
Fingerprinting Cryptographic Protocols with Key
Exchange using an Entropy Measure

Shoufu Luo∗, Jeremy D. Seideman†, Sven Dietrich‡
∗†‡ The Graduate Center, City University of New York, NY
‡John Jay College, City University of New York, NY

Email: ∗sluo2@gradcenter.cuny.edu,†jseideman@gradcenter.cuny.edu,‡spock@ieee.org

Abstract—Encryption has become increasingly prevalent in
many applications and for various purposes, but its use also
brings new challenges to network security. In this paper, we take
the first steps towards addressing some of these challenges by
introducing a novel system to identify key exchange protocols.
These protocols are usually required if encryption keys are not
shared in advance. We observed that key exchange protocols
yield certain patterns of high-entropy data blocks, such as those
found in key material. We propose a multi-resolution approach
to accurately detect high-entropy data blocks and a method of
generating fingerprints for cryptographic protocols. We provide
experimental evidence that our approach has the potential to
identify cryptographic protocols by their unique key exchanges,
leading to the ability to detect malware traffic that includes
customized key exchange protocols.

I. INTRODUCTION

When designing and securing networks, the malicious use
of encryption brings new challenges to network defense and
traffic examination. For example, encryption has prevented
botnet traffic from being inspected and detected by defense
systems based on deep-packet inspection (DPI), which had
previously proven to be very effective. Inspection and detec-
tion are used at different phases of network analysis, such as
as a preventative measure and as a “post-mortem” analysis. At
both phases, it is important to be able to determine what the
network traffic stream is, whether it is benign or malicious;
being able to identify key segments of communication, even
when encrypted, is useful for this task. When parties employ
symmetric encryption and decryption, a secret key k is shared
among them, either pre-shared or negotiated on the fly using
cryptographic key-exchange protocols. Most common crypto-
graphic protocols [1]–[3] using symmetric encryption to secure
the channel use a key exchange protocol, such as the Diffie-
Hellman key exchange [4].

There are different ways to distribute key material along the
traffic stream, and the method selected depends on the protocol
design. As key material has high entropy compared to normal
traffic, the traffic for the key exchange exhibits detectable
characteristics, namely the uniqueness of the distribution of
key material. This allows for the identification of discriminat-
ing characteristics, as shown in Figure 1. Using an entropy
metric, we can test the hypothesis of whether a byte string is
“random,” if that byte string is sufficiently long. However, this
problem becomes more difficult if the given string is relatively
short (undersampled), or if the goal is to identify which part of

Fig. 1: Visualization of Entropy Distribution: dark portions are
high-entropy blocks.

the string contains random bytes. This is especially true when
determining the boundaries of those groups of random bytes
(also known as blocks of interest). It is therefore challenging
to characterize a stream by the distribution of sequences of
embedded random bytes, or so-called “high-entropy blocks.”

To avoid generating traffic that would be detected and
treated as an anomaly, malware might try to use standard
cryptographic protocols for secure communication, effectively
preventing DPI. However, standard protocols such as SSL/TLS
can potentially be subject to a man-in-the-middle attack.
Malware, in general, tends to avoid using standard protocols
and instead employs customized variants in order to avoid
detection or attack. According to a recent study, only 10% of
malware utilizes SSL/TLS for traffic encryption [5]. To ensure
fresh key material, a new key exchange is desirable for every
new command-and-control (C&C) session of the malware [6],
[7].

Our work offers a systematic way to characterize network
traffic through key exchange behaviors and generate scalable
fingerprints based on detected high-entropy blocks. The sys-
tem mainly consists of two parts: detection of high-entropy
blocks and the fingerprint generation. First, we identify those
blocks from a traffic stream using sample entropy measured
over a sliding window. Second, with all high-entropy blocks
identified, we generate fingerprints for network flows using the
distribution of those blocks. The use of the fingerprints makes
it easier to identify the network flows, enabling us to classify
them as malicious or benign. Our contribution also includes:

• A new method of identifying cryptographic protocols,
which also raises the bar for malicious actors that abuse
customizing cryptographic protocols to evade inspection.

• A voting mechanism that efficiently boosts the accuracy
of entropy-based classification when undersampled en-
tropy is calculated, using a multi-resolution analysis.

• A statistical approach to estimate the range of high-
entropy data blocks and build scalable entropy-based
fingerprints for key exchange protocols in the form of

regular expressions.
To the best of our knowledge, our work is the first attempt

to fingerprint key exchange protocols by the suspected distri-
bution of key material and apply this technique to malware
detection by traffic analysis. By design, our approach can
be implemented and deployed as a standalone system. How-
ever, it is not the intention to replace any existing detection
techniques, but rather to augment them either in real-time
or in a forensic setting for threat resolution and mitigation.
This system can be built into existing systems as a plug-
in component, such as those relying on a certain degree of
payload analysis, e.g. [8]. Moreover, a component of our
system can be a useful tool for the security community, for
identifying high-entropy portions of a given data block, for
use such as the detection of packed malware binaries.

A. Related Work

Olivain et al. [9] proposed the use of cumulative entropy
of network flows for the detection of specific attacking be-
haviors targeted at known cryptographic protocols such as
SSL. Instead of an aggregation though, our work aims to
fingerprint the entropy distribution along the examined traffic.
Our approach is still applicable for their purpose in a more
precise way. For this reason, we adopt the technique they
propose, N-truncated entropy, for entropy estimation, which
is also used by Dorfinger et al. [10] for classifying encrypted
and unencrypted traffic. There is prior work that shows how
entropy tests can be used to detect encrypted or compressed
packets from network streams [11]. Their work examined the
use of entropy to identify data that is “opaque,” which could be
anything from multimedia files to encrypted traffic sent over
normally unencrypted channels. Their work indicated a need
for larger numbers of sample packets for their calculation.
Our work provides a more reliable mechanism to detect high-
entropy areas, this being one of our essential contributions.

There is also precedent for the use of entropy analysis of
traffic compression for IDS. The authors of [12] introduce a
method by which they establish the entropy of traffic generated
by various communication protocols. As the authors felt that
compressed data makes IDS tasks difficult, they sought to
use a wide variety of entropy measurements (but not different
estimators) to create a filtering method. Their method, while
identifying different communication protocols, does not iden-
tify methods of cryptography. Our method could be augmented
with theirs, however, if we wanted to identify communication
and cryptographic methods.

Our work is also motivated by the field of protocol iden-
tification. Much of the work in that field is learning-based
for the most part, relying on observable features [13], [14].
For example, Wright et al. [14] proposed to identify the cryp-
tographic protocol of individual encrypted TCP connections
using post-encryption observable features, including timing,
size, and direction. To some extent, our approach can also be
also leveraged for this purpose. However, there are known
obfuscation techniques which could be used to evade this
technique, such as obfsproxy [15] and FTE [16]. As discussed

in [17], obfuscation can be detected with entropy-based tests
over the packet payloads. Our approach does this by extracting
entropy-based fingerprints.

Zhang et al. [18] proposed to detect encrypted traffic by
looking for N sequential high-entropy packets of the first M
packets of one network flow, incorporating the cumulative
entropy technique. They then built upon this work [19] by
detecting high-entropy flows as an additional measure to score
a host to identify it as a bot for BotHunter [20]. While
applicable to the same problem, our approach is different
from theirs by fingerprinting malware with customized cryp-
tographic protocols, such as Nugache. Our work is different
from theirs as our work does not rely on another system for
detection.

Richer [21] proposed a similar approach to Zhang et al.
by using a classifier based on the regularity in the data over
time and size, employing an entropy-based estimator to detect
botnet activity. They were able to properly train their classifier,
but their work was designed to detect botnet “beacons” based
on traffic patterns. Our work instead tries to identify the traffic
itself and determine how it is being encrypted.

The remainder of this paper is organized as follows. We
begin with background on entropy and its estimators in
Section II. In Section III, we discuss our methodology in
detail, including how to identify high-entropy blocks, the
voting mechanism, and a filtering method for false positive
reduction. Following that, Section IV presents evaluation and
analysis of our approach with three different datasets. Finally,
we conclude by discussing the limitations of this work and
directions of future work.

II. BACKGROUND

A. Entropy

Introduced by Shannon [22], entropy is used as a mea-
surement of the amount of information that is produced by
a process. It can also be used, therefore, to determine the
information that is missing before reception if that information
is transmitted. In the context of cryptography, though, it is used
as a measure of randomness (or uncertainty), equating higher
entropy with higher randomness. Let X be a discrete random
variable under an arbitrary distribution P on a countable
alphabet Σ = {x1, ..., xm}. The definition of Shannon entropy
can be generally expressed by Equation 1:

H(X) = −
m∑
i=1

p(xi) log2 p(xi) (1)

The entropy H(X) yields a maximum value when all p(xi)
are equal to 1

m , i.e. uniformly distributed. In cryptography,
as a fundamental requirement of security, key material should
have high entropy in order to be hard to predict.

B. Entropy Estimator

Entropy can be easily obtained by the Equation 1 if given
a random variable whose probability distribution is known.
However, in practice, P is unknown for most scenarios.

Frequently, p(xi) could be still estimated by the relative
frequencies of the outcome xi from a large number of trials.
The probability of xi is thereby p̂(xi) = ni

N , where ni is the
number of times xi occurs and N is the total number of trials
or samples. Using this probability measurement, the sample
entropy, or Maximum Likelihood Estimator (MLE) [23], can
be estimated by Equation 2:

ĤMLE
N (X) ≡ −

m∑
i=1

p̂(xi) log2 p̂(xi) (2)

MLE is an unbiased estimator of H(X) when N tends
to infinity and where p̂(xi) approximates p(xi), ĤMLE

N (X)
approximates actual H(X). When N is not sufficiently large,
though (undersampled), ĤMLE

N (X) is highly biased, in par-
ticular when N < m or N ∼ m. There is no universal rate at
which the error of MLE compared to H(X) would be close
to zero [23].

There are attempts which aim to reduce the bias directly,
such as the Miller-Madow corrector [24], the Jackknife cor-
rector [25] and the Paninski corrector [26]. However, the bias
is still significantly high when N < m or N ∼ m. Moreover,
it has been difficult to find an unbiased estimator [26], [27]. It
is worth noting the Paninski corrector is unbiased if and only
if P has a uniform distribution, which can not be guaranteed.

MLE is by no means the only entropy estimation that could
be employed. The authors of [28] examined several other
methods. These methods include various statistical methods
(including frequencies and substrings), Markov-based esti-
mates, and the use of compression. The use of other estimators
and how their results compare to those of MLE would make
an interesting exercise, which can be explored in the future.

According to [9], ĤMLE
N (X) ∼ H(X) is valid if and only

if N � m, which typically means N is of the order of
roughly at least 10 times as large as m. In other words, if
Σ0 = {0x00, ..., 0xff} (i.e. m=|Σ0|=256), it would require
around 2,000 samples to possibly obtain a reasonable esti-
mated entropy. That makes it impractical for the purpose of
profiling network traffic as key material is usually, at most,
hundreds of bytes. For example, in a typical TLS handshake,
a client random number only contains 28 bytes.

C. N-truncated entropy HN (X)

Similar to Olivain et al. [9], an accurate entropy value is
not our main focus, but rather the probability of a string
being generated from a uniform distribution. The N-truncated
entropy HN (X) they proposed meets our needs, which is the
average of the sample entropy ĤMLE

N (X) over all strings of
length of N drawn at random from the distribution P , as
defined in Equation 3.

∑
Σini=N

[(
N

n0, ..., nm−1

)m−1∏
i=0

pni
i

(
−
m−1∑
i=0

ni
N

log2

ni
N

)]
(3)

By construction, ĤMLE
N (X) is an unbiased estimator of

HN (X) for an arbitrary distribution P . More importantly,

ĤMLE
N (X) gives a statistical indication of how close the dis-

tribution P is to being uniform by comparing to ĤMLE
N (W),

assuming that W is a random variable under a uniform
distribution U . In Section III-B, we describe how to obtain
both values. Alternatively, if a string s of length N with
each sample is drawn from P , we use ĤMLE

N (s) instead
of ĤMLE

N (X). To differentiate this, w is instead used for
a uniform distribution, U . HN (X) has an upper bound of
log2 min{m,N} as it reaches its maximum value if all p̂xi

are equal, either p̂xi
= 1

N if N < m or p̂xi
= 1

m otherwise.
In either case, uncertainty reaches its maximum.

III. METHODOLOGY

In this section, we discuss the techniques we used and
developed, and present experimental evidence demonstrating
their effectiveness.

A. Sliding Window

To obtain the information entropy of different portions
within the traffic stream, we utilize a sliding window that
moves over the traffic, with a step of one byte at a time, while
sample entropy is calculated for each segment of bytes in that
window.

In order to local all high-entropy blocks in a string, we
move a N-character sliding window over the string, with a 1-
character step. We evaluate ĤMLE

N (s), an unbiased estimator
of entropy, where s is the string that lies completely within
the window. We refer to the bytes in each window as a block.
It follows that ‖s‖ = N , which is the size of the window, and
subsequently the block size.

The window size determines the sample size, which directly
impacts the accuracy of sample entropy. If the sample size is
too small, the sample entropy might not be accurate enough
to be meaningful. Equation (4) roughly estimates Pr[X = e],
the probability of a N-byte string appearing to be “random”,
i.e. each character in the alphabet only occurring once in the
string. Fix Σ to be Σ0 and then let m=256. With N=16
defining a 16-byte sliding window, Pr[X = e] = 0.6197.
In other words, there is a 40% probability that an arbitrary
string will appear to be random and will be a false positive.
However, under the same assumptions but with N = 32,
Pr[X = e] = 0.082. This confirms the discussion in Paninski,
et al. [26] that one should never use less than 16 bytes for
entropy estimation when Σ0 is used.

Pr[X = e] = 1 · m− 1

m
· ... · m−N + 1

m
=

N−1∏
i=0

m− i
m

(4)

Similarly, if the sliding window size is too large, blocks
are likely to mix high-entropy areas with low-entropy areas,
confusing the difference between them. As shown in Figure
2, when the window size is small, e.g. 16-byte, the curve is
fuzzy and has too many valleys (low-entropy) and peaks (high-
entropy), while as the window size goes larger, e.g. 1024 or
2048-byte, the curve becomes flatter; valleys or peaks are no
longer distinctive.

Fig. 2: Entropy plot of a TLS sample traffic using different sliding window sizes, from bottom to top (-byte): 16, 32, 64, 128,
256, 512, 1024 to 2048.

A smaller window is more likely to mistakenly identify a
non-random data area to be “random” (false positive), while
a larger window possibly fails to identify real high-entropy
area (false negative). The choice of window size will heavily
depend on the minimum length of key materials of interest.
In the case of TLS, we choose a 32-byte sliding window as it
is good for the minimum length of interests, a 28-byte client
random number. In summary, as the window slides over the
data with a one-byte step, each block is labeled as either high-
entropy or low-entropy. A list of consecutive high-entropy
blocks or low-entropy blocks then forms a unit, more precisely
a high-entropy unit or a low-entropy unit respectively.

B. Baseline HN (U)

To identify a high-entropy block, we use the method em-
ployed by [9], the Monte-Carlo method, as it provides a
level of confidence of a string being drawn from a random
distribution. We first repeatedly generate strings of length of
N with each byte sampled from a random source, such as
/dev/urandom on Unix. Then, we calculate the mean µ and
standard deviation σ of sample entropy using all samples.
Here, µ and σ summarize the distribution of the sample
entropy of random strings of length N . By a specific number t
of standard deviations, we can obtain the proportion of sample
strings falling within the range of µ± t× σ. This proportion
provides us with an indication of confidence that a string is
random if it falls within the given range. As exceeding the
upper bound does not affect the randomness of the string, we
ignore the upper bound and use the lower bound as a cutoff
for a string being random, denoted by θ:

θ = µ
(
ĤMLE
N (w)

)
− t× σ

(
ĤMLE
N (w)

)
(5)

With a confidence factor expressed by the proportion ρ:

ρ =
number of samples above θ

number of samples
(6)

Consequently, any strings falling below the threshold are
considered not to be random, i.e. low-entropy blocks. Simi-
larly, any strings falling above the threshold will be considered
random, i.e. high-entropy. Table I shows thresholds (θ) for w
using different window sizes (N) above a minimum level of
confidence 99.0%.

N µ σ t θ ρ
16 3.94199 0.08290 2.8 3.7098 99.2%
32 4.88171 0.08134 2.7 4.6620 99.3%
64 5.76562 0.07664 2.6 5.5663 99.2%

128 6.55003 0.06733 2.5 6.3817 99.2%
256 7.17518 0.05240 2.5 7.0441 99.2%
512 7.59073 0.03364 2.4 7.5099 99.0%
1024 7.80894 0.01726 2.5 7.7658 99.1%
2048 7.90804 0.00814 2.5 7.8877 99.2%

TABLE I: ĤMLE
N (w) under Various Configurations

The confidence measures the confidence of a string not
being random when falling out of the range, rather than a
confidence of a string being random when falling within the
range. For example, let N be 64 and Σ=Σ0, then µ=5.7656 and
σ=0.0766. With 99.4% of samples above θ=µ-3σ (i.e. t = 3),
we would have at least 99.4% confidence that a string s,
with ĤMLE

N (s)=5.5120, is not close to random, and therefore
not a high-entropy block. In this calculation, t is our control
variable. We can choose a smaller t to tighten the range and
give us a higher confidence, or a larger t to loosen the range,
at the expense of a lower confidence. In our study, we chose
a smaller t in order to obtain a relatively high confidence, at
least 99.0%.

Using the threshold value, we could then transform the
sample entropy score to either 0 or 1. The plot then becomes
a square wave where one indicates high-entropy and zero for
low-entropy as shown in Figure 3. The shadow in the upper
plot shows the cutoff (threshold) value.

Fig. 3: Normalized plot of high-entropy blocks

C. The Choice of Σ

Due to statistical limitations, some data blocks may mis-
takenly be labeled as high-entropy blocks, i.e. a false positive,
which will lead to an error in the fingerprint; therefore we must
be avoided or minimize them. To achieve this, we devised a
voting mechanism using multi-resolution analysis, utilizing the
choice of alphabet Σ. This mechanism drastically reduces the
rate of false positives.

So far, we have based our discussion on the choice of
Σ to be Σ0 (m=256) with each character being a byte. In
cryptography, however, the randomness of key material is
defined at a more restrictive level, i.e. at a bit level, so Σ={0,
1} (m=2). Let’s consider one experiment of tossing one coin
that has two outcomes, and another experiment of tossing eight
independent coins with two outcomes for each. According to
basic probability theory, if each coin is uniformly drawn from
Σ={0, 1}, the outcome of eight coins (Σ0) will still follow a
uniform distribution. In our estimation of ĤMLE

N (w), we do
generate each random byte by randomly sampling eight times
over {0, 1} for all of our sample strings. That being said,
given that each bit is independently sampled uniformly from
{0, 1}, we could define τ , a number of bits (i.e. coins) used
to generate our random variables, and from those, choose a
random variable; such a random variable will be guaranteed
to have a uniform distribution.

As an extension to the previously defined ĤMLE
N (w), we

outline the thresholds and their confidence levels for different
values of τ while fixing N = 32. We use the term τ -
bit measure (e.g. 2-bit measure). Previously, N could be
interpreted as either the window size and the sample size.
In the case of τ -bit measure, the sample size changes, i.e. 8

τ
N (τ ≤ 8). For convenience, we abuse the notation N, using
it as the window size for the remainder of this paper. It is
worth noting the use of τ -bit measure does not change the
fundamentals of N-truncated entropy as it simply uses a larger
sample size and a different alphabet.

Statistical methods such as sample entropy generally ignore
potential structures or patterns occurring in the data. Therefore,
a string with a high sample entropy score is not always guaran-
teed to be random, such as if the string is made up of repeating
sequences of bytes. For example, given a hexadecimal string s
be “55 55 bb bb” (0101 0101 0101 0101 1010 1010 1010 1010

τ m µ σ t θ ρ
1 2 0.9971 0.00399 4.18 0.9804 99.28%
2 4 1.9829 0.01387 3.59 1.9331 99.20%
4 16 3.8196 0.06715 3.02 3.6168 99.31%
8 256 4.8817 0.08135 3.0 4.6356 99.35%

TABLE II: τ -bit measure ĤMLE
32 (w)

in binary), we see that p̂0 = p̂1 = 1
2 if a 1-bit measure

(τ=1) used, i.e. Σ={0, 1}; subsequently ĤMLE
N (s) = 1. Con-

sequently, s will be labeled as a high-entropy block despite the
fact that it is not, resulting in misclassification. Taking another
example from real world, this hexadecimal string from a TLS
session: 16 03 01 0c 13 0b 00 0c 0f 00 0d 0e 10 04 7a 30 82,
which is a block of control information1 from the TLS
handshake traffic. The two bytes 03 01 indicate the TLS
version, i.e. TLS 1.0, 0c 13 for the length,0b for the protocol
type, and another 3 bytes of length 00 0c 0f. This block also
may not appear “random” if an 8-bit measure is used. Such
cases are prone to false positives and impact the fingerprint
process.

However, the idea is that if a string is random, no mat-
ter which τ -bit measure is being used, its sample entropy
ĤMLE
N (s) should be always close to ĤN (U). Thus, we

propose to use a voting mechanism instead of only using a τ -
bit measure. The voting rule we employed is that if any of the
chosen τ -bit measures reject the randomness of that block, the
block will be labeled as non-random. It is executed as a simple
AND operation among the outcome of all measures. Figure 4
shows the effectiveness of combining three τ -measures, where
the resulting signature by voting precisely outlines all high-
entropy blocks in the TLS session. The bottom plot line, X-
signature, is based on the voting over the three 1-bit, 4-bit and
8-bit measures.

D. Filtering Threshold

Our voting mechanism effectively reduces false positives.
However there are some scenarios where this approach may
still not be sufficient to eliminate all false positives. There is
still a chance that while voting, all selected τ -bit measures may
falsely identify an ordinary block to be high-entropy because
some randomness within the data makes it appear to be a true
high-entropy block. If there are supposedly no high-entropy
data blocks then the length of a data block with random data
should be less than the minimum length of interest; the size of
detected high-entropy units would appear to be relatively small
compared to what is expected if there actually exists a high-
entropy data block of interest. We define a filtering threshold,
ξ, chosen to eliminate those small high-entropy units. Our
empirical study suggests ξ = 9 as a good choice when a 32-
byte sliding window size is chosen for detecting a minimum
20-byte high-entropy key material blocks. This means if there
are only 9 consecutive high-entropy blocks detected between
two low-entropy units, then we identify the result as a false
positive and filter it out. Here, “filter out” means labeling these

1Control information is commonly known to have low entropy.

Fig. 4: A traffic sample from a TLS 1.2 session with a 1024-bit RSA public key.

blocks to be low-entropy instead of high-entropy, effectively
removing them from further examination.

E. Calibration

In order to fingerprint traffic by the shape of the square wave
as showin in Figure 4, we must go beyond the identification of
high-entropy blocks. We must also descirbe the length of each
unit within the traffic flow. Due to statistical inheritance and
our calculation method, the length of each unit (i.e. the number
of detected consecutive high-entropy or low-entropy blocks)
may vary because when the sliding window partially includes
the target random bytes, it may still continue to yield high
sample entropy blocks until the window moves sufficiently
away from the target. For example, a TLS traffic stream
contains a client random number as a sequence of 28 bytes. It
is not illogical to anticipate that there will not be exactly one
high-entropy block detected in this case. Additionally, the total
number of high-entropy blocks detected around that chunk of
data will not be fixed from case to case. However, our intention
is not to determine an absolute value for each unit among all
cases, but rather a certain reasonable range. For this reason,
we resort to Monte-Carlo methods to empirically estimate the
range. For example, to estimate the length of high-entropy unit
around client random bytes, we sampled 100,000 client hello
messages from TLS sessions.

The result shown in Figure 5 indicate that most of the length
of the 28-byte client random string followed by the list of
cipher suites fall within a range of six to twenty-four high-
entropy blocks. If a 32-byte TLS session ID (also random
bytes) is present along with the client random bytes, adding
up to 60 bytes, we obtain a range of [38, 52] as shown in
Figure 5. A more conservative range would be [20, 52].

F. Fingerprinting

Fingerprinting is a process to profile a key exchange proto-
col by its distribution of high-entropy blocks along the traffic

streams the protocol generates during use. A entropy-based
fingerprint is a series of interleaving high-entropy units and
low-entropy units with the length of each unit specified as a
range. The reason that high-entropy blocks have to interleave
with low-entropy ones is that otherwise two adjacent high-
entropy or low-entropy blocks would be merged into one. Let
(s, l, r) represent one unit where s ∈ {1, 0}, l, r ∈ Z+, where
s be the sign indicating a high-entropy unit or low-entropy,
l be the minimum length and r be the maximum length.
An entropy-based fingerprint then is the concatenation of an
ordered list of n instances of (s, l, r) with s alternating among
one and zero. Alternatively, it can be concisely expressed
as below, where si ∈ {1, 0}, li, ri ∈ Z+. The benefit of
such a representation is that this form can be represented
as a standard regular expression and therefore the matching
process can be done efficiently. The regular expression form
will provide a flexible way of expressing the fingerprint, for
instance, optional units, as will be shown in the experiment
section.

nn

i=1

si{li, ri}, si 6= si+1

The fingerprinting is straightforward in three steps:
1) Identify high-entropy and low-entropy areas (units) of

the anticipated traffic from a cryptographic protocol;
2) Follow the technique described in Section III-E and

estimate the range for each area;
3) Formalize the units in a regular expression.

Taking TLS using a cipher-suite of DHE-RSA-* as an exam-
ple, the fingerprint obtained through our method is as below:

1{8, 54}0{20, 1024}1{8, 54}0{30, 800}1{80, 260}....

We use the following steps to detect and classify traffic
flows: (1) scan the traffic stream by sliding a window over it
and estimating sample entropy for each window using different
τ -bit measures; (2) normalize each block by its entropy score

Fig. 5: Distribution of length of detected high-entropy blocks (1) Left: over the TLS 28-byte client random string (2) Right:
over the TLS 28-byte client random string and 32-byte session ID.

to either one or zero using the pre-calculated threshold θ;
(3) perform the voting of outcomes from each measures;
(4) filter out noise using ξ; (5) use a regular expression to
match the predefined fingerprint against the output (i.e. a string
consisting of zeros and ones).

In our demonstration, we emphasize the DHE-RSA-*
cipher-suite for the TLS protocol, as our approach aims to
profile a particular key exchange protocol, and TLS is capable
of using different key exchange protocols. SSL has evolved
over time into the standard TLS protocol, which supports a
long list of cipher suites with different key exchange protocols.
To demonstrate, we choose to profile one set of key exchange
protocol cipher suites, i.e. DHE-RSA-*, (see Section III). It
is worth noting that most botnet C&C protocols are much
simpler as they are generally desinged to perform a limited
number of tasks.

IV. EVALUATION

SSL/TLS is a well-known cryptographic protocol with fair
complexity. The successful characterization of the TLS pro-
tocol provides the full ability to characterize other, simpler
botnet C&C protocols (i.e. characterization of a more com-
plex protocol indicates that a simpler protocol can also be
characterized by our method). For our evaluation, we first use
TLS as our primary target; we then extend it to the Nugache
botnet. All streams are bidirectional and the packets of a
stream are correctly ordered with all TCP/IP headers removed.
Tshark [29] was used as a primary tool to process network
traces in pcap [30].

A. Datasets

We obtained a data set of TLS network traffic from the
ZMap project [31]. Initially, we extracted 16,240 TCP streams
on standard port 443 from 800MB of raw traffic data, which
we further reduced to 5,794 completed and validated TLS
streams2. Then, we extracted from those 5,794 streams the
1,378 streams that used one of the DHE-RSA-∗ cipher suites
listed in Table III. We split 1,378 instances into two sets:
the d00200 set of 218 instances for parameter selection and

2A large portion of hosts scanned by the ZMap client did not respond or
reject connections for various reasons during TLS negotiation

signature refinement and the test set d00300 of 1,160 instances
for the testing of the final signature, denoted as the d00015
set. We also extracted 1,204 TLS instances using other cipher
suites. We extracted 337 Nugache traffic streams from a set
of raw Nugache traffic and divided instances into two groups:
162 instances of training set and 175 instances of testing set.
Similar to TLS, we use the training set to tune the fingerprint
and the testing set for validation.

We examined the possibility of using Ethernet frames
instead of the TCP packet flow. However, we ultimately
decided against that because of several issues, most notably
fragmentation. If a high-entropy block defined in the TCP flow
is fragmented in an Ethernet frame, then instead of a single
block there might be smaller high-entropy blocks. That would
change the fingerprint of the cryptographic protocol employed.
As we are generally looking at activity at the application
level [6], we decided to focus on the analysis of what is
assumed to be the application payloads.

Cipher ID Name
0x00015 TLS_DHE_RSA_WITH_DES_CBC_SHA
0x00016 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
0x00033 TLS_DHE_RSA_WITH_AES_128_CBC_SHA
0x00039 TLS_DHE_RSA_WITH_AES_256_CBC_SHA
0x00045 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
0x00067 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
0x0006B TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
0x00088 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
0x0009A TLS_DHE_RSA_WITH_SEED_CBC_SHA
0x0009E TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
0x0009F TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TABLE III: TLS Cipher suites of Choice: DHE-RSA-*

In addition, we used 3,412 non-TLS TCP streams from a data

Port 80 25 22 143 21 111 179 110
582 189 168 125 96 44 18 5

TABLE IV: The number of steams from different traffic types
identified by port

set generated by UNSW-NB15 [32]. This data set contains a
variety of traffic types, but without any TLS traffic, meaning
we could use it as another dimension of negative cases for

testing the fingerprints. Table IV shows the traffic type of the
majority by service ports, only including standard ports under
1024. The table does not show the whole spectrum of traffic
types in this dataset, but rather provides a quick look.

B. TLS

We tested the signature generated as previously described
over the training set d00200 with thresholds of the confidence
ρ above 99.2% for different τ -bit measures. The results shown
in Table V do not seem promising at all, as all the best results
from 1-4-8 and 1-2-4-8 only reach a recall rate of 62.84%
and 64.22% respectively, with the confidence of 99.85%, but it
does confirm that the strategy of using multiple τ -bit measures
significantly improves the recall rate. Also, it is interesting
to note that the recall rate of multiple τ -bit measures drops
significantly below 10% with a confidence of 99.99%. This is
expected because the threshold is too relaxed (with a higher
proportion of high entropy blocks) to be accurate.

HHHHτ
ρ 99.20% 99.85% 99.97% 99.99%

1-bit 8.72% 36.70% 26.15% 26.14%
2-bit 15.13% 10.55% 23.39% 23.39%
4-bit 47.25% 25.68% 8.26% 11.93%
8-bit 42.40% 28.44% 3.21% 10.09%
1-2-8 31.19% 17.43% 7.80% 4.58%
1-4-8 45.41% 62.84% 38.99% 5.50%

1-2-4-8 39.44% 64.22% 39.44% 5.05%

TABLE V: Recall rate of the original signature for TLS

By manually reviewing those failures, we found three major
issues in the generation of our original signature. One is the
range of the server random bytes. It was a tighter range than
it anticipated, which was previously set to (+, 8, 54) since we
used the range estimated from client random bytes. We found
that to be inadequate as the bytes after the server random bytes
appear more random than those after client random bytes, and
are therefore more likely produce a longer high-entropy block.
As we did for client random bytes, we increased the maximum
length to 64 to rectify this. The second major issue is that we
failed to consider optional random bytes such as key identifier
fields for both issuer and subject of the certificate. The third
issue relates on the fact that two high-entropy areas might
be adjacent to each other without a sufficient gap and may
accidentally get merged into a larger high-entropy area, such
as the signature of the certificate and the server key exchange
parameters. For the latter two cases, we introduce optional
blocks into the signature, making the signature scalable. In
the regular expression, we can include optional strings. For
example, our TLS signature has been extended to include
optional strings as below. This adjustment boosts the recall
for most cases, as shown in Table VI. For both cases of 1-4-8
and 1-2-4-8, the recall increases by around 20%.

...1{80, 260}(0{20, 1024}|{8, 160}(1{8, 70}|

{8, 70}0{0, 300}1{8, 70})0{0, 500})...

The filter threshold ξ is used to remove false positives and
make the fingerprint more reliable. As the threshold increases,
the detection accuracy of high-entropy blocks will increase as
we are eliminating those accidental “high-entropy” blocks. At

HHHHτ
ρ 99.20% 99.85% 99.97% 99.99%

1-bit 12.39% 6.88% 40.37% 40.37%
2-bit 21.10% 19.27% 38.53% 40.83%
4-bit 84.40% 73.39% 33.03% 13.30%
8-bit 67.43% 51.83% 11.01% 16.51%
1-2-8 41.28% 25.69% 18.34% 11.93%
1-4-8 55.05% 82.57% 67.43% 12.39%

1-2-4-8 49.54% 87.61% 67.43% 12.39%

TABLE VI: Recall using refined fingerprint

a certain point, this elimination may have an adverse effect as
true high-entropy blocks may be eliminated by a excessively
large value of ξ. We experimented with different values of ξ
using a 4-bit measure, as shown in Figure 6. Given its initial
purpose, this parameter should be kept as small as possible
for effective filtering. Thus, ξ = 9 is chosen based on the
empirical results. As suggested by our test results, it appears
to be a proper choice for other measures, e.g. 1-4-8 measure.

Fig. 6: Noise Threshold Selection over TLS traffic using a
4-bit measure

1) Test Results: After two improvement procedures – sig-
nature refinement and parameter selection – the ultimate test
over the testing sets, d00300, is shown in the table below. The
multiple τ -measure 1-4-8 now produces a good recall rate.

ξ=9 TP FN Recall
4-bit measure (ρ=99.20%) 1056 104 91.03%
1-4-8 measure (ρ=99.85%) 1079 81 93.02%

Dataset Total Positives Negatives
d00200 1,160 1,079 81
d00300 1,204 61 1,143
d00015 3,412 0 3,412

TABLE VII: TLS signature over different datasets, i.e. d00200:
TLS w/ selected Ciphers, d00300: TLS w/ ohter Ciphers and
d00015: non-TLS.

Finally, we fixed our filter threshold ξ = 9 and used the 1-
4-8 measure. We summarize our results over three datasets as
follows. Overall, the TLS signature has a precision of nearly
94.6% and its accuracy is around 94%, as we only included
the negative cases from d00300 so as to have a equivalent
size of positive cases. On the other hand, negative cases
from non-TLS traffic in d00015, turned out to be a relatively

trivial amount, even though some of instances do contain high-
entropy traffic, such as SSH traffic on port 22.

C. Application on Botnet Detection: Nugache

The Nugache botnet was one of the first peer-to-peer botnets
to use strong cryptography to protect its C&C channel; the
inter-peer communication was encrypted using individually
negotiated session keys derived using a hybrid RSA/Rijndael
scheme [6], [7], [33]. Specifically, Nugache uses a two-way
RSA-like key exchange protocol for every session with a min-
imum length of 512 bits for the modulus. One peer sends the
length of the key to announce a peer key exchange, followed
by an actual public key [6]; the other peer in turn replies with
a message of the same length encrypted with that public key.
Compared to TLS, signature extraction for Nugache is much
easier because of the simplicity of its key exchange. Since
there is little control information in key exchange messages,
if we only consider the payload, the signature can be simply
defined as 1*, meaning high-entropy blocks throughout, which
is also a strong detectable characteristic distinct from other
cryptographic protocols. Following the same consideration, we
choose ξ = 9, which yields a fair recall rate.

HH
HHτ
ρ 99.20% 99.85% 99.97% 99.99%

2-bit 92.21% 67.90% 39.50% 17.28%
1-2-8 88.27% 90.12% 73.46% 56.17%
1-4-8 89.51% 92.21% 75.93% 56.17%

1-2-4-8 90.12% 95.06% 77.16% 56.17%

TABLE VIII: Recall on Nugache (N=32)

The initial fingerprint we generated for Nugache includes
two high-entropy areas, corresponding to the two-way key
exchange. First, we test all τ -bit measures with a fixed filtering
threshold value of ξ=9. It shows the 2-bit measure produces
good results (92.21% with ρ = 99.20%) while our voting
mechanism clearly outperforms a single τ -bit measure given
the same level of confidence. We conservatively choose the
1-4-8 measure as our metric in a general.

Dataset Desc Total Ps Ns
N Nugache 175 162 13

d00200, d00300 TLS 2,364 0 2,364
d00015 non-TLS 3,412 0 3,412

TABLE IX: Nugache fingerprint over different datasets

In Table IX, we summarize our testing results of the
Nugache signature over three datasets. It is encouraging that
the Nugache signature generates no false positive and so has
a precision of 100%. For obfuscation techniques, there still a
portion of the traffic, although small, that will appear to have
low entropy.

V. LIMITATIONS & FUTURE WORK

One may argue that high entropy does not necessarily imply
encryption, compressed data, or multimedia data. While this
is true, our focus is the distribution of high-entropy data
blocks, not solely the presence of high-entropy data. A study

[18] provides evidence against such “common sense,” where
it was shown that multimedia files could yield low entropy
instead, although the authors also pointed out that in some
cases compressed files do have high entropy. Such cases
require a much closer look, which we left for future work.
Furthermore, character encodings such as base64 [34] can
significantly reduce the entropy of a string. For this case, we
assume that a base64 detector as well as a decoder could be
deployed to canonicalize the traffic data; future experiments
can evaluate that effectiveness. It is also possible that one
could easily inject arbitrary bytes to disturb the original
distribution of high entropy and low entropy. In this case, we
consider it to be a new protocol for which the traffic could
be possibly fingerprinted, e.g. using optional units as we did
for TLS. It does indicate the open problem of the detection
of mutated protocols deployed by botmasters in order to avoid
detection and identification. If the signature generation process
is automated, then this approach would still be efficient.
However, if more advanced obfuscation techniques such as
those outlined in [15], [16] are applied, then our approach will
fail at identifying the obfuscated protocol. Nevertheless, our
proposed techniques may be still used to detect the obfuscation
techniques themselves.

To avoid being fingerprinted, malware could adopt plain
TLS instead of customizing the protocol, running the risk
of SSL inspection. This warrants explanation, as it may
explain why there only 10% of malware samples utilize TLS.
Nevertheless, other research [5] also found that malware or
botnets that do utilize TLS tend to do so in a very customized
way, such as by advertising significantly fewer cipher suites
than enterprise TLS clients. A shorter list of cipher suites will
reduce the control information (i.e. low-entropy blocks) and
therefore may result in different fingerprints than enterprise-
grade TLS clients. Investigating how effective our approach
would be in such a scenario is left for future work. Under
certain circumstances, it is possible that our approach may
not be sufficient to rule out all possible false positives and we
could extend this work by examining how our our approach
works in synergy with other tools in order to reduce false
positives and generate more accurate fingerprints.

As we previously stated, there are other entropy estimators
aside from MLE. Given what was explored in [28], such as
alternative estimation methods and entropy predictors, a future
study could extend our method to other entropy calculations.
Those alternate calculations could be evaluated in order to help
tune our method to provide the best results.

Finally, we are interested in looking at more diverse data,
such as compressed data, SSH, and other malware traffic.
Examining both benign and malicious data in multiple settings
will allow us to fine-tune our approach and make it resilient
against unknown cipher suites or obfuscation.

VI. CONCLUSION

In this paper, we proposed a novel voting-based method for
accurately detecting high-entropy blocks of data in a network
traffic stream, and a method based on regular expressions for

generating a scalable fingerprint of that traffic. Our approach
can effectively put malware authors on the defense, as a
longer key used for a more securely encrypted connection
would make it more easily characterized and therefore more
detectable. If a shorter key is used for making the connection
less vulnerable to detection, then the malware author would
only achieve a less secure connection. Our technique can be
used to augment other detection and classification techniques
to create more comprehensive tools.

REFERENCES

[1] A. Freier, P. Karlton, and P. Kocher, “RFC 6101 (historic):
The Secure Sockets Layer (SSL) Protocol Version 3.0,”
http://tools.ietf.org/html/rfc6101, August 2011.

[2] T. Dierks and E. Rescorla, “RFC 5246: The Transport Layer Security
(TLS) Protocol Version 1.2,” http://tools.ietf.org/html/rfc5246, August
2008.

[3] A. Freier, P. Karlton, and P. Kocher, “RFC 4251: The Secure Shell (SSH)
Protocol Architecture,” http://http://tools.ietf.org/html/rfc4251, Jan 2006.

[4] E. Rescorla, “RFC2631: Diffie-Hellman Key Agreement Method,”
https://tools.ietf.org/html/rfc2631, 1999.

[5] B. Anderson, S. Paul, and D. McGrew, “Deciphering malware’s use of
TLS (without decryption),” arXiv preprint arXiv:1607.01639, 2016.

[6] D. Dittrich and S. Dietrich, “P2P as botnet command and control: a
deeper insight,” in Proceedings of the 3rd International Conference on
Malicious and Unwanted Software (Malware), 2008.

[7] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the
Storm and Nugache Trojans: P2P is here,” in USENIX ;login: vol. 32,
no. 6, December 2007.

[8] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”
in Proceedings of the Detection of Intrusions and Malware, and Vulner-
ability Assessment conference (DIMVA). Springer, 2008, pp. 207–227.

[9] J. Olivain and J. Goubault-Larrecq, “Detecting subverted crypto-
graphic protocols by entropy checking,” Laboratoire Spécification et
Vérification, ENS Cachan, France, Research Report LSV-06-13, Jun.
2006, 19 pages.

[10] P. Dorfinger, G. Panholzer, and W. John, “Entropy estimation for
real-time encrypted traffic identification,” in Proceedings of the Third
International Conference on Traffic Monitoring and Analysis. Springer-
Verlag, 2011, pp. 164–171.

[11] A. M. White, S. Krishnan, M. Bailey, F. Monrose, and P. A. Porras,
“Clear and present data: Opaque traffic and its security implications
for the future.” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2013.

[12] S. Smith, S. Neyens, and R. Hammell II, “The use of entropy in lossy
network traffic compression for network intrusion detection applica-
tions,” in International Conference on Cyber Warfare and Security.
Academic Conferences International Limited, 2017, pp. 352–360.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in Proceedings of SIGCOMM ’05.
New York, NY, USA: ACM, 2005, pp. 229–240.

[14] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” J. Mach. Learn. Res.,
vol. 7, pp. 2745–2769, Dec. 2006.

[15] R. Dingledine, “Obfsproxy: The next step in the censorship arms
race.” https://blog.torproject.org/blog/ obfsproxy-next-step-censorship-
arms-race, 2012.

[16] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol
misidentification made easy with format-transforming encryption,” in
Proceedings of the 20th ACM SIGSAC conference on Computer and
Communications Security (CCS). ACM, 2013, pp. 61–72.

[17] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing
through network-protocol obfuscation,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2015, pp. 57–69.

[18] H. Zhang, C. Papadopoulos, and D. Massey, “Detecting encrypted botnet
traffic,” in Proceedings of the IEEE INFOCOM, 2013, 6 pages.

[19] H. Zhang and C. Papadopoulos, “Early detection of high entropy traffic,”
in IEEE Conference on Communications and Network Security (CNS),
Sept 2015, pp. 104–112.

[20] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter:
Detecting Malware Infection Through IDS-driven Dialog Correlation,”
in Proceedings of the 16th USENIX Security Symposium. Berkeley,
CA, USA: USENIX Association, 2007, pp. 1–16.

[21] T. J. Richer, “Entropy-based detection of botnet command
and control,” in Proceedings of the Australasian Computer
Science Week Multiconference, ser. ACSW ’17. New York,
NY, USA: ACM, 2017, pp. 75:1–75:4. [Online]. Available:
http://doi.acm.org/10.1145/3014812.3014889

[22] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, July, October 1948.

[23] A. Antos and I. Kontoyiannis, “Convergence properties of functional
estimates for discrete distributions,” Random Structures & Algorithms,
vol. 19, no. 3-4, pp. 163–193, Oct. 2001.

[24] G. A. Miller, “Note on the bias of information estimates,” Information
Theory in Psychology: Problems and Methods, pp. 95–100, 1955.

[25] B. Efron and C. Stein, “The jackknife estimate of variance,” The Annals
of Statistics, vol. 9, pp. 586–596, May 1981.

[26] L. Paninski, “Estimation of entropy and mutual information,” Neural
Computation, vol. 15, no. 6, pp. 1191–1253, Jun. 2003.

[27] T. Schürmann, “Bias analysis in entropy estimation,” J. Phys. A Math.
Gen, pp. 295–301, 2004.

[28] M. S. Turan, E. Barker, J. Kelsey, K. McKay, M. L. Baish, and
M. Boyle, “Recommendation for the entropy sources used for random
bit generation,” NIST Special Publication 800-90B, 2018, available at
https://doi.org/10.6028/NIST.SP.800-90B.

[29] G. Combs, “Wireshark: The network protocol analyzer,”
http://www.wireshark.org/.

[30] V. Jacobson, C. Leres, and S. McCanne, “tcpdump, a powerful
command-line network analyzer,” http://www.tcpdump.org.

[31] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in Proceedings of the 22nd
USENIX Security Symposium, August 2013.

[32] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set
for network intrusion detection systems (UNSW-NB15 network data
set),” in Military Communications and Information Systems Conference
(MilCIS). IEEE, 2015, pp. 1–6.

[33] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. Dietrich, and H. Bos, “SoK: P2PWNED - modeling and evaluating
the resilience of peer-to-peer botnets,” in 2013 IEEE Symposium on
Security and Privacy, May 2013, pp. 97–111.

[34] S. Josefsson, “RFC4648: The Base16, Base32, and Base64 Data Encod-
ings,” http://tools.ietf.org/html/rfc4648, 2006.

