of this formation on a random torus.

Figure 3: From a two-dimensional array to islands and pools on the torus, show-
ing a total of four islands (black) and two pools (white). Avoid the overcounting
of islands and pools when neighbors wrap around in modulo m and/or n.

3 Let’s Count

In the Appendix, I present a pseudocode for counting islands and pools on a
torus. The code is self explanatory. Upon seeing a land (water) for the first
time, it is marked as visited, the rest of the island (pool) is recursively visited by
moving through neighbors (and diagonally). When every branch of the recur-
sion stops, the island (pool) is maximal, and a count is incremented. Perhaps
it is now a good juncture for examining the pseudocode to appreciate how the
introduction of the modulo operator freed us from a bundle of conditional state-
ments (not to mention the additional interesting effect of creating the torus).
This should help to focus on aspects of the program that are more important
than messing with if-then-else.

In order to count islands and pools, I set a[i, j] = 1 with probability p
and a[i, j] = 0 with probability q = 1 − p, independently for each entry. I
performed 100 runs of the program to obtain an average number of islands and
an average number of pools. I scaled the averages by the torus size mn . I used
m = n = 100, and varied p from 0 to 1. The results are shown in Figure 4.

Looking at Figure 4, some of the “fun” questions that could accompany this
programming exercise are (assuming mn is large enough):

4

Figure 4: Average number of islands (solid) and pools (dashed) divided by the
torus size mn as a function of p.

• For a given p, what is the average number of islands divided by the torus
size?

• What happens in the special case of m = 1 (or n = 1)?

• For what value of p do we get equal averages for islands and pools?

The first question is simply a means to running the program and getting some
output. The second question is to provoke some thinking about a special case,
which is easier to analyze and might be important for the understanding of the
general case. The third question is an invitation to explore further properties
and, for the ambitious, perhaps figure out that special number between 0.6 and
0.7 in Figure 4.

4 Analysis of a Random Torus

I will perform a probabilistic analysis to show that the expected number of
islands and the expected number of pools satisfy:

lim
m,n→∞

E[#islands]− E[#pools]

mn
= pq(q − p2)

where #islands is the number of islands, #pools is the number of pools, and
E[] is the standard notation for expectation. This in turn will reveal an in-
teresting property of a random torus that can be linked to the golden ratio (as
one might suspect already by looking at Figure 4). It will also provide esti-
mates for E[#islands] when E[#islands] ≫ E[#pools], and E[#pools] when
E[#islands] ≪ E[#pools].

5

4.1 A Powerful Tool: The Linearity of Expectation

In probability theory, the expectation of a random variable X is defined as
(somewhat an “average”):

E[X] =
∑
x

xP (X = x)

when the sum exists, where the sum is over all values x that X takes on. The
expectation of the sum of two (or more) random variables is the sum of their
expectations. For instance,

E[X + Y] = E[X] + E[Y]

This property is called the linearity of expectation, which holds regardless of
whether X and Y are independent or not. It is notable here, however, that
independence is sufficient for E[XY] = E[X]E[Y].

The linearity of expectation is the key property that enables us to perform
probabilistic analysis using indicator random variables. An indicator random
variable is defined as

Z =

{
1 if some event occurs
0 otherise

In particular, if Z is an indicator random variable, then

E[Z] = 1 · P (Z = 1) + 0 · P (Z = 0) = P (Z = 1)

Therefore, if X =
∑

i Xi is the sum of indicator random variables, then

E[X] = E
[∑

i

Xi

]
=︸︷︷︸

linearity
of expectation

∑
i

E[Xi] =︸︷︷︸
indicator

random variable

∑
i

P (Xi = 1)

To illustrate the power of this technique, consider n independent tosses of a coin
with probability p for heads and probability q = 1 − p for tails, and let X be
the total number of heads. The expectation of X is given by:

E[X] =

n∑
k=0

kP (X = k) =

n∑
k=0

k

(
n
k

)
pkqn−k

To calculate the above sum might be cumbersome. Instead, consider an indi-
cator random variable Xi, such that Xi = 1 if the ith toss reveals a head, and
Xi = 0 otherwise. Then X =

∑n
i=1 Xi. So E[X] =

∑n
i=1 P (Xi = 1) = np.

4.2 Pólya’s Advice and a Special Case

If #islands is the number of islands, then

E[#islands] =
∑
k

kP (#islands = k)

6

It is not entirely obvious how to capture the event of having k islands. Therefore,
I will follow George Pólya’s advice:

”If you can’t solve a problem,
there is an easier problem you can solve.

find it.”

And here it is: Consider a special case of the problem in which m = 1, so the
torus becomes a 1×n torus, i.e. a circular (one-dimensional) array, where n > 1.
Again,

E[#islands] =

⌊n/2⌋∑
k=0

kP (#islands = k)

is not an obvious quantity. This time, however, it is easy to capture the islands
using indicator random variables. Let Xj be an indicator random variable for
the event a[0, j] = 1 ∧ a[0, j + 1] = 0 (all indices are taken modulo n), and call
a[0, j] in such an event the edge of its island. Let Y be an indicator random
variable for the event a[0, 0] = a[0, 1] = . . . = a[0, n− 1] = 1. Then

#islands =

n−1∑
j=0

Xj + Y

In other words, the number of islands is the number of times we transition from
1 to 0 when moving from a[0, j] to a[0, j + 1] (number of edges), or simply 1 if
a[0, j] = 1 and no such transitions occur (no edges). Observe that the X’s and
Y are highly dependent, but this is irrelevant for the linearity of expectation.

E[#islands] =

n−1∑
j=0

P (Xj = 1) + P (Y = 1) = npq + pn

and by symmetry,
E[#pools] = nqp+ qn

Therefore,

lim
n→∞

E[#islands]− E[#pools]

n
= lim

n→∞

pn − qn

n
= 0

4.3 The General Case

Our m×n torus can be regarded as m rows with each row consisting of a circular
array of length n. For each of the m circular arrays, the expected number of
islands is as given in the previous section. Then one would hope that, using the
linearity of expectation, the expected number of islands is

m(npq + pn)

by summing over all rows. But this is wrong! We must account for the fact
that when an island in row i + 1 overlaps with another in row i (i.e. a[i, j] =

7

a[i + 1, j] = 1 for some j), only one of them must be counted. This can be
adjusted for by subtracting one for that overlap.

Therefore, we have to subtract from the above expression the expected num-
ber of overlaps. Let us consider this idea more carefully. As we move through
the rows in order,

• If an island in row i+1 overlaps with zero islands in row i, then it is the
start of a new island on the torus, and hence should be counted.

• If an island in row i+1 overlaps with one island in row i, then subtracting
one for that overlap correctly adjusts for the number of islands, as both
islands become part of the same island on the torus.

• If an island in row i+1 overlaps with many islands in row i, then we have
two cases to consider: if those islands in row i are not part of the same
island on the torus, then subtracting the number of overlaps, as before,
correctly adjusts for the number of islands. If, however, some of those
islands in row i are part of the same island on the torus (due to previous
overlaps), then subtracting the number of overlaps adjusts for islands and
subtracts the number of pools within the newly formed island.

Figure 5: The cases described above. We count one island in the first row.
When we reach the second row, we count another three, for a total of four
islands. But each of the first two islands in the second row will subtract one
overlap, bringing the number of islands down to two. By the time we reach the
third row, we have one additional island, making the number of islands equal
to three. That new island subtracts three overlaps (two of them with the same
island), bringing the number down to zero, which is one island minus one pool
(dashed) formed within the island.

Based on the above description, subtracting the expected number of overlaps
gives E[#islands − #pools], which by the linearity of expectation is equal to
E[#islands]− E[#pools]. This, however, does not account for everything! An
island that circles the torus through all the rows contributes an extra overlap
(with itself) and, hence, ends up canceling itself. But we only have O(n) such
islands. Similarly, pools that are not contained within islands are not counted.
But we cannot have more than O(m+n) such unbounded pools. Consequently,
our approach will be off by only O(m+n) in counting E[#islands]−E[#pools].

8

Therefore, if #overlaps denotes the number of overlaps, as m and n go to
infinity:

lim
m,n→∞

E[#islands]− E[#pools]

mn
= pq − lim

m,n→∞

E[#overlaps]

mn

To obtain E[#overlaps], define the following indicator random variables:
Xij is an indicator random variable for the event that a[i, j] is the edge of an
island in row i, Yi for the event a[i, 0] = a[i, 1] = . . . = a[i, n − 1] = 1, and
Zijk for the event that an island in row i with edge a[i, j] overlaps an island in
row i+ 1 with edge a[i+ 1, k]. Observe that the X’s, Y ’s, and Z’s are pairwise
independent in different rows.

#overlaps =

m−1∑
i=0

n−1∑
j=0

n−1∑
k=0

Zijk +

m−1∑
i=0

Yi

n−1∑
j=0

(X(i−1)j +X(i+1)j) +

m−1∑
i=0

YiYi+1

Now, P (Xij = 1) = pq and P (Yi = 1) = pn. To make an overlap between two
islands with edges a[i, j] and a[i + 1, k], assume without loss of generality that
j ≥ k; then is it necessary that a[i, j − 1] = . . . = a[i, k] = 1 or a[i+ 1, k − 1] =
. . . = a[i + 1, 0] = a[i + 1, n − 1] = . . . = a[i + 1, j] = 1. In general, one
sequence will have length (j−k) mod n and the other length n− (j−k) mod n.
Therefore, P (Zijk = 1) is obtained by multiplying P (Xij = 1)P (X(i+1)k = 1)

by (pd + pn−d − pn) when 1 < d < n − 1 (and by 1 when d = 0 and by
p when d = 1 and d = n − 1), where d = (j − k) mod n (using P (A ∨ B) =
P (A)+P (B)−P (A∧B)). By the linearity of expectation and the independence
of the random variables,

E[#overlaps] =

m−1∑
i=0

n−1∑
j=0

n−1∑
k=0

E[Zijk]+2

m−1∑
i=0

n−1∑
j=0

E[Yi]E[X(i+1)j]+

m−1∑
i=0

E[Yi]E[Yi+1]

=

m−1∑
i=0

n−1∑
j=0

p2q2
(
1 + p+ p+

n−2∑
d=2

(pd + pn−d − pn)
)
+ 2mnqpn+1 +mp2n

= mnp2q2
(
1+ p+ p+

n−2∑
d=2

(pd + pn−d)
)
−mn(n− 3)q2pn+2 +2mnqpn+1 +mp2n

Therefore, for p < 1 (but the result is also valid for p = 1),

lim
m,n→∞

E[#overlaps]

mn
= p2q2

(∞∑
d=0

pd +

∞∑
d=1

pd
)
= p2q(1 + p)

and by substituting,

lim
m,n→∞

E[#islands]− E[#pools]

mn
= pq − p2q(1 + p) = pq(q − p2)

9

Figure 6: Average number of islands (solid) and pools (dashed) divided by torus
size mn with pq(q − p2) (dotted) superimposed as a function of p.

4.4 The Golden Ratio

The limit derived above is trivially zero when p = 0 (E[#islands] = 0 and
E[#pools] = 1) or q = 0 (E[#islands] = 1 and E[#pools] = 0). It is also zero
when

q = p2

1

p
=

p

q

p+ q

p
=

p

q

which is true if and only if p/q = ϕ = (1 +
√
5)/2, the well celebrated golden

ratio (i.e. p = 1/ϕ ≈ 0.618). Observe also that pq(q − p2) changes sign from
positive to negative at p = 1/ϕ. In addition, islands will tend to merge when p
is high, and pools will tend to merge when q is high. Therefore, for large enough
m and n,

E[#islands]
mn ≈ pq(q − p2), E[#pools] ≪ E[#islands] p

q ≪ ϕ

E[#islands] = E[#pools] p
q = ϕ

E[#pools]
mn ≈ pq(p2 − q), E[#islands] ≪ E[#pools] p

q ≫ ϕ

This conclusion is consistent with Figure 6 and reveals an interesting property
of balance between islands and pools (in the expected sense) when p/q is the
golden ratio.

10

5 Conclusion

I started this exposition with a programming perspective to show how the intro-
duction of the modulo operator can facilitate the handling of two-dimensional
arrays. The two-dimensional array became a torus and an intriguing question
arose about the number of islands and pools on a random torus. This lead to
a probabilistic analysis that revealed an interesting link between the expected
numbers of islands and pools and the golden ratio. In performing this analy-
sis, the most theoretical sophistication I used was that expectation is linear, i.e.
E[X+Y] = E[X]+E[Y]. I presume that college students, whether in computer
science or mathematics, should be comfortable in following this exposition. So
cheers for the linearity of expectation, and more cheers for mathematics, which
provide us with the insight to uncover the realities of our world. Well, in this
particular case, a fictitious world!

6 Notes

A general treatment of the subject of cluster formation in lattices can be found
in percolation theory [1, 2]. To the best of my knowledge, this particular setting
of islands and pools with a link to the golden ratio is unique. The golden ratio
itself has been the subject of many studies (and fallacies, see [3] for references);
and despite all the arguments about its inherent beauty, my use of it is simply
restricted to the mathematical fact itself. The linearity of expectation and the
use of indicator random variables are typical topics in probability textbooks,
but [4] provides a concise description with examples. Finally, for a flavor of
what it might be like to live on a torus, I refer the reader to Ringworld [5], a
science fiction idea introduced in the seventies.

References

[1] Dietrich Stauffer and Ammon Aharony: Introduction to Percolation Theory.
CEC Press (1994).

[2] Béla Bollobás and Oliver Riordan: Percolation. Cambridge University Press
(2009).

[3] Clement Falbo: The Golden Ratio, A Contrary Viewpoint. The College
Mathematics Journal 36(2) (2005) 123-134.

[4] Thomans Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein:
Introduction to Algorithms. MIT Press (2001).

[5] Larry Niven: Ringworld. Random House Publishing Group (1970).

11

Appendix: Pseudocode for Counting Islands and
Pools

Here’s a pseudocode for counting islands and pools. For correctness, the pro-
gramming language used must return a non-negative integer for the modulo
operator. But many don’t when x < 0 in x mod n, so a fix can replace x mod n
with (x+ n) mod n to avoid a negative x.

VISIT(a, i, j, b)
if a[i, j] = b ∧ ¬visited[i, j]

then visited[i, j]← TRUE ▷ mark it as visited
VISIT(a, i, (j − 1) mod n, b) ▷ recurse through neighbors
VISIT(a, i, (j + 1) mod n, b)
VISIT(a, (i− 1) mod m, j, b)
VISIT(a, (i + 1) mod m, j, b)
if b = 0

then VISIT(a, (i− 1) mod m, (j − 1) mod n, 0) ▷ and diagonally for pools
VISIT(a, (i− 1) mod m, (j + 1) mod n, 0)
VISIT(a, (i + 1) mod m, (j − 1) mod n, 0)
VISIT(a, (i + 1) mod m, (j + 1) mod n, 0)

COUNT(a,m, n, b)
for i← 0 to m− 1

for j ← 0 to n− 1
visited[i, j]← FALSE

total← 0
for i← 0 to m− 1

for j ← 0 to n− 1
if a[i, j] = b ∧ ¬visited[i, j] ▷ when seen for the first time

then VISIT(a, i, j, b) ▷ visit the rest of it
total← total + 1 ▷ and increment the count

return total

ISLANDS(a,m, n)
return COUNT(a,m, n, 1)

POOLS(a,m, n)
return COUNT(a,m, n, 0)

12

