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Summary Botnets, which are used to perform various ma-
licious activities, have become a major threat in recent years.
Spamming, phishing, stealing sensitive information, conducting
distributed denial of service (DDoS) attacks, scanning to find
more hosts to compromise using malware are the goals of many
botnets, sometimes of low-profile botnets such as the Nugache
botnet [1] which used a peer-to-peer (P2P) structure. Some
botnets hide their network activities for many months (and
maybe years) before being noticed. Networks might contain
more deceptive or dormant bots which haven’t been exposed
yet. Here we apply an a posteriori detection approach based
on mutual contacts peers exchange in a network, called the
dye-pumping algorithm [2]. After briefly recalling typical bot-
net operations, we will talk further about the dye-pumping
algorithm (DPA) mechanism and implementation, its input
data structures, and then give a short analysis of the results

of our experiment. ��� Zusammenfassung Botnetze,
die zum Ausführen von verschiedenen kriminellen Aktivitäten
benutzt werden, sind zu einer großen Bedrohung geworden.
Spam, Phishing, Datendiebstahl, DDoS-Attacken, Scanning, um
neue Opfer zu finden, sind die Ziele vieler Botnetze, zum
Beispiel das Nugache-Botnetz, das eine Peer-to-Peer-Struktur
(P2P) verwendet hat. Einige Botnetze verstecken ihre Aktivi-
täten monatelang (manchmal auch jahrelang), bevor sie be-
merkt werden. Netzwerke können Schläfer-Bots enthalten, die
noch nicht entdeckt worden sind. Hier wenden wir a posteri-
ori eine Methode an, die auf gemeinsame Netzwerk-Kontakte
basiert, den sogenannten Dye-Pumping Algorithm (DPA, etwa:
Farb- oder Tinten-Pump-Algorithmus). Nach einer Übersicht von
typischen Botnetz-Verhalten besprechen wir den DPA an sich,
seine Implementation und Datenstrukturen, und geben eine
kurze Analyse der Versuchsergebnisse.

Keywords K.6.5 [Computing Milieux: Management of Computing and Information Systems: Security and Protection] P2P Botnet,
IDS, Network Security ��� Schlagwörter P2P Botnetze, Netzwerksicherheit

1 Introduction
In the Internet environment, security threats can take on
the form of malicious software, also known as malware.
As a subcategory of malware, bots have played a sig-
nificant role in network security, ranging from enabling
attacks on high-profile websites in the early 2000s to
compromising critical infrastructure systems in the early
2010s. The bots constitute the extension of the botmas-
ters arm, making the host infected with the bot do
whatever the botmaster wants it to do, such as per-
forming denial of service, collecting keystrokes, spreading
malware, hosting phishing sites, or serving pirated soft-
ware. The coalition of bots forms a botnet, which
can be hundreds, thousands, or even millions of hosts
strong.

1.1 Botnet Context
A bot participates in a command-and-control (C&C) net-
work, through which the bot receives commands that
cause the bot to carry out the aforementioned attacks.

A typical bot implementation consists of two indepen-
dent engines: a C&C communication protocol processor
and a command interpreter. The interpreter allows bots
to execute commands and defines its protocol. A bot
command is generally encapsulated as the payload of
a C&C communications protocol message. Its syntax en-
codes the actions the bot can perform as well as the ways
in which each can be invoked, i. e., the parameters.

Bot control is achieved through a C&C network, which
consists of the C&C protocol that defines the commu-
nication format and the network topology. The latter
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identifies who talks to whom. In a centralized-type bot-
net, the C&C protocol also defines a central location
to which commands are delivered. Historically speak-
ing, botnets have been tightly controlled: the botmaster
sends a command that is received and executed by all
listening bots more or less immediately. The use of a non-
centralized botnet topology for C&C, as seen in P2P
bots (e. g., Nugache [1]), demonstrates a looser control
model which has higher latency, since commands perco-
late through a distributed network as bots poll for them.

The use of P2P botnet C&C has challenged the detec-
tion schemes due to the lack of a central coordination
point.

2 Approach
Our contribution focuses on the detection of P2P C&C
traffic for several botnet classes, and on the tools asso-
ciated with the detection scheme, namely implementing
the algorithm efficiently and integrating it with network
flow analysis tools.

2.1 Detection
In this work, we refine the detection scheme presented
in the Friends of An Enemy paper [2], which shows that
once we have detected a single P2P bot in a local (or
edge) network, also referred to as the seed bot, we can
efficiently identify other members of the same botnet
in the same network. In contrast, there are approaches
that work on the backbone, such as Botgrep [16]. The
detection mechanism in [2] is based on an analysis of
connections made by the hosts in the local network. To
avoid regular and redundant peer connections, bots can
select their peers randomly and independently (i. e., cre-
ating an unstructured topology). If so, in a same network,
a given pair of P2P bots communicate with at least one
mutual peer outside the network with a surprisingly high
probability. This, along with the low probability of any
other host communicating with this mutual peer, allows
us to link together local nodes belonging to a P2P botnet.

2.2 Contribution
Initially, this scheme was built to identify potential mem-
bers of an unstructured P2P botnet in a network starting
from a known peer. We propose a refinement and
an effective implementation of that method. We keep
approaching the problem as a graph problem and mathe-
matically analyze a solution using an iterative algorithm.
The proposed scheme requires only flow records cap-
tured at network borders. We analyze the efficiency of the
proposed scheme using real botnet data, including data
obtained from both observing and crawling the Nugache
botnet.

2.3 Monitoring Limitations
Network monitoring gives us plenty of information
showing how traffic is received, forwarded, or sent. By
analyzing large amounts of data, one could more or less

specifically model traffic behavior on a network without
directly using or even reading the actual content of the
data packets. To create a model for a specific botnet
simply based on monitoring, one needs to analyze the
network data flows and logs over a long period of time.

What if we cannot “measure” traffic because a bot is
too deceptive or simply dormant? One approach is to
characterize the C&C channel from traffic of a recently
discovered bot and then identify hosts that exhibit simi-
lar C&C characteristics. Characterizing the C&C channel
is possible in a centralized botnet topology by focusing
on the central control servers, the main source of the
C&C channel. However, a C&C infrastructure with an
unstructured topology doesn’t have a central server, as
any node of its network can inject C&C messages or
commands. Hence, no obvious source of C&C messages
can be observed and therefore neither can links to pos-
sible dormant bots.

Packet sizes and timing analysis, such as packets per
flow, bytes per flow, flows per hour, may not be useful in
characterizing a C&C channel, since botmasters can eas-
ily randomize such features, thereby obtaining different
feature values for each bot. Furthermore, botnets such as
Nugache, Storm, Waledac and Conficker use advanced
encryption mechanisms making analysis based on packet
content inspection impossible.

2.4 Existing Tools
Despite all these limitations, to achieve our purpose we
need to monitor network traffic and observe who is con-
necting to whom and how (e. g., looking at IP addresses,
ports, and their frequency). The proposed technique is
based on the simple observation that peers of a P2P
botnet communicate with other peers in order to re-
ceive commands and updates. Here are some software
and tools we used in the implementation and testing of
the technique.

The Packet Capture library libpcap [3] provides a high-
level interface to packet capture systems. All packets on
the network, even those destined for other hosts, are ac-
cessible through this mechanism. Snort is one example of
a libpcap-based packet sniffer. On the other hand, Bro [4]
is an intrusion detection system that works by passively
watching traffic seen on a network link in real time. It is
built around an event engine that pieces network packets
into events that reflect different types of activity.

More sophisticated tools [5; 6] are beyond the scope
of this article, but related methods for P2P botnet detec-
tion can be found in the Friends of An Enemy paper [2].
The dye-pumping algorithm (DPA) [2] relies on net-
work data, typically in the form of simplified pcap data,
Cisco NetFlow, or derivative formats such as IPFIX [7]
or SiLK [8].

3 Dye-Pumping Algorithm
The DPA provides a list of hosts that belong to the same
P2P botnet as the discovered bot, with a given degree
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of certainty. Network administrators can use this list as
a starting point of their investigation and potentially iden-
tify more bots in their network once they have discovered
the first one. This relies on the premise that in order to
receive commands and updates, peers of a P2P botnet
communicate with other peers.

Different bots which are members of the same botnet
and located in the same edge network may communi-
cate with different external peers. As demonstrated in the
Friends of An Enemy paper, in the case of P2P botnets with
an unstructured topology, if bots randomly pick peers to
communicate with, then there is a high probability that
any given pair of P2P bots communicate with at least
one common external bot during a given time window.
In other words, there is a significant probability a pair of
bots within a network have a mutual contact.

From packet capture data translated into network
flows, we construct the network graph where every node
is characterized with its IP address and port. This way, the
same host identified by its IP address, but using different
ports, will generate different nodes in the network graph.
Each time a node x connects to a node y, the node y
is added to the lists of active and known peers of node
x. As soon as the connection gets inactive, the node y is
deleted from the active peers list of x, but stays in the
known peers list.

From the network graph, we then extract the mutual
contact graph, where every host is a node and two nodes
share a bidirectional edge, if they share at least one mu-
tual contact during a given time window. The weight or
“capacity” on an edge is the number of mutual contacts
shared between the corresponding hosts incident on the
edge. Then, given a discovered bot which we will call
the seed bot, we use the mutual contact graph as input
to the DPA, which identifies other potential members of
the botnet by iteratively computing a level of confidence
for each host in the graph. We declare the hosts with
confidence levels higher than a particular threshold to be
potential members of the same P2P botnet as the seed
bot.

The DPA evaluates the “private mutual contact” prin-
ciple as illustrated in Figs. 1 and 2: considering nodes
A and B in a network and an external host X, if A is
linked to X and X is linked to B then X is a private
mutual contact of A and B. This way we could assume
that A can reach B in the network. Graphs are a natural
representation of the network and allow us to model
the mutual contact concept. In our mutual contact an-
alysis we restrict ourselves to private mutual-contacts,
which are mutual contacts communicating with less than
k internal hosts during a given observation window (vs.
other mutual contacts such as DNS servers). It is very
unlikely that external peers, which are members of the
same botnet, will be communicating with many internal
hosts that do not belong to the botnet. Therefore, private
mutual-contacts can be considered strong indicators of
peer relationships among hosts within a botnet. In the

Figure 1 Botnet communication (from [2]).

Figure 2 Mutual contact graph (from [2]).

rest of this paper, we use the term mutual-contacts to
mean private mutual-contacts.

3.1 Iterative Algorithm Principle
Once the mutual-contact graph Γ is structured and gen-
erated, the DPA is run to compute the confidence levels
of potential membership of a host in the botnet. In the
mutual-contact graph, the DPA iteratively pumps dye
from the seed bot node and distributes it to other nodes.
Then, the DPA picks the nodes which accumulate more
dye than a particular threshold during the round.

At some point, some nodes will accumulate more dye
than others, thanks to the distribution based on the dye-
attraction heuristic which estimates the confidence of
node i being a P2P bot given that node j is a P2P bot.
The dye-attraction coefficient indicates what portion of
the dye arriving at node j will be distributed to node i
in the next iteration. At each iteration each node of Γ

updates its dye accumulation level. However as dye will
be pumped from the seed bot node, to avoid interference
with “legitimate” P2P traffic, our dye-attraction heuristic
computes the dye-attraction level from node j to node i
as the ratio of the edge capacity between node i and node
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j by the degree of node i. The node degree is defined as
the number of neighbors or edges that the node has.

The more private mutual-contacts two nodes i and j
share, the higher the confidence level is between them.
Also, the confidence is reduced if node i shares mutual-
contacts with many other nodes in the graph. Different
applications other than botnet C&C can interfere with
this approach, so if a host shares mutual-contacts with
many other hosts, then these mutual-contacts are not
necessarily linked to a C&C botnet activity.

In practice, the DPA takes three inputs: the mutual
contact graph, the index s of the seeder bot node and the
number of iteration called maxIter. The DPA first com-
putes the dye-attraction coefficient of each node based
on the edges capacities. Each one of these coefficients is
stored in a n×n square matrix indexed by node 1 to node
n (where n is the number of nodes in the mutual-contact
graph). After a stochastic normalization of the matrix,
the DPA pumps dye from the given seeder bot node. The
pumping mechanism first fills the seed bot node with dye
and leaves all the other nodes unchanged. Then, the dye is
pumped from the seed bot node across the mutual-contact
graph proportionally to the edge capacities. During the
first round, except the seed bot node, all nodes have zero
dye accumulated, and at the end of each round, this value
is updated.

Once the algorithm reaches maxIter rounds, we have
the output L, a vector such that each L[i] indicates the
confidence level of node i being a member of the same
P2P botnet of the seeder bot node set as input. A null dye-
level accumulation in L[i] or below a certain threshold,
indicates a low confidence level for the corresponding
hosts belonging to the same botnet as the seeder bot node.
We reduce the vector L to only nodes having a sufficient
dye-level (greater than a fixed threshold) to produce the
DPA output.

3.2 DPA Input Formatting with SiLK
As mentioned before, the DPA takes a graph representa-
tion of the network connections as input. To build the
network graph from which we extract the mutual-contact
graph, we used the SiLK Tools Suite [8]. We used the
SiLK output format as input for our algorithm. SiLK is
composed as a modular framework that allows to eas-
ily implement plugins and is ideally suited for analyzing
traffic on the backbone or border of a large, distributed
enterprise or mid-sized ISP. For the testing phase, the
SiLK setup is reduced to using only a small network, but
in the long term we are designing our algorithm imple-
mentation to perform on larger networks.

In order to have a broader view on peer connections,
we observe only network flows rather than packets. Simi-
larly to the NetFlow Protocol [9], IPFIX considers a flow
to be any number of packets observed in a specific time
slot and sharing a number of properties. Keeping in mind
to take advantage of SiLK tool suite, we use Yet Another
Flow-meter (YAF) to translate raw packet capture (pcap)

data to the SiLK network flow format, which helps pre-
serve flow integrity.

We tweak the output logs using the rwfilter function
which can then be parsed by our DPA implementation.
In the case of very large-scale networks, tera-logs will
be generated and require high computational resources
and disk space. Since SiLK network flow files are much
smaller than packet capture files, the pcap log files could
be deleted right after SiLK filtering and conversion, by
taking advantage of automated log organization tools of
the SiLK Tools Suite in order to preserve disk space.

4 Experiment
For our experiment, we set up a dedicated hardware
(physical network topology) and software infrastructure
(Virtual Machines and Virtual Network Interfaces), so
that we could manage and control all the traffic gener-
ated by every VM performing malicious code and bots
from the host system.

We generated real botnet traffic data to act as input to
the DPA. Our monitoring locations were varied: in the
VM, on the gateway used by the VM, and as the host is
a machine in a network itself, the whole local network,
assuming knowledge of the topology and proper access
to the network routing and gateway devices.

4.1 Experiment Protocol
We ran the DPA on several distinct botnets other than
Nugache [10], for which we had recorded network flow
data from the last 4 years. We used packet capture to
monitor peer communication taking place in several
Qemu-based VMs running Windows XP guests. This
dedicated VM infrastructure constitutes the core of our
botnet zoo. To build the mutual contact graph, our “who
talks to whom” method can measure sequence, frequency
and packet size to provide partial network knowledge on
any information or command exchange.

We validated our algorithm on P2P botnets (Koob-
face v1 and v2, Waledac v1 and v2) and non-P2P botnets
(Zeus v5 and v10) during several time windows. We com-
puted the mutual-contact graph of our network to locate
other members of each botnet thanks to one known seed
bot peer for each one of these bots.

As explained in previous work, we don’t look at the
content of the packet, but instead at who is connected
or related to whom. Knowledge of a peer IP address in
the botnet is what allows us to know whether a probable
peer, returned by the algorithm, is a false positive or not,
giving us ground truth. For Nugache, the data records
only contained network flows of confirmed bots, so to
obtain a more realistic situation we had to blend the
botnet data with background traffic. For the other bots,
as they are all active in different VMs behind a NAT,
each VM generated both bot traffic and user traffic (such
as contacting Web 2.0 pages, checking for mail updates,
etc.).
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4.2 Results and Analysis
Details on the Nugache botnet can be found in [11]. In
summary, the C&C protocol of Nugache is P2P-based,
without a central C&C server. A Waledac [12] node uses
HTTP requests and responses to communicate between
peers and to update its spam campaigns. Details on the
Koobface and Zeus network botnet can be found in [13]
and [14].

In Fig. 3, we consider the tweaking of the threshold
parameter, the one that gives us higher confidence in the
resulting hosts being other bots, namely the friends of the
enemy. Selecting a low threshold generates many false
positives. On the other hand, setting a high threshold
generates less potential hosts. This is due to the more
restrictive filtering on the background traffic, bypass-
ing a large portion of the benign hosts. So below 10%,
the algorithm finds a large amount of probable botnet
members. Combining a very low threshold with very few
iterations of the dye-pumping algorithm (two, as shown
here), led to a weak precision by generating false posi-
tives. Beyond 80% another plateau indicates results closer
to ground truth.

For Waledac 1, it turns out the bot was detected
and quarantined by the Windows VM environment. For
Waledac 2 and Koobface, not that many IP addresses
were involved and collected (up to 24 at most). We can
deduce that this class of bots uses many ports on the
same machine. This is what [12] explains: in its com-
munication phase, to establish a connection with a node,
Waledac randomly opens a local port on the compro-
mised computer and attempts to connect to port 80 of
the remote Waledac relay node. In order to connect to
a malicious malformed PHP page, Koobface bots exhibit
a similar behavior.

For Koobface, as seen in Fig. 4, running one or
32 rounds is almost the same in terms of output. In
the first round we detected almost every probable peer
involved in the botnet. The Zeus curve looks very similar
to the Koobface one, and for this time window, after 8 it-
erations we detected almost every probable member of
the botnet. Even if Waledac 2 requires some extra rounds

Figure 3 Returned host count vs. unique IP.

Figure 4 Average host count vs. max_iter.

for the detection to be complete, it exhibits the same
behavior as Waledac 1. Generally, depending on the na-
ture of the bot, an increasing number of iterations led the
DPA to produce more, if not as much results as with only
one round. A different maxIter input parameter must be
calibrated and then defined in order to avoid waste of
computational resources and achieve a gain in efficiency.
The naive implementation of DPA yields a complexity
cubic in the number of nodes [2].

We can also notice that simply increasing the num-
ber of iterations doesn’t significantly improve the results.
At eight rounds, based on this data, most of the botnet
detection results reach a ceiling. This is due to the small
amount of data recorded up to that point. Indeed, as long
as we get fed new records of network data, our tests show
that the number of iterations has a bigger impact on the
DPA output. This is demonstrated in Fig. 4, where we
took the average of the output by bot family (Koobface,
Zeus, Waledac) and compared to the results obtained
with Nugache. First, we notice that Nugache is the most
deceptive botnet in this set as we need almost 32 times
more iterations before initial detection. Second, while the
other botnets reach a ceiling due to the small amount of
collected data, Nugache shows a different progression in
function of maxIter thanks to the availability of multi-
year flow records.

5 Conclusion
We implemented, tested and refined the Friends of an
Enemy approach, specifically the Dye-Pumping Algo-
rithm, on several botnets. The DPA requires network
flow records and an identified seed bot peer. We pro-
vided some initial results in testing the parameters of the
algorithm on larger data sets, both from previous and
recent experiments with contained malware.

Using the network flow data analysis tools provided by
SiLK, we can identify suspect traffic as almost all existing
IDS [15] and NIDS do today, by signature for example.
We can also launch the DPA on suspect peers, and model
their dye expansion graph. According to the structure of
this expansion graph, we can deduce whether it is a legit-
imate peer or not with a degree of certainty. We expect
to refine this approach for more practical applications.
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