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Abstract

Humans rarely perform better than chance
at lie detection. To better understand hu-
man perception of deception, we created a
game framework, LieCatcher, to collect rat-
ings of perceived deception using a large
corpus of deceptive and truthful interviews.
We analyzed the acoustic-prosodic and lin-
guistic characteristics of language trusted
and mistrusted by raters and compared these
to characteristics of actual truthful and de-
ceptive language to understand how percep-
tion aligns with reality. With this data we
built classifiers to automatically distinguish
trusted from mistrusted speech, achieving
an F1 of 66.1%. We next evaluated whether
the strategies raters said they used to dis-
criminate between truthful and deceptive re-
sponses were in fact useful. Our results
show that, while several prosodic and lexi-
cal features were consistently perceived as
trustworthy, they were not reliable cues.
Also, the strategies that judges reported us-
ing in deception detection were not helpful
for the task. Our work sheds light on the
nature of trusted language and provides in-
sight into the challenging problem of human
deception detection.

1 Introduction

Humans are notoriously poor lie detectors, most
performing at chance level or worse (Bond Jr and
DePaulo, 2006). This result has been found across
a wide variety of deception detection tasks, in
multiple modalities and in different cultures. Al-
though poor performance has been well-attested,
very little work has been done to understand why
humans perform so poorly at detecting lies.

Since humans are so poor at deception detec-
tion, there have been many efforts to develop au-
tomated methods to detect deception in multiple
modalities. Biometric indicators, typically mea-
sured by the polygraph (a device used to detect

lies by measuring blood pressure, pulse, respira-
tion and skin conductivity), have been shown to
perform poorly at deception detection (Eriksson
and Lacerda, 2007). Facial expressions (Ekman,
2009a), gestures and body posture (Lu et al., 2005;
Tsechpenakis et al., 2005), and even brain imaging
(Meijer and Verschuere, 2017) have been explored
as potential indicators of deception. Some of these
features are difficult or expensive to capture auto-
matically, or are too invasive to be practical for
general use. In recent years, automatic deception
detection has gained popularity in the speech and
NLP communities. Language cues have the ad-
vantage of being inexpensive, non-invasive, and
easy to collect automatically. More importantly,
prior research examining linguistic cues to decep-
tion has been promising. Researchers have used
machine learning to identify deceptive language
in various domains, including court testimonies
(Fornaciari and Poesio, 2013), hotel reviews (Ott
et al., 2011), and interview dialogues (Levitan
et al., 2018b). These automated methods have
demonstrated that machine learning classifiers can
indeed identify deceptive language with accuracy
between 70-90%, depending on the task — much
better than human performance on the same task.
These studies have also identified specific charac-
teristics of deceptive language.

Despite these important advances in under-
standing and automatically identifying deception,
there has been little work investigating human per-
ception of deception. What linguistic and prosodic
characteristics of an utterance lead listeners to be-
lieve that it is true — to trust it — regardless of
whether it is true or not? Why do people fre-
quently believe lies? How do the strategies hu-
mans use in lie detection align with actual indica-
tors of deception and how do they relate to peo-
ple’s performance in lie detection? Can we in
fact train machine learning classifiers to automati-
cally identify speech that will be perceived as truth



(trusted) or lie (mistrusted) by humans?
To investigate these questions, we created a lie

detection game, LieCatcher, to conduct a large-
scale study of human perception of deception. The
stimuli for this game were drawn from a large cor-
pus of previously collected truthful and deceptive
dialogues; players were asked to judge whether
single utterance spoken responses to written ques-
tions were truthful or deceptive. We distributed
the game on Amazon’s Mechanical Turk crowd-
sourcing platform to collect large-scale judgments
of deceptive or true responses to a set of bio-
graphical questions. We systematically analyzed a
number of linguistic and prosodic features in the
rated responses to understand the characteristics
of trusted vs. mistrusted speech. We compared
these features to the actual characteristics of truth-
ful and deceptive responses presented in the game
to identify the similarities and differences between
human perception of deception and the actual pro-
duction of deception. We also examined player-
reported strategies to discover which the raters be-
lieved to be useful and which were in fact useful
or not useful for detecting deception. Finally, we
trained machine learning classifiers using a large
set of lexical and speech features to automatically
identify human-trusted speech.

The contributions of this paper include: 1) A
large-scale analysis of linguistic and prosodic cues
to trust compared with cues to deception; this adds
considerably to our scientific understanding of hu-
man perception of deception. Our results show
that there are several prosodic and lexical features
that were consistently perceived as trustworthy,
but that these were not reliable cues to deceptive
speech. 2) A game framework for studying decep-
tion perception, which can be extended to other
speech and language perception studies. 3) A clas-
sifier that uses lexical and acoustic-prosodic fea-
tures to identify speech that was trusted by hu-
mans, achieving an F1 of 66.1%. 4) An analysis of
successful and unsuccessful human strategies for
detecting deception, showing that strategies that
judges reported using in deception detection were
not helpful for the task. We further believe that this
latter analysis may be useful for training humans
to detect lies more successfully.

2 Related Work

Previous studies have examined deceptive lan-
guage in various domains, including fake reviews

(Ott et al., 2011), public trials (Pérez-Rosas et al.,
2015), TV shows (Pérez-Rosas et al., 2015), Twit-
ter (Addawood et al., 2019), opinions on contro-
versial topics (Mihalcea and Strapparava, 2009),
online games (Zhou et al., 2004), and interviews
(Levitan et al., 2018a,b). Machine learning classi-
fiers have been shown to outperform human judges
by a large margin. For example, Ott et al. (2011)
trained a deception classifier that achieved nearly
90% accuracy on a corpus of fake hotel reviews,
while human accuracy was about 60%.

Researchers have also examined various fea-
tures that are characteristic of truthful vs. decep-
tive language. A meta-study by Bond Jr and De-
Paulo (2006) highlighted several patterns of de-
ceptive language found in multiple studies, such
as shorter responses, fewer details, and more neg-
ative emotions. Other cues to deception that have
been identified include language that is less sen-
sory or concrete (Ott et al., 2011; Vrij et al.,
2006). Truthful language has been found to con-
tain more linguistic markers of certainty (Levi-
tan et al., 2018b; Rubin et al., 2006). Syntactic
features such as lexicalized production rules and
part of speech tags have also been shown to be
useful in predicting deception (Feng et al., 2012;
Pérez-Rosas and Mihalcea, 2015). Linguistic In-
quiry and Word Count (LIWC) (Pennebaker and
King, 1999), which groups words into psycho-
logically meaningful dimensions, has also been
used extensively in deception studies (Ott et al.,
2011; Pérez-Rosas and Mihalcea, 2015; Pérez-
Rosas et al., 2015). Prosodic cues to deception
have also been identified; for example, Levitan
et al. (2018a) found increased pitch maximum and
intensity maximum are indicators of deception.
Though these studies are critical for advancing
the state of machine deception detection and for
understanding the nature of deceptive language,
they do not address the question of human percep-
tion of deception, which is the focus of this work.
We aim to gain insight into why humans are poor
judges of deception by comparing actual cues to
deception with characteristics of language trusted
and mistrusted by humans.

Psychology research of human deception de-
tection has traditionally focused on facial ex-
pression cues (Ekman et al., 1991; Frank et al.,
2008) and personal beliefs about what character-
izes deceptive behavior (Team, 2006; Granhag and
Strömwall, 2004; Wright et al., 2014). Based



on worldwide survey studies, Team (2006) found
pan-cultural deception stereotypes that liars tend
to be nervous with flawed speech. However,
Hartwig and Bond (2011) pointed out the method-
ological limitation of such studies: we cannot be
certain that what people report reflects their actual
decision process (Nisbett and Wilson, 1977). Our
work attempts to decipher the cues people actu-
ally use to detect lies by examining features of ut-
terances that are labeled as true by subjects, com-
pared with features of utterances rated as lies.

3 CXD Corpus

We used deceptive and truthful utterances from
the Columbia X-Cultural (CXD) Corpus for our
deception perception study (Levitan et al., 2015).
The CXD Corpus is a collection of interviews be-
tween native speakers of Standard American En-
glish and Mandarin Chinese, all speaking in En-
glish. It contains 122 hours of conversational
speech between 340 subjects. Previously unac-
quainted pairs of subjects were brought into the
lab to interview one another. They were first sur-
veyed for gender and native language and asked
to complete the NEO-FFI personality inventory
(Costa and McCrae, 1989). They were then asked
to provide true answers to a set of 24 biographical
questions and then to provide false answers for a
random half we chose. Interviews took place in a
sound-proof booth and each pair of subjects took
turns playing the role of interviewer and intervie-
wee. During the game, the interviewer asked the
24 questions in any order and was encouraged to
ask follow-up questions to help determine whether
the interviewee was lying or telling the truth about
each question. Participants were financially com-
pensated for both successful deception and suc-
cessful deception detection. Table 1 provides sam-
ple responses to one of the questions.

The recorded interviews were orthographi-
cally transcribed using Amazon Mechanical Turk
(AMT) crowd-sourcing and the transcripts were
force-aligned with the audio recordings using the
Kaldi Speech Recognition Toolkit (Povey et al.,
2011). The interviews were segmented using a
question identification classifier (Maredia et al.,
2017). All interviewee turns were automatically
identified using the question identification system
and subsequently hand-corrected. The corpus was
segmented into: 1) question responses: the single
interviewee turn directly following the question;

2) question chunks: all interviewee turns in (1)
plus answers to subsequent follow-up questions.
We used the single turn question response segmen-
tation for our deception perception study, so as not
to influence raters’ responses with interviewers’
follow-up questions.

4 LieCatcher

Using the data described in Section 3, we created a
lie detection game called LieCatcher1. LieCatcher
is a Game With A Purpose (GWAP) that allows
players to assess their overall ability to detect lies,
while simultaneously providing deceptive speech
judgments which we then use to study deception
perception. We developed LieCatcher in Unity2

and hosted the game on the web. Figure 1 shows
a screenshot from the game. In the game, play-
ers are shown a text version of a question asked
by one interviewer and then listen to the single-
turn spoken interviewee response. After listening,
the player selects a “Truth” or “Lie” button, in-
dicating their perception of the speech sample as
truthful or deceptive. The game was designed so
that players could submit their decision only af-
ter the audio had finished playing, so they could
not make a judgment without hearing the full re-
sponse. This feature of the game also provided
information about raters’ behavior when making
judgments, as we recorded the time interval be-
tween the end of the audio clip and the time that
the player entered their response for each deci-
sion. After the gameplay, a score report is dis-
played summarizing all their judgments for that
task, giving players feedback about their perfor-
mance at the end of each multi-question task.

4.1 Crowdsourcing Experiment
We used the game to collect deception judgments
via crowd-sourcing on Amazon Mechanical Turk
(AMT). On AMT we first vetted potential raters by
giving them a language background questionnaire
and restricting raters to those who had spoken En-
glish fluently since the age of 5. In the game, each
player was shown a series of 13 questions, one
at a time, with the audio recording of the inter-
viewee response. Audio samples were balanced
by gender, native language of speaker, and ques-
tion number (there were no duplicate questions

1The LieCatcher game framework is publicly
available at https://github.com/sarahita/
LieCatcherGame

2https://unity.com

https://github.com/sarahita/LieCatcherGame
https://github.com/sarahita/LieCatcherGame
https://unity.com


T my dad works i don’t i never really know how to say it he works with computers um in information
technology

T he’s a technical engineer at draper laboratory
F he works for um it’s like um a subsidiary of walgreens kind of it’s very it’s very corporate it’s like a

big big very impersonal company which is i think he doesn’t like about it
F uh my dad is an official in uh in the government system

Table 1: CXD corpus example responses to the question, “What is your father’s job?”

Figure 1: Screenshot from LieCatcher gameplay.

within a game), with half of the responses true
and half false. For quality control, we included
a randomly placed check question instructing the
annotator to select a certain answer for that ques-
tion (e.g. “wait 5 seconds and then press False”)
to help ensure that raters were actually paying at-
tention to the game with their audio on. Annota-
tors were also given a post-game survey including
questions on previous experience in jobs related to
deception detection, their gender, their own confi-
dence level in spotting lies, and the strategies they
used in making judgments. We manually filtered
out annotators who answered the check question
incorrectly or who failed to finish the game or sur-
vey. We obtained IRB approval for our deception
perception study and followed all human subjects
protection guidelines.

Each response was rated by three annotators and
each annotator was limited to a maximum of 10
total tasks of 13 questions each. In total, 5340
utterances were annotated by 431 total annota-
tors; 4.8% of the raters said they had had pre-
vious experience in law enforcement. 38.9% of
the annotators self-identified as male, 59.1% fe-
male, and 2.1% other. On average, annotators
judged 49.93% of the utterances correctly, roughly
at chance. In cases where all three annotators
agreed on a judgment, the accuracy was 50.75%,
slightly higher than the overall accuracy but still

at chance. This is consistent with decades of re-
search in deception detection (Bond Jr and De-
Paulo, 2006).

4.2 Inter-annotator Agreement
We used Fleiss’ kappa to measure inter-annotator
agreement on whether an utterance was truthful
or deceptive. The annotators had a Fleiss’ kappa
of 0.135, indicating slight agreement as Landis
and Koch (1977) suggests, showing that this task
is highly subjective. We also computed inter-
annotator agreement across utterances from fe-
male vs. male speakers and from native English
versus native Mandarin speakers. We found only
slight agreement (Fleiss’ kappa in the range (0.10,
0.15)) across all speaker traits, indicating that peo-
ple did not agree more on speakers with cer-
tain traits. Lastly, we considered whether inter-
annotator agreement might be affected by utter-
ance length, since annotators might find it more
difficult to judge short utterances (e.g. one word
utterances like "yes" or "no") for lack of sufficient
information. However, we found that agreement
was uniformly low across all utterance lengths and
that longer utterance length tended to result in
even lower agreement (Fleiss’ kappa: 0.138 for
length ≤ 5 vs. 0.067 for length ≥ 30).

We plotted the distribution of trust levels over
all responses (Figure 2) and found that the distri-
bution is skewed toward trust, indicating that an-
notators tend to be more trusting than mistrusting,
with 33% of utterances trusted by all annotators
and 70% trusted by at least two, consistent with
the Truth Default Theory (Levine, 2014), which
posits that humans operate on a default presump-
tion that others are basically honest.

5 Textual and Prosodic Indicators of
Trust and Deception

In this section, we consider the following ques-
tions: What are the characteristics of trusted
and mistrusted speech? How do these compare
with the characteristics of truthful and deceptive



Figure 2: Distribution of utterance trust levels

speech? Of all features raters believed to indi-
cate lies, which are valid cues and which not?
Also, what are the deceptive cues that raters failed
to perceive? We compared features of trusted
and mistrusted utterances and features of truthful
and deceptive utterances using paired t-tests. La-
bels for trust were computed using majority vote
(i.e. an utterance is considered trusted if at least
2 annotators believed it is true, otherwise mis-
trusted). We also compared utterances trusted by
all and mistrusted by all, observing differences
in complexity and prosodic features. For com-
plexity features, #verbs, #nouns, #num, concrete-
ness ceased to be significant, and type-token be-
came significant with p<0.05. For prosodic fea-
tures, pitch mean and pitch std ceased to be signif-
icant, and intensity max became significant with
p<0.05. Notice that all features that differ had rel-
ative small significance levels p>0.001. To pre-
vent the inflation of false positive errors caused
by conducting multiple comparisons, we present
only features that are statistically significant after
Benjamini–Hochberg correction (Benjamini and
Hochberg, 1995).

Disfluency
Social psychologists hypothesize that telling
a lie can be more cognitively demanding than
truth-telling (Hauch et al., 2015; M DePaulo et al.,
2003). False responses are hypothesized to be
less fluent than true responses because fabricating
a story takes more mental effort than recalling
an actual event. We considered a wide range
of features indicative of disfluencies and report
those that were statistically significant in either
the responses raters labeled as lies or those that
actually appear in lying responses in the corpus:

Feature name Trust Deception

has filled pause ↓↓↓↓ ↑↑↑↑
#filled pauses ↓↓↓↓ ↑↑↑↑
has false start ↓↓↓ ↑↑
response latency ↓↓↓↓
repetitions ↓↓↓↓ ↑

Table 2: Statistically significant indicators of trust and
deception for disfluency features. For this and sub-
sequent tables, the direction of the arrow indicates
whether the relationship is positive or negative. The
number of arrows indicates the significance level, ↓: <
0.05, ↓↓: < 0.01, ↓↓↓: < 0.001, ↓↓↓↓: < 0.0001.

Filled Pauses: We curated a list of filler words
based on previous studies of deception (Enos,
2009; Bachenko et al., 2008); we included the
binary indicator and the total count
Response Latency: For deception, this is defined
as the time span between the interviewer question
and the first non-filler word of the interviewee
response; for trust, it is defined as the time
span between the start of the audio and the first
non-filler word of the interviewee response. Note
that latency is defined differently for trust since
annotators only heard the segmented version of
the response which did not include the silence
between the question and the response
False Starts: A type of speech disfluency where
a speaker begins an utterance or a phrase and then
self-corrects it; annotation of disfluencies was
included in the corpus transcription
Repetitions: The number of identical, consecu-
tive words or bigrams (e.g. "he he has a...")

Table 2 shows which features appeared in re-
sponses raters believed to be deceptive (Column
Trust) and which appeared in responses that actu-
ally were deceptive (Column Deception). Over-
all, our findings are consistent with Zuckerman
et al. (1981): speech hesitations and errors are
perceived as signs for incompetence and cues for
deception. Of all the disfluency features, filled
pauses proved to be the strongest reliable indicator
of deception and this feature was also perceived
correctly by raters. For raters, response latency
was the strongest cue for mistrust among all disflu-
ency features, however this was not a reliable indi-
cator of lies. This is also consistent with the find-
ings of Zuckerman et al. (1981) and of Hartwig
and Bond (2011). Word and bigram repetition,
as well as false starts, were traits of speech raters



mistrusted, even though they were only weak cues
to deception.

Complexity
Previous research suggests that deceptive state-
ments tend to be simpler and less complex than
true ones. This is because of the theory that cog-
nitive load is increased during deception, which
can limit creative and complex utterance produc-
tion (Hauch et al., 2015; M DePaulo et al., 2003;
Hartwig and Bond, 2011). Based on these find-
ings, one might expect lies to be less lexically
diverse, shorter, and less elaborate than true re-
sponses. Do raters appear to use these cues in
judging deception? We used utterance length as
the most direct indicator of response complex-
ity and also counted the number of words with
more than six characters and the number of con-
tent words in the utterance as a more fine-grained
indication of complexity. We used type-token ra-
tio to capture lexical diversity. We also consid-
ered word entropy but found it to be strongly cor-
related with number of words so decided not to in-
clude it as a separate feature. In addition, we used
Flesch reading ease (Kincaid et al., 1975) to iden-
tify readability, specificity score (Li and Nenkova,
2015) as an indication of the level of detail on the
sentence level, and concreteness score (Brysbaert
et al., 2014) as an indicator of the level of details
of the speakers’ visual and haptic experiences. We
also used discourse markers (causation and con-
junction) extracted from LIWC (Pennebaker and
King, 1999), inspired by the hypothesis that liars
might use fewer discourse markers in their utter-
ances (Newman et al., 2003).

As shown in Table 3, overall, raters were more
likely to judge longer and more complex responses
as deceptive. Contrary to previous research, we
found that lies tended to be more complex than
true utterances: they tended to be longer, included
more specific language, and were more lexically
diverse. They were also more concrete and con-
tained higher numbers of verbs, nouns, adjectives,
numbers, and conjunctions. While raters were ap-
parently using these cues to predict lies, they were
relatively weak ones.

Sentiment
When lying, people may experience feelings of
guilt and fear of being caught which may re-
sult in their use of more negative words (M De-
Paulo et al., 2003; Hauch et al., 2015; Ekman,

Features Trust Deception

#sent ↓↓↓↓ ↑↑↑↑
#word ↓↓↓ ↑↑↑↑
#word per sent ↓↓↓ ↑↑↑↑
#word>6 ↓↓ ↑↑↑↑
type-token ↑↑↑
#verb ↓↓ ↑↑↑↑
#noun ↓↓ ↑↑↑↑
#adj ↑↑↑↑
#num ↓ ↑↑↑
#proper nouns ↓
concreteness ↓↓ ↑↑↑↑
specificity ↓↓ ↑↑↑↑
#conj ↑↑

Table 3: Statistically significant indicators of trust and
deception for complexity features.

Features Trust Deception

DAL-imagery ↑↑↑↑ ↓↓↓↓
DAL-activation ↑↑↑↑ ↓↓↓↓
DAL-pleasant ↑↑↑↑

Table 4: Statistically significant indicators of trust and
deception on sentiment features.

1988, 2009b). Abe et al. (2007) also found that
the act of deceiving is uniquely associated with
neural structures associated with heightened emo-
tion. We extracted positive emotion and negative
emotion using Linguistc Inquiry and Word Count
(LIWC) (Pennebaker and King, 1999). We also
extracted Pleasantness, Activation, and Imagery
scores for each utterance from the Dictionary of
Affect (DAL) (Whissell, 1989) by summing up the
scores of all words. We normalized all features to
reduce length effect.

As shown in Table 4, truthful utterances in the
corpus contained more visually descriptive words
than deceptive utterances, and listeners were more
apt to rate utterances with descriptive words as
truthful. This is consistent with findings in (Masip
et al., 2005) that providing sensory details is more
difficult when fabricating a story. Truthful utter-
ances also contained words with higher activation
scores than deceptive utterances, and trusted utter-
ances also had higher activation scores than mis-
trusted ones. Consistent with Hartwig and Bond
(2011), raters judged more pleasant utterances as
truthful, although this was not a valid cue in the
CXD corpus.



Features Trust Deception

has hedge phrase ↓↓↓↓ ↑↑↑
#hedge phrases ↓ ↑↑↑↑
certain ↓↓↓

Table 5: Statistically significant indicators of trust and
deception on uncertainty features.

Uncertainty
Our previous research (Levitan et al., 2018b) has
found that linguistic markers of certainty and un-
certainty are significant indicators of deception.
So we measured certainty and uncertainty in two
ways: words from LIWC’s “certainty” category as
linguistic markers of certainty (e.g. always, never)
and hedge words and phrases (e.g. possible, sort
of) (Ulinski et al., 2018) as indicators of uncer-
tainty. As shown in Table 5, there was a match
between rater trust and true responses for hedge
words and phrases. In the CXD corpus, lies in-
cluded hedge phrases more often than true re-
sponses did, and we found that listeners did mis-
trust responses containing hedge phrases. How-
ever, while linguistic markers of certainty in the
corpus (e.g. “always,” “never” — which are the
opposite of hedge words) were indicators of truth,
raters failed to perceive this.

Creativity
Do liars tend to rely upon certain "templates" or
generic responses when answering questions for
lack of a more detailed story to present? Do truth-
tellers provide more creative responses based on
reality? To measure creativity of responses, we
examined how similar a response was to other re-
sponses to the same question. For each question,
we converted all responses to TF-IDF vectors on
unigrams and bigrams. We built a lexical graph
for each question with responses as nodes and co-
sine similarities between TF-IDF vectors as edge
weights. Then we computed the eigenvalue cen-
trality for each node and used its negative value as
the measure of creativity. The intuition here is that
the more central a response is, the more similar it
is to its neighbors and thus less "creative."

We found liars to be more creative than truth-
tellers. We verified this result by counting the
number of neighbors within a certain cosine dis-
tance in the TD-IDF space. This result is robust
against various threshold of cosine distance (0.1-
0.9 with 0.1 as the step size). The difference was

Features Trust Deception

speaking rate ↑↑↑↑
pitch max ↑↑↑↑ ↑↑↑↑
pitch min ↑↑↑↑ ↓↓
pitch mean ↑↑
pitch std ↑↑ ↑↑
intensity max ↑↑↑
intensity min ↑↑↑↑ ↓
intensity mean ↑↑↑↑
intensity std ↓↓↓↓ ↑
NHR ↑↑↑↑
jitter ↑↑↑↑
shimmer ↑↑↑↑

Table 6: Statistically significant indicators of trust and
deception on prosodic features.

not due to response length, as we found no correla-
tion between creativity and response length (spear-
man, ρ=0.007, p>0.05). However, we did find that
judgments were not influenced by whether the re-
sponse was creative or not. Perhaps when people
lie they try to tell a compelling story, which results
in a more creative response regardless of length.

Prosody
Previous studies have shown that pitch maximum
and intensity maximum are significant indicators
of deception (Levitan et al., 2018a). We exam-
ined whether prosodic features impacted listeners’
trust. We extracted a set of 14 features from Praat
(Boersma and Weenink, 2009), an open-source au-
dio processing toolkit, and z-score normalized the
features by gender. We used the total number of
words divided by duration of utterance as a mea-
sure of speaking rate. As shown in Table 6, raters
judged speech that was loud (high intensity min
and mean) and had less variation in intensity (low
std) as trustworthy, perhaps because louder speech
can sound more confident. Trusted speech also
had higher degrees of jitter, shimmer, and NHR
(Noise to Harmonics Ratio), which are measures
of voice quality. Though not a valid indication of
truth, faster speaking rate was also trusted, per-
haps because raters expected speakers to speak
more slowly when lying. This is consistent with
previous findings that, while faster speaking rate
is trusted, it is not an actual cue to trustworthi-
ness (Zuckerman et al., 1981; Hartwig and Bond,
2011). Listeners also trusted speech with higher
pitch (max, min, and mean) and greater pitch vari-
ance (std). However, a higher pitch max and



greater pitch std were in fact signs of deception.
Of the 11 prosodic cues of mistrust, only 3

(27%) are actually valid indicators of deception;
of the 6 prosodic cues of deception, 3 (50%) are
also valid indicators of mistrust. This is in con-
trast to the overlap we see across all features re-
ported. Of the 31 cues that are significant indica-
tors of mistrust, 20 (65%) are also valid indicators
of deception; of the 28 cues that are indicative of
deception in the data, 20 (71%) are actually indica-
tive of mistrust. This suggests that, although there
were several characteristics of trusted speech that
were in fact associated with truth, and also many
characteristics of mistrusted speech that were as-
sociated with deception, prosodic cues to decep-
tion are far more difficult for humans to correctly
perceive than other cues.

5.1 Can We Predict Trust and Deception?
Based upon the analysis of the linguistic and
prosodic characteristics of trusted and deceptive
utterances above, we developed predictive mod-
els of trust and deception to identify the rela-
tive strengths of each type of feature. In addi-
tion, we included additional speaker traits (gen-
der, native language, personality), which have also
been shown to identify significant differences in
speaker trust (Levitan et al., 2018a). We observed
several differences in trust behavior across these
speaker traits.

• Gender: We observed a gender difference
in trust (χ2(1)=5.16, N=5340, p<0.05) with
female speakers trusted (71.50% of all utter-
ances) more than males (68.61%).

• Native language: We observed a native lan-
guage difference in speaker trust by raters
(χ2(1)= 30.22, N=5340, p<0.0001) with
native American English speakers trusted
(73.52% of all utterances) more than native
Chinese speakers (66.59%).

• Personality: We partitioned CXD speak-
ers into the NEO-FFI Five Factor personal-
ity groups by binning personality scores into
"high," "average," and "low" in each dimen-
sion as described in (Levitan, 2019). We ob-
served significant differences in speakers’ re-
sponses trusted by raters in the following di-
mensions:

– Conscientiousness: Speakers with low
scores (71.91%) were more trusted than

people with neutral (69.12%) or high
scores (67.66%). (χ2(2)=7.22, N=5340,
p<0.05)

– Openness: Speakers with high scores
(71.55%) were more trusted than peo-
ple with neutral (68.64%) or low
scores (67.40%). (χ2(2)=6.40, N=5340,
p<0.05)

– Neuroticism: Speakers with high scores
(71.75%) were more trusted than peo-
ple with neutral (68.65%) or low
scores (66.48%). (χ2(2)=8.93, N=5340,
p<0.05)

In addition, we included a large number of data-
driven features extracted from the spoken utter-
ances and from their text transcripts. In con-
trast to the features that were analyzed in Section
5, which were specifically motivated by the de-
ception detection literature, these data-driven fea-
tures were chosen because of their usefulness for
a wide range of NLP and speech processing tasks.
Data-driven features included: dependency triples
backed off to parts of speech; one-hot encoded un-
igrams and bigrams; average of word vectors us-
ing GloVe embedding pretrained on Twitter; Inter-
speech 2013 (IS13) ComParE Challenge baseline
feature set, which contains 6373 features result-
ing from the computation of functionals over low-
level descriptor (LLD) contours extracted from
openSMILE (Eyben et al., 2010). The prosodic
feature analysis in Section 5 was conducted on
a small set of prosodic features extracted using
Praat. These were a subset of the openSMILE fea-
ture set and were used for clarity and interpretabil-
ity, while the openSMILE features used here are a
larger set for classification experiment.

Due to the low agreement of the annotations, we
took an approach similar to Danescu-Niculescu-
Mizil et al. (2013) and considered only utterances
that annotators reached consensus on for exper-
iments on trust. In total, 1762 utterances were
trusted by all annotators and 427 utterances were
mistrusted by all annotators. Due to the small size
of this dataset, we randomly divided the speakers
into five bins of similar size and performed cross-
validation with utterances from speakers in each
bin as the test data and the rest as the training data;
thus, learned models were always evaluated on un-
seen speakers. On each speaker split, we trained
logistic regression models and tuned penalty pa-
rameter C and the type of regularization using five



Figure 3: The most important 10 features for predict-
ing trust. The x-axis denotes the absolute values of the
feature weights averaged over 5 cross-validation splits.

Figure 4: The most important 10 features for predict-
ing deception. The x-axis denotes the absolute values
of the feature weights averaged over 5 cross-validation
splits.

cross-validation folds on the training data. We also
experimented with linear SVM, gradient boosting
classifier, and random forest classifier and found
no improvement. We normalized all features to
have zero mean and unit-variance. For data-driven
features, feature selection was performed to prune
the feature space. Since this is an unbalanced task,
we evaluated our models using precision, recall,
and macro-F1 score.

As shown in Table 7, we can predict whether
an utterance is trusted with an average macro-
F1 score of 66.10%. We found that 5 disfluency
features combined with 16 prosody features out-
performed 9538 data-driven features, demonstrat-
ing the efficacy of the feature sets specifically de-
signed for this task. Prosody (macro-F1, 60.20%)
is the strongest feature set that is predicative of
trust, with intensity mean as the strongest feature
(45.50%) within that set. Disfluency (57.28%) is
the next strongest feature set with response latency
(58.40%) as the strongest feature. Of the individ-
ual feature sets, we found that speaker traits, sen-
timent, uncertainty, and creativity did not perform
better than the random baseline, which suggested

they are not useful cues on their own for predict-
ing rater trust. However, we found that includ-
ing speaker traits helped improving the classifier’s
performance when combined with other features.

In addition to classifying trust, we trained a lo-
gistic regression model using these same features
to classify deception. Our best model achieved an
F1 score of 55.5% using a combination of disflu-
ency, prosody, and uncertainty features. We note
that this performance is substantially lower than
the trust classification results, suggesting that dis-
tinguishing between truthful and deceptive utter-
ances is much harder than distinguishing between
utterances trusted and mistrusted by all annotators.
However, we also note that this model was not op-
timized for deception classification (e.g. no feature
selection or parameter tuning) and was trained on a
very small amount of data. Our previous work ob-
tained better performance at deception detection
(69.8 F1) using more data and using models that
were optimized for the task (Levitan, 2019). The
purpose of this current experiment was to directly
compare trust and deception classification using
the same data and features.

Figures 3 and 4 show the most important 10 fea-
tures for predicting trust and deception. To com-
pute feature importance, we averaged the absolute
values of the feature weights across the 5 cross-
validation splits. We found that DAL-pleasant,
has filled pauses, intensity mean, and type-token
are important for both prediction tasks. Of the top
three features in either task, speaking rate and re-
sponse latency are only important for predicting
trust, and DAL-activation and creativity are only
important for predicting deception.

5.2 The Mechanism Behind a Successful Lie
To better understand why people are "vulnera-
ble" to deceptive utterances, and to understand the
characteristics of successful lies, we ran paired t-
tests with Benjamini–Hochberg correction to com-
pare the linguistic and prosodic features of suc-
cessful vs. unsuccessful lies. As shown in Table 8,
we found that successful lies differed most from
unsuccessful lies in that they contained fewer sen-
tences (1) and were shorter in duration (2). Suc-
cessful lies were also louder (6, 7), faster (9), had
fewer filled pauses (3, 4), varied less in intensity
(8), and were harsher (10) in voice quality. When
people were more successful at lying, they tended
to respond quicker (2) and did not repeat them-



Feature Sets Precision Recall macro-F1

random 50.19 50.29 44.97
majority 40.27 50.00 44.61
data-driven (9538) 73.45 59.72 61.51
disfluency (5) 76.83 56.73 57.28
+ prosody (16) 78.90 (80.14) 60.52 (58.66) 62.74 (60.20)
+ sentiment (5) 78.75 (40.27) 61.19 (50.00) 63.61 (44.61)
+ uncertainty (3) 78.11 (40.27) 61.80 (50.00) 64.36 (44.61)
+ creativity (1) 77.94 (40.27) 61.90 (50.00) 64.48 (44.61)
+ complexity (16) 77.71 (55.86) 62.24 (50.31) 64.87 (45.77)
+ speaker traits (7) 77.55 (40.27) 63.34 (50.00) 66.10 (44.61)
all (9591) 74.26 60.34 62.37

Table 7: Prediction results for trust averaged over 5 cross-validation splits. The number of features in each set is
included in parentheses in the feature set column. We incrementally added each feature set and also included the
individual performance of each feature set in parentheses in the precision/recall/macro-F1 columns.

Features Successful?

1. #sent ↓↓↓↓
2. response latency ↓↓↓↓
3. has filled pause ↓↓↓↓
4. #filled pauses ↓↓↓↓
5. repetitions ↓↓↓↓
6. intensity min ↑↑↑↑
7. intensity mean ↑↑↑↑
8. intensity std ↓↓↓↓
9. speaking rate ↑↑↑↑
10. shimmer ↑↑↑↑

Table 8: Top 10 statistically significant features for
lies that successfully deceived human judges.

selves (5).
We also conducted this analysis for classifier

judgments, to understand the characteristics of lies
that successfully deceived a lie detection classifier.
Table 9 shows the top features that discriminate
between successful and unsuccessful lies. There
are several features that were similar for both hu-
man and machine judgments. For example, suc-
cessful lies had fewer filled pauses (2, 3) and were
shorter in duration (5) and number of sentences
(9). Some features, however, were unique to de-
ceiving a classifier. For example, lies that success-
fully deceived the deception classifier were less
creative (1) and less specific (4). It seems that dif-
ferent kinds of lies were successful at deceiving
humans and an automated deception classifier.

5.3 Individual Differences in Lie Detection
Ability

We found that gender was not significantly related
to accuracy (Mann–Whitney U, p>0.05), but fe-

Features Successful?

1. creativity ↓↓↓↓
2. has filled pause ↓↓↓↓
3. #filled pauses ↓↓↓↓
4. specificity ↓↓↓↓
5. duration ↓↓↓↓
6. pitch max ↓↓↓↓
7. #word ↓↓↓↓
8. #word per sent ↓↓↓↓
9. #sent ↓↓↓↓
10. concreteness ↓↓↓↓

Table 9: Top 10 statistically significant features for
lies that successfully deceived a deception classifer.

males took longer to judge (Mann–Whitney U,
p<1e-20). In addition, we did not observe females
to be more or less trusting than males (Mann–
Whitney U, p>0.05) or significantly different from
males in their level of confidence (Mann–Whitney
U, p>0.05). Raters with previous job experience
related to lie detection did not perform better than
those without such experience (1-sample t-test,
p>0.05), but they did take longer to make judg-
ments (1-sample t-test, p<0.05). They were at the
same level of trust (1-sample t-test, p>0.05) and
same level of confidence (1-sample t-test, p>0.05)
as those without prior experience. This is consis-
tent with previous findings that persons in the le-
gal professions are no better at detecting deception
than others (Aamodt and Custer, 2006).



6 Characterizing Strategies for Detecting
Lies

We summarized annotator-provided strategies for
detecting lies based on previous work in decep-
tion detection (Hauch et al., 2015; M DePaulo
et al., 2003; S. Albrechtsen et al., 2009; Blair
et al., 2010; Vrij et al., 2006) and annotators’ re-
sponses. The strategies were manually labeled
by domain experts with previous research expe-
rience in deception detection and all ambiguities
were discussed by three people. For each strategy,
we computed the average percentage of utterances
judged correctly by annotators who reported using
this strategy and compared it with the average per-
centage of utterances judged correctly across all
annotators. We performed the same analysis for
the percent of utterances the raters believed to be
true (trusted). In addition, we reported the per-
centage of annotators who claimed to have used
these strategies in Table 10. Prosody, response la-
tency, pauses, disfluency, and intuition were the
top five strategies mentioned by annotators and in
Section 5 we verified that the set of features related
to prosody, response latency, pauses, and disflu-
ency were indeed significant indications of trust.
As shown in Table 10, none of the reported strate-
gies was associated with an improved deception
detection performance. However, we did find that
using speaker "confidence" as a cue to deception
was negatively associated with the annotators’ per-
formance.

Which strategies are reported by raters who
are more or less trusting over all?
We found that people who reported using response
latency, pauses, and disfluency when judging de-
ception trusted a smaller percentage of utterances.
This could be because of the high prevalence of
disfluencies in spontaneous speech, regardless of
whether the utterance was deceptive or not. We
also found that raters who used the level of de-
tail in a response as a cue were more mistrusting
in their judgments. Conversely, those who used
clarity of a response and prior domain knowledge
were more trusting.

Does complex reasoning correlate with
accuracy in lie detection or trust level?
We examined two measures of player behavior
that approximate complex reasoning: How long
do people take to make judgments? How many

strategies do they report in total?
We measured how long people took to judge re-

sponses using the time interval between the end
of the audio clip and the time that annotator en-
tered his/her response. We found no correlation
between response time and the percentage of an-
swers correct. However, we did find a negative
correlation between response time and the per-
centage of answers trusted (spearman, ρ=-0.101,
p<0.0001). We found a similar result using the
number of strategies as a proxy for complex rea-
soning. There was no correlation between the
number of strategies reported and the accuracy
score, but we did discover a negative correlation
between the percentage of answers trusted and the
number of strategies raters reported using (spear-
man, ρ=-0.133, p<0.01). These findings indicate
that complexity of reasoning process does not cor-
relate with lie detection performance but nega-
tively correlates with trust level.

7 Conclusion

In this paper we presented a framework for under-
standing human deception perception. We created
a lie detection game, LieCatcher, and used it to
collect large-scale judgments of deceptive speech.
We analyzed a large set of linguistic and prosodic
cues to deception and identified some mismatches
between the responses people perceived as de-
ceptive and those that were actual deceptive re-
sponses. Particularly notable in these mismatches
were prosodic features, suggesting that humans
have difficulty interpreting prosodic cues to decep-
tion.

We built a predictive model of trust with a
macro-F1 score of 66.1%, and showed that disflu-
encies and prosody were most useful for predict-
ing trust. We summarized and manually annotated
annotator-provided strategies and found that none
of them were associated with an improvement in
lie detection ability; however, some were associ-
ated with raters’ tendency to trust. The identified
mismatches between features of trusted vs. decep-
tive speech, as well as the lack of useful strategies
reported by raters, shed new light on the poor per-
formance of humans at deception detection. In ad-
dition, we showed that complex reasoning did not
correlate with accuracy in deception detection but
negatively correlated with trust level.

This work has implications for several appli-
cations in multiple disciplines. In business, pol-



Strategy %Correct %Trust %Used Example

Prosody -0.25 -0.17 45.74% voice tone and pattern
Response latency +0.11 -2.13∗∗ 30.71% listened for delays in the speakers response
Pauses -0.52 -2.95∗∗ 24.66% I listened for pauses to see...
Disfluency -0.59 -1.88∗ 22.87% If they said "um" I thought they were lying
Intuition +1.09 +0.52 22.87% My gut instinct...
Details +0.81 -2.95∗ 17.26% ...how much or how little detail they used...
Prior +1.95 +2.85∗ 13.90% How realistic the answers were
Style -0.65 +0.86 11.88% Anxiety in voice
Confidence -2.83∗ -1.60 11.21% paying attention to the person’s confidence..
Duration -0.94 -2.80 9.41% length of answer
Speaking rate +0.39 -0.64 6.72% Speed of answer
Speaker traits +0.07 -0.00 6.05% how relaxed they were
Lexical +1.53 +1.00 5.16% Look for context around the words
Laughter +1.04 +0.40 1.79% if they laugh its false
Clarity +2.52 +9.71∗ 1.35% People usually give more and clearer details...
Breathing +5.33 -2.73 1.12% I tried to notice when they breathe so deeply..
Repeat question +0.36 +6.10 0.67% I id notice one person repeat the question..
Contradictions +0.04 +1.24 0.67% ...the person blatantly contradicted themselves...
Repetition +1.24 +6.52 0.44% repetition when lying

Table 10: For each strategy, we show the increase or decrease in the average percentage of utterances
trusted/judged correctly for annotators reporting that strategy compared with all annotators. We also show per-
centage of annotators reporting the strategy and a sample response from one. For % correct and % trust, the
statistical significance is computed by comparing the annotators who said they used the strategy and annotators
who did not with a Mann–Whitney–Wilcoxon U test. * denotes p < 0.05, **: p < 0.01, ***: p < 0.001.

itics, and interpersonal relationships, it is criti-
cal to cultivate the trust of others. Our empiri-
cally identified characteristics of trusted language
provide useful information for training individu-
als who want to speak in a more trustworthy man-
ner. Furthermore, we are interested in using these
findings to synthesize voices that are likely to be
trusted by others and we have already begun that
process. Potential applications that can benefit
from trustworthy voices include dialogue systems
and robots, especially for assistive technologies
(e.g. for individuals with disabilities, elderly indi-
viduals) where trust is crucial for successful inter-
actions. Our LieCatcher game was a useful frame-
work for studying perceived deception in an en-
gaging format. The experiments presented in this
paper were conducted using stimuli from the CXD
corpus. In future experiments, we plan to conduct
a cross domain analysis to see if these findings
generalize to other domains and corpora. Because
of the lack of corpora with annotations of human
perceptions of deception, we plan to conduct simi-
lar perception studies using the LieCatcher frame-
work to enable this cross-domain analysis. In ad-
dition, the LieCatcher game can be extended to ex-
plore the perception of other aspects of spoken lan-

guage. We are currently exploring its use for train-
ing purposes. In the future, we will provide more
immediate feedback to players about their judg-
ments for each response, with the goal of training
practitioners to improve their performance at de-
ception detection.
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