
Pythagoras’ Lost Lecture: A Journey Through Recursion,
Stacks, Binary Search, and Hash Tables∗

Saad Mneimneh

*** not yet published ***

ABSTRACT
As an advocate of infusing various algorithmic and mathe-
matical aspects when teaching about programming, I have
come to realize that an early such practice is essential for a
rounded computer science education. In this paper, I pre-
tend that Pythagoras is presenting ideas about his theorem
a2 + b2 = c2 while pointing out several computer science
concepts such as recursion, stacks, binary search, and hash
tables.

“You may be right, Pythagoras,
but everybody is going to laugh

if you call it Hypothenuse!”
− Anonymous

1. PART I: RECURSION ON THE
HYPOTHENUSE

... therefore, since a2 + b2 = c2, when given a right angle
triangle with sides a and b, we can find the length of the
hypothenuse as

√
a2 + b2. The challenge is in computing this

square root function using the basic arithmetic operations
that we know. Newton’s 1 method will come in handy. If y
is a guess for the square root of x, then

y + x/y

2

∗Either Pythagoras wrote nothing or everything he wrote
was lost. Hence the title. Moreover, many detailed explana-
tions in this lecture have been lost and, therefore, it should
only serve as a guide for the interested Pythagorean instruc-
tors; they are assumed to develop their own lecture, or series
of lectures, with the appropriate level of detail for their au-
dience.
1Pythagoras lived from 570 to 490 BC and Newton lived
from 1642 to 1727. Some ancients, however, believed that
Pythagoras had a thigh of gold and he could travel through
space and time.

is a better guess. Based on this observation, we have the
following definition for the square root (now a function of
two parameters). 2

sqrt(x, y) =

sqrt
`

x, y+x/y
2

´

|y2 − x| > ǫ
y |y2 − x| ≤ ǫ

It is easy to convert this mathematical definition to a re-
cursive implementation using any programming language.
Figure 1 shows a pseudocode (henceforth pseudocodes will
be called algorithms).

sqrt(x, y)
if |y2 − x| > ǫ

then return sqrt(x, (x + x/y)/2)
else return y

Figure 1: Computing the square root of x using an
initial guess y.

Here’s an example: Let x = 2 and assume that our guess for√
2 is 1. If ǫ = 0.001, our guess will change as follows:

1

1 + 2/1

2
= 1.5

1.5 + 2/1.5

2
≈ 1.4167

1.4167 + 2/1.4167

2
≈ 1.4142

We stop because |1.41422 − 2| ≤ 0.001.

Now back to our triangle. Since max(a, b) ≤ c ≤ a + b
(triangular inequality, but can also be obtained from c2 =
a2+b2), we can start with the guess c = [max(a, b)+a+b]/2
(the middle). Finally, we have an algorithm to compute the
length of the hypothenuse in Figure 2.

But how does recursion really work? Well, it’s like trans-
migration: 3 when the square root function returns, a new
incarnation of the function with new parameters is born.
This is best illustrated by a stack.
2This will work correctly only if x, y ≥ 0.
3Pythagoras believed that the soul begins a new life in a
new body after death.

hypothenuse(a, b)
return sqrt(a2 + b2, (max(a, b) + a + b)/2)

Figure 2: An algorithm to find the length of the
hypothenuse

2. PART II: STACK THEM UP!
A stack s is a structure that supports the following opera-
tions:

• push(s, e) adds element e to the top of the stack

• pop(s) removes the element on the top of the stack and
returns its value

• s[i] represents the ith element on the stack (i = 1 for
the bottom element and i is largest for the top element)

To understand recursion, imagine that sqrt(x, y) makes a
series of push and pop operations on a stack s using the
various instances of the parameters (x, y) as the elements.
When the square root function is called, the parameters are
pushed on the stack; when the function call returns, the
parameters are popped from the stack. Figure 3 shows the
state of the stack for the

√
2 example of the previous section.

Figure 3: Starting with an empty stack, the first call
to the square root function pushes its parameters on
the stack. Every subsequent call does the same. The
top of the stack is shown in bold. When a call re-
turns, it pops the stack. The first popped value is
1.4142, which is returned. Every subsequent pop ig-
nores the popped value and simply returns whatever
was returned previously, leading to the final result
1.4142 (and an empty stack).

Understanding the stack provides a lot of insight about re-
cursion. For instance, the amount of memory needed is pro-
portional to the largest height attained by the stack. In
this particular implementation of the square root function,

we also observe that upon returning from the function call,
the popped value is ignored except in the first time. This
means that, throughout the entire execution, we only need
to store the top of the stack (and not everything in it). In
fact, this is what makes it possible to transform a recursive
implementation into an iterative one. Not every recursive
implementation can be transformed. We call the ones that
can tail recursive (when the recursive call itself is the last
thing to be done, observe the square root function again).

This is not to be confused with the fact that we can always
eliminate recursion entirely by emulating the stack. Tail
recursion means we can eliminate the (redundant) memory
requirement of the stack. As a rule of thumb, Figure 4 pro-
vides a quick recipe for transforming a tail recursive imple-
mentation of a given form into an iterative one.

tail rec f(x, y, z, . . .)
if condition

then return tail rec f(x′, y′, z′, . . .)
else return w

iter f(x, y, z)
while condition

do x ← x′

y ← y′

z ← z′

...
return w

Figure 4: Tail recursive to iterative: (1) Change the
if to a while, (2) replace the recursive call by an
update of the parameters, and (3) drop the else (if
any).

Applying this technique to the square root example will pro-
duce the (rather familiar) form of Figure 5:

sqrt(x, y)
while |y2 − x| > ǫ

do y ← (y + x/y)/2
return y

Figure 5: Iterative version of the square root func-
tion using the technique outlined in Figure 4.

01000101

10101

0110010

3. PART III: THE PLAIN OLD
BINARY SEARCH

Now consider the problem of identifying Pythagorean triples.

Definition 3.1 (Pythagorean Triple). A triple (a, b, c),
where a, b, c ∈ N, is called Pythagorean iff c2 = a2 + b2.

The problem is posed as follows: given a list l of positive
integers (indexed l[1] to l[n]) and a positive integer c, find

if l contains two integers a and b, such that (a, b, c) is a
Pythagorean triple.

This is a problem of search, and it can be solved in a trivial
way as shown in Figure 6.

search(l, c)
for i ← 1 to n

do for j ← i + 1 to n
do if c2 = l[i]2 + l[j]2

then return true
return false

Figure 6: Algorithm to find if integer c forms a
Pythagorean triple in list l.

The running time of the algorithm in Figure 6 is proportional
to the square of n, i.e. O(n2). To see this:

n
X

i=1

n
X

j=i+1

1 =

n
X

i=1

(n − i) =

n−1
X

i=1

i =
(n − 1)n

2
= O(n2)

But it can be improved to O(n log n) using a more efficient
search, called binary search. 4

To introduce binary search, assume that we have a set T of
ordered tuples, T ⊂ {(a, b)|a, b ∈ [n] ∪ {0}}. We will also
assume the following property for T :

Definition 3.2 (Reverse Transitive). If (i, j) ∈ T
and k ∈ [n] ∪ {0}, then (i, k) ∈ T or (k, j) ∈ T .

This is equivalent to say:

(i, k) 6∈ T ∧ (k, j) 6∈ T ⇒ (i, j) 6∈ T

which is transitive (thus the name reverse transitive).

Binary search assumes that a starting tuple (i0, j0) is in T
and that i0 < j0 and finds an i such that (i, i + 1) ∈ T , as
follows: 5

binary search(i, j)
if j > i + 1

then choose i < k < j
if (i, k) ∈ T

then return binary search(i, k)
else return binary search(k, j)

else return i

find(i0, j0) ✄ (i0, j0) ∈ T ∧ i0 < j0
return binary search(i0, j0)

Figure 7: General binary search, typical value of k
is ⌊(i + j)/2⌋.
4Pythagoras must have learned about sorting and the big O
notation throughout his time travel.
5The general binary search algorithm thus presented does
not require sortedness.

In Figure 7, if k is chosen to be ⌊(i+ j)/2⌋, the search space
is reduced by half for each recursive call and, therefore, the
running time for binary search will be O(log n).

But how can this be used for our purpose of finding if a
given c forms a Pythagorean triple in list l? The answer is
that we have to set up T appropriately. Let’s say we want to
check if c forms a Pythagorean triple with l[i] and some other

element in l. Then we can compute x =
p

c2 − l[i]2. If x ∈ N

and l[j] = x for some j, then (l[i], l[j], c) is a Pythagorean
triple. Otherwise, c does not form a Pythagorean triple with
l[i] and another element of l. When we check this fact for
every i ∈ [n], we are done. Therefore, we need to set up
T in such a way that binary search will determine whether
x occurs in l or not, and more generally in l[i0], . . . , l[j0].
Upon doing this, we will have achieved a running time of
O(n log n).

To start, assume that l is sorted, e.g. i < j ⇒ l[i] ≤ l[j]
(sorting can be done in O(n log n) time). Assume further
that given x, l[i0] ≤ x and l[j0] > x (we will relax this
assumption later). Now define T as follows:

T = {(i, j)|l[i] ≤ x ∧ l[j] > x}

By assumption, (i0, j0) ∈ T . It is also obvious that if (i, j) ∈
T , then for every k, either (i, k) ∈ T or (k, j) ∈ T . Therefore,
starting with (i0, j0), binary search will find an i such that
(i, i + 1) ∈ T . If l[i] = x, then x occurs in l; otherwise it
doesn’t because l is sorted and l[i] < x and l[i + 1] > x.

Finally, we can virtually consider that l[i0 − 1] = −∞ and
l[j0 + 1] = ∞ (thus (i0 − 1, j0 + 1) ∈ T) and work with
the virtually modified list l[i0 − 1], . . . , l[j0 + 1] to relax our
assumption that l[i0] ≤ x and l[j0] > x; this will also guar-
antee the condition i0−1 < j0+1 if the list has less than two
elements, i.e. if i0 ≥ j0 (j0 − i0 = −1 if the list is empty and
j0 − i0 = 0 for a singleton). Figure 8 shows binary search
adapted to our problem.

binary search(l, x, i, j)
if j > i + 1

then k ← i + ⌊(j − i)/2⌋ ✄ = ⌊(i + j)/2⌋ but better
if l[k] > x

then return binary search(l, x, i, k)
else return binary search(l, x, k, j)

else return i

find(l, x, i0, j0) ✄ search l[i0], . . . , l[j0]
i ←binary search(l, x, i0 − 1, j0 + 1)
if i = i0 − 1

then return false
else return l[i] = x

Figure 8: Binary search for x in a sorted list.

Observe that the above implementation is tail recursive. Fol-
lowing the technique of Figure 4, it can be transformed to
iterative as shown below (Figure 9). We are now ready to
finalize our Pythagorean triple search with the algorithm of
Figure 10 (the algorithm can be modified by removing the
condition l[i] ≤ x and simply using find(l, x, 1, n) because
virtually l[0] ≤ x and l[n + 1] > x).

binary search(l, x, i, j)
while j > i + 1

do k ← i + ⌊(j − i)/2⌋
if l[k] > x

then j = k
else i = k

return i

Figure 9: Iterative version of Figure 8. Again, (1)
change the if to a while, (2) replace the recursive
call with an update of the parameters, and (3) drop
the else.

search(l, c)
sort list l ✄ can be done in O(n log n) too
for i ← 1 to n

do if l[i] ≤ c ✄ sqrt will work
then x ←sqrt(c2 − l[i]2, c)

if x ∈ N ∧ l[i] ≤ x ✄ virtually, l[n + 1] > x
then if find(l, x, i + 1, n)

then return true
return false

Figure 10: Improved algorithm to find if integer c
forms a Pythagorean triple in list l.

What if we want to repeat our search for different values of
c? Can we process the list for such a repeated use to improve
upon the O(n log n) time? Can we even hope for a constant
time, i.e. O(1)? Yes, we can, if we use a hash table.

Did you say hash...?

4. PART IV: FINDING PYTHAGOREAN
TRIPLES BY HASHING

To introduce hash tables, consider first a simple table t in-
dexed from t[0] to t[⌊1.5M⌋], where M is the largest value
in our list l. The key idea is that we can process l and de-
termine, for all values of c ∈ [⌊1.5M⌋], whether c forms a
Pythagorean triple in l or not, and store that information
(true or false) in t[c], which can be later obtained in constant
time with a simple access to the table. Observe that c can-
not be larger than ⌊1.5M⌋ because

√
M2 + M2 =

√
2M <

1.5M . This idea is illustrated by the algorithm in Figure 11.

Therefore, we pay the price of O(n2) time only once, but
then answer every question in constant O(1) time. But there
is a problem! We need to guarantee that t[c] is false initially,
and to do this, we have to explicitly initialize all ⌊1.5M⌋
entries in the table. But if M ≫ n2, this may not be a good
idea (too slow). Fortunately, we can skip the initialization
with the help of a stack. 6

6Pythagoras learned this trick from the CLRS book.

process(l)
for i ← 1 to n

do for j ← i + 1 to n
do c ←hypothenuse(l[i], l[j])

if c ∈ N

then t[c] ← true

search(c)
return t[c]

Figure 11: Processing the list l using an auxiliary
table t.

Instead of setting t[c] to true, we push c on a stack s. We
then store in t[c] the position of c in the stack, i.e. t[c] = i
such that s[i] = c. We can keep track of the height of the
stack. Given a value for c, we can retrieve i = t[c], and
check if i is at most the height of the stack. If that’s the
case, we read s[i]. If s[i] = c, we must have pushed it on s
and that’s our witness. There is no need for initialization.
The algorithm is revised below in Figure 12.

process(l)
h ← 0 ✄ the height of the stack (initially empty)
for i ← 1 to n

do for j ← i + 1 to n
do c ←hypothenuse(l[i], l[j])

if c ∈ N

then push(s, c)
h ← h + 1
t[c] ← h

search(c)
i ← t[c]
if 1 ≤ i ≤ h ∧ s[i] = c

then return true
else return false

Figure 12: Using a stack s to skip the initialization
of t.

When M ≫ n2, the explicit initialization of t did not justify
the resulting loss in efficiency. By the same token, if M ≫
n2, we are wasting too much memory. This will happen to
be just the one incentive to do the following: Simply, make
t much smaller, e.g. with m ≪ M entries indexed from 0
to m − 1, and call it a hash table. We can now revert to
the algorithm of Figure 11 with the proper initialization of
t that we have previously skipped, since m ≪ M (we will
need to make m = O(n2) to maintain the same efficiency).

But not every value of c will have a place in t; namely, if
c ≥ m. Subsequently, if we wanted to set a value for t[c], we
would set t[c mod m] instead, because c mod m ∈ [0, m−1].
We say that c hashes into position c mod m, and we define
h(c) = c mod m as our hash function.

The last detail that we have to handle is the fact that multi-
ple values of c may hash into the same position; for instance,
c and c+m. To solve this problem, we assume that t[i] con-
sist of a tuple (si, hi) where s is a stack and h is its height.
Every c that hashes into position i is pushed on stack si (and

hi is increased by 1). For the look up, we search the corre-
sponding stack for the desired c. The algorithm is shown in
Figure 13.

process(l)
for i ← 0 to m − 1

do t[i] ← (0, empty stack)
for i ← 1 to n

do for j ← i + 1 to n
do c ←hypothenuse(l[i], l[j])

if c ∈ N

then (h, s) ← t[h(c)]
push(s, c)
t[h(c)] ← (h + 1, s)

search(c)
(h, s) ← t[h(c)]
for i ← 1 to h

do if s[i] = c
then return true

return false

Figure 13: Using a hash table with the hash function
h(c) = c mod m.

If we assume that values of c are hashed uniformly in t,
then each entry in t will have a stack of height O(n2/m).
Therefore, it takes O(1 + n2/m) time to compute h(c) =
c mod m and search the corresponding stack. With m = kn2

for some k, this is O(1) time.

5. A NOTE TO PYTHAGOREANS
Depending on when recursion is taught, the instructor can
make a choice on whether to start with a recursive binary
search, or an iterative one. The square root function and
the hypothenuse problem are used as means to introduce
recursion and tie it to the problems discussed thereafter,
but recursion can be illustrated in many traditional ways.
Stacks are great structures to play with, and crucial for un-
derstanding recursive processes. For the beginners, experi-
menting with arrays has an important role in providing high
level structures, such as the stack. Once familiar, a stack
is the perfect tool to accompany recursion. Hash tables are
widely misunderstood, but perhaps the most important data
structure in everyday computing, especially when it comes
to problems of search. The illustration using Pythagorean
triples gives the precise amount of intuition needed for con-
sidering hash tables and how they work.

All the problems discussed herein can be extended. For ex-
ample, upon finding that c makes a Pythagorean triple in
the list, one may ask to produce a witness, i.e. a and b in the
list such that a2 + b2 = c2, or to produce all of them (with
or without repetition). Depending on the level of treatment
of hash tables, different hash functions may be considered.
Various aspects of Pythagorean triples can also be explored,
such as primitive Pythagorean triples (when a, b, and c are
co-primes). In addition, problem targeted for the discovery
of properties of Pythagorean triples will provide an opportu-
nity for cultivating the computational thinking process. For
instance, are there Pythagorean triples that have exactly
one value in common or exactly two values in common?

6. CONCLUDING REMARKS
The Pythagorean theorem a2 +b2 = c2 is perhaps one of the
most known mathematical results among the entire popula-
tion of Earth (another is probably E = mc2). Surprisingly,
given the ease of proving it, only a few know of a proof. For
many proofs, see [2]. In [4], Dijkstra generalized the theo-
rem of Pythagoras for any triangle as sgn(a2 + b2 − c2) =
sgn(α+β−γ), where the angles α, β, and γ lie opposite to the
corresponding sides a, b, and c, and sgn is the signum func-
tion (sgn(0) = 0 and sgn(x) = |x|/x for x 6= 0). Newton’s
method (also known as Newton-Raphson) is well known in
numerical analysis [6]. An excellent treatment of stacks and
recursion, including tail recursive and iterative implementa-
tions, can be found in [1]. Binary search consists of a few
lines of code, but it is very easy to get wrong. The best
way (ever) to teach binary search is due to the followers of
Dijkstra [5]. The CLRS book Introduction to Algorithms
[3] (among others) contains detailed material on hash tables
and their analysis, as well as basic and advanced topics in
algorithms and data structures.

7. THE AFTERMATH
I envision this hypothetical, but concrete, Pythagorean story
as a lecture in a second programming course. Many typical
topics are introduced in a non-typical way (especially stacks
and binary search). First, this emphasizes a real problem
solving driven approach. Second, it provides a broader con-
text for existing concepts: a stack may be a bit more than
just a FIFO (e.g. when insertion time is a concern but not
the access pattern), and binary search is not confined to
sorted arrays. Third, some mathematical and formal con-
cepts are infused into the tasks of writing programs. I be-
lieve we are in great need, more than any time, to rescue
the declining mathematical level in computer science educa-
tion. This is one attempt to do so by introducing computer
science concept in a mathematical context that remains the
focus throughout the entire lecture.

On a different note, I should say that the approach out-
lined herein prepares a general population of students who,
though may not be academically savvy, are career oriented.
For one thing, many respectful software companies, for ex-
ample Google, follow a similar approach for their interview
process. They expect the applicant to first solve a given
problem in a trivial way, with no regards to the efficiency
or the elegance of the solution. They then raise the level
by guiding the applicant to pursue a certain direction of
thought, hopefully leading to a better solution.

The importance of this exposition lies in the fact that one
should be able to engage students in a lively environment
where the need for a solution triggers the creation of struc-
tures and paradigms, ones they have possibly seen be-
fore, but did not imagine their general utility. As
such, I believe students will be given the chance to appre-
ciate how structures and techniques become useful outside
their mundane usual settings. Therefore, readers should
adapt this in any way they find useful for their own pop-
ulation of students. The topics can be tailored to any level.
What I want to convey is not the specificity of the illustra-
tion, but a general approach to enlighten the students with
mathematical concepts and new perspectives, invite them to
think critically, and help them realize that computer science

is not just about writing code.

8. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

interpretation of computer programs, second edition.
The MIT Press. Also available at
https://mitpress.mit.edu/sicp/full-text/book/book.html,
1999.

[2] A. Bogomolny. Pythagorean theorem.
http://www.cut-the-knot.org/pythagoras.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms, any edition.
Mc-Graw Hill.

[4] E. W. Dijkstra. On the theorem of pythagoras.
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD975.PDF,
1996.

[5] N. van Gasteren and W. Feigen. The binary search
revisited.
http://www.mathmeth.com/wf/files/wf2xx/wf214.pdf,
1995.

[6] Wikipedia. Newton’s method.
http://en.wikipedia.org/wiki/Newton’s method.

