
You Had Me At Hello ∗

Saad Mneimneh
Computer Science

Hunter College of the
City University of New York (CUNY)

New York, USA
saad@hunter.cuny.edu

ABSTRACT
The hello world program (or some variant thereof) is typ-
ically considered one of the simplest programs possible in
most programming languages. It is often used to illustrate
to beginners the basic use of the language. But does it serve
its purpose? I argue that there is nothing simple or basic
about the hello world program. On the one hand, it is not
an effective ice breaker for syntax; this is especially true
with imperative object oriented languages. On the other
hand, it does not highlight any of the basic elements of pro-
gramming, as it involves no thought experiment whatsoever.
In this paper, I suggest what I believe is a better alterna-
tive to the hello world program. To say the least, I believe
my exposition should instigate interesting discussions among
computer science educators.

1. HELLO WORLD, AKA INTRODUCTION
The hello world program is often used as an introductory
tool to expose the students to their first program. This
was historically influenced by an example that appeared in
the seminal book “The C Programming Language” [2]. That
example program prints “hello, world”.

One would imagine that this first program should be some-
what simple and universal, or to use a mathematical term,
a base case, or at least something that can be extended, and
more importantly, a good source for the basic elements of
programming. But it is none of these things. In fact, putting
everything aside, it is not even that interesting. Here are few
points about the hello world program that are backed up by
the illustrations in Figure 1.

• depending of the language, it is not necessarily simple

• it looks very different across languages

∗I make no extensive use of references for this exposition,
as there are only few that I found to be necessary. I must
reference the title, however, because it is borrowed from a
scene in the Jerry Maguire movie of 1996 [1].

• it does not illustrate any of the basic elements of pro-
gramming because it is not associated with any thought
experiment

• it is not enough to capture the syntax of the language

• it is not the smallest program you can make and, at
any rate, not much smaller than other programs that
are much more interesting and insightful

print "hello world"

public class HelloWorld {

public static void main(String[] args) {

System.out.println("hello world");

}

}

#include <iostream>

using std::cout;

int main() {

cout<<"hello world\n";

}

Figure 1: The hello world program in three lan-
guages: Python, Java, and C++.

As observed in Figure 1, the hello world program can be very
simple but also very complex. It also varies tremendously
in form depending on the language used, making it not an
ideal choice for illustrating what, in principal, is a basic
programming task: output hello world on the screen. In
my opinion, the screen as a device should be outside the
realm of programming for beginners. In fact, one often finds
it unavoidable to declare that it is to be taken for granted
that this is how we output things to the screen (especially in
C++). Therefore, the mere act of producing output is not
part of the algorithmic repertoire (therefore also logical) 1

at this early stage of a programmer’s life. As a result, it
should not constitute the starting point.

1Except possibly for using output to debug.



In C++, one must understand operator overloading for an
ultimate grasp of the hello world program. In Java, one must
even know object oriented programming and classes. There-
fore, given that a beginner has to take certain parts, such as
output in C++ and class wrappers in Java, for granted, it
is better to treat such parts as a way to visualize or obtain
the results, and not a as a typical program in the language.

On the other hand, the simplicity of the hello world program
in some languages is deceptive, both in terms of syntax and
semantics. To a beginner, for instance, the Python state-
ment in Figure 1 suggests that computers can magically
understand our intention, as there is a missing important
notion of a function (which is not the case with functional
programming). For example, why not replace

print "hello world"

with

solve "x-3=5"

which apparently does not violate the syntax? One can-
not expect a student to know that the second statement
“does not make sense” without an appropriate introduction
to some basic elements of programming (which obviously
hello world does not provide).

Finally, it is clear that the hello world program is not neces-
sarily the smallest possible program, and even if it were, it is
not doing anything interesting that the human being cannot
do with just a pen and a paper. Also it cannot be extended
except by making it print something other than the hello
world message (in Java, an extension of the class itself is
possible, but it is irrelevant for this discussion). I believe an
introduction to programming should ignite a better interest.
This is especially true when students don’t lack the ability
to think algorithmically. A slightly larger (and universal)
program can perform a much more interesting task that can
be extended in many ways.

2. AN ALTERNATIVE TO HELLO WORLD
In my introductory programming classes, I often deliver my
standard speech to advocate that programming is not just
about writing code, and that algorithms are at the heart of
computer science. I emphasize that programs are simply a
representation of these algorithms. To make the students
experience this, I then usually engage them with a thought
experiment and the task of finding an algorithm to compute
the sum of all the natural numbers up to 100. I also ask them
not to use what I call the Gaussian trick 1 + 2 + . . . + n =
n(n + 1)/2 2 in order to focus on the non-trivial algorithmic
aspect of the problem.

We all eventually agree that we keep a running sum and
we repeatedly add the next number to it (and increment
that number by 1). This means that we actually perform

2As the story goes, the mathematician Gauss had discovered
this equality at the age of ten when asked to perform the
exact same task! [3]

the following operation (. . . (((1 + 2) + 3) + 4) + . . . + 100),
which is identical to a left-to-right evaluation of the expres-
sion 1 + 2 + . . . + 100 in all programming languages. The
problem with this expression is the lack of abstraction, which
was not lacking in the mental process that created it. In ad-
dition, there is nothing special about the number 100, since
we could have done the same for any value, say n. In fact,
for a given value n, it becomes clear to the students that
our brain keeps two placeholders, say s and i, that evolve as
shown in Figure 2 (in pseudocode).

sum(n)
s← 0
i← 1
while i ≤ n

s← s + i
i← i + 1

return s

Figure 2: Mental process for computing
Pn

i=1 i.

In Figure 2, the “length” of the algorithm is not proportional
to n, the length of the expression 1 + 2 + . . . + n, so it
becomes practical, for instance, to write the code required
to compute the sum up to a million. Moreover, the resulting
program will be flexible enough to compute the sum up to
any number by simply changing the value of n (there is
an added value here if one needs to eventually talk about
functions). These features were possible due to the following
four basic elements of programming (all are illustrated by
the algorithm):

• naming: we give names to things (variables), e.g. n, i,
and s, and assign them values

• initialization: we initialize our brain with some state,
e.g. s starts at 0 and i starts at 1

• repetition: we repeat the same process over and over,
e.g. adding the next number

• testing: we test whether some condition occurs, e.g.
i ≤ n

These four elements, in an informal way, are sufficient to
create abstractions and algorithms, and hence programs.
Therefore, every programming language has them (I am
putting aside the lack of assignment in functional program-
ming), and every programming language uses them in al-
most identical ways. Figure 3 shows the translation of the
algorithm into programs in three languages, all of which are
strikingly similar.

At this point, students don’t need to understand every single
aspect of the program, e.g. the fact that we have just created
a function, as long as they have a good grasp of the four
elements listed above, and recognize how they occur in the
program. This is not a drawback; for instance, in C++ one
has to create the main function anyway. I believe it is quite
an achievement already if students realize that programming
is the act of putting our four elements together in a special



way to achieve a desired goal. One could spend some time
fiddling around with that idea. Everything else that makes
the program run and produce an output is part of what
is to be taken for granted, as I discussed earlier. At this
stage, taking something for granted is acceptable, as long
as it does not interfere with the logic of the program, and
does not itself constitute the program (which was not the
case with hello world). In effect, what Figure 3 shows is a
typical, simple, and basic program in almost every language.
It is very reasonable to believe that a random person could
potentially figure out what the programs in Figure 3 do,
but not those in Figure 2 (excluding Python). It would be
interesting to actually conduct such an experiment.

Unlike the hello world program, this alternative program
is simple and basic, it looks the same across languages, it
exposes the syntax of the language in use, and it is small
enough while performing an interesting task. In addition, it
can be extended in many ways, and this is where the stu-
dents can find an opportunity to experiment. For instance,
one could ask to sum up only the odd number, only the
even numbers, or only those that are multiples of a given
number. In addition, one could require that the starting
point be a given number, or that the last number of the sum
must be at most a given fraction of n, or that the sum must
stop if a particular value is ever reached. There are plenty
of other possibilities. These variations are not arbitrary,
as they reinforce the understanding of the four basic ele-
ments listed previously: Students have to experiment with
different ways of initializing the variables, adding new ones,
modifying the repetitive process, and working with different
conditions. Upon success, students can even discover new
identities similar to

Pn
i=1 i = n(n+1)/2 using the programs

they have written as experimental tools.

The thought experiment that lead to the alternative pro-
gram can also be explored to introduce concepts such as
memory, scope, types, and even pointers. The crucial as-
pect is that we had to collectively think about the algo-
rithm before creating the program. Consequently, we identi-
fied what we called programming elements before even writ-
ing a single line of code. Therefore, students had already
been able to associate the concept of naming with memory
(their own!), and while everyone in the class may be us-
ing the same names, the variables are physically different.
This immediately evolves into the concept of memory and
scope. Questions will soon arise: how much memory does
a variable consume (type), how long does it stay in mem-
ory (scope), and where precisely in memory does it reside
(pointer)? All these question become highly relevant from
the programming perspective. We just converted an intro-
ductory program into an open door to explore a new world!

3. CONCLUSION
I feel that, as teachers, we are unlikely to succeed to unleash
the genuine computer scientist by exposing students to stan-
dard introductory examples such as hello world. Many stu-
dents fail to learn anything beyond “cliché” programs, and
lack any further development of their computational and
algorithmic skills. Therefore, I believe we should abandon
any kind of hello world programs, because we should strive
to always ignite the interest of talented computer scientists,
especially with creative introductory examples inspired by

def sum(n):

s=0

i=1

while i<=n:

s=s+i

i=i+1

return s

class Sum {

public static int sum(int n) {

int s=0;

int i=1;

while (i<=n) {

s=s+i;

i=i+1;

}

return s;

}

}

int sum(int n) {

int s=0;

int i=1;

while (i<=n) {

s=s+i;

i=i+1

}

return s;

}

Figure 3: The alternative program in three lan-
guages, Python, Java, and C++, not including the
parts that will actually produce the result, when
n is a 100 for example. These parts, i.e. output
statements and main functions and class wrappers,
are generally assumed to be taken for granted and
must be present in almost every program. Without
them, observe the striking similarity of the three
programs. A retroactive note on the choice of ≤ in
the algorithm of Figure 2: The use of <= makes it
possible for students to predict how to say less than,
but not the other way around. It also illustrates that
syntax is not necessarily what we think it is (there
is no ≤ in the language). Finally, it is closer to the
intuitive process since n itself must be part of the
sum. At any rate, <= n can be replaced by < n + 1,
or by < n if the order of the two update statements
are flipped (and the initial conditions adjusted ac-
cordingly). This usually makes a nice exercise to
reinforce the logic of the program.



algorithmic thought. Moreover, it is unfair for a student
to expect that computer programming is a cut and paste
experiment, where cliché programs such as the hello world
become the main fabric of their learning experience. A stu-
dent should either learns a good deal, or he/she should be
identified as lacking some capabilities from the beginning,
which may then be rectified. My alternative to hello world
does just that: it grasps the talented students and identi-
fies the deficiencies of others, almost from the first lecture.
With that in mind, I wish every computer science educator
can help make all kinds of hello world programs become just
history and never visit the classrooms again.

4. REFERENCES
[1] James Brooks at al. (Producer) and Cameron Crowe

(Screenplay and Director) (1996), Jerry Maguire,
Motion Picture, TriStar Pictures.

[2] Kernighan Brian and Ritchie Dennis (1988), The C
programming Language, Second Edition. Prentice Hall.
See also
https://en.wikipedia.org/wiki/The C Programming Language.

[3] Howard Eves (2002), In Mathematical Circles: A
Selection of Mathematical Stories and Anecdotes. The
Mathematical Association of America.


