
Tracing Privilege Misuse Through Behavioral
Anomaly Detection in Geometric Spaces

Patrick Duessel
Rheinische Friedrich-Wilhelms Universität

Bonn, Germany
p7duessel@uni-bonn.de

Sven Dietrich
John Jay College of Criminal Justice

New York City, United States
spock@ieee.org

Shoufu Luo
CUNY Graduate Center

New York City, United States
slou2@gradcenter.cuny.edu

Michael Meier
Rheinische Friedrich-Wilhelms Universität

Bonn, Germany
mm@cs.uni-bonn.de

Ulrich Flegel
Infineon Technologies AG

Neubiberg, Germany
ulrich.flegel@udo.edu

Abstract—Privilege misuse is a common technique used by
insiders to ex-filtrate proprietary information or sabotage or-
ganizations. Although operating systems provide means to log
security-related activities indicators of compromise are often
difficult to detect due to the often proprietary nature of logging
mechanisms in place - rendering the analysis of log files a
daunting task. In this contribution we present a format-agnostic
approach to detect privilege misuse based on rule-free user
activity models learned over security audit logs typically provided
by servers. We investigate language model based feature types
(i.e. token grams, temporal token grams and attributed token
grams) using One-Class Support Vector Machines (OC-SVM).
We conduct experiments on synthetic as well as real-world data
collected on Microsoft Windows 2008 servers to investigate the
effect of feature types and similarity measures and demonstrate
usability of this approach for privilege misuse detection as part
of an insider threat detection program.

Index Terms—Machine learning, privilege misuse, log analysis,
attributed language models

I. INTRODUCTION

Theft of proprietary information is a growing concern
to many organizations. Victimized organizations suffer data
leakage, data destruction or even extortion schemes involving
current or former employees primarily motivated by financial
gains, espionage, or sabotage. The proliferation of social
media, cloud-based storage, mobile applications and personal
email accounts paired with inconsistent, or weak preventative
and detective controls, open a multitude of attack channels. A
recent survey [20] that shows that 34% of data breaches in
2019 involved some form of internal threat actors. Typical
scenarios for privilege misuse include abuse of privileges
granted to entrusted users, unauthorized use of privileges
granted to other users, escalation of privileges, or simply
human error. A wide range of solutions can be deployed to
mitigate the risk of privilege misuse. The majority of these
technologies can be broadly categorized into asset-centric and
user-centric solutions. While asset-centric controls focuses
on the protection of organizational assets (e.g. information,
applications, systems, networks) from unauthorized disclosure,
modification or destruction, user-centric safeguards focus on

the prevention or detection of unauthorized user activities
related to those assets. For example, malicious user activity
could involve an user, who performs tasks that are unusual to
his or her regular user activities - both from an activity or time
perspective. A major benefit of user-centric approaches is the
ability to detect suspicious activity on hosts or in the network
independent from knowledge of high-value information assets
and pre-defined content rules in addition to the advantage of
being able to identify unknown malicious behavioral patterns.

Overall objective of this paper is to investigate to what
extent ”suspicious” user sessions can be detected based on
learned user behavior models. More specifically, we will make
the following contributions:
• We propose two novel feature types (i.e. temporal token

grams and attributed token grams) that allow for encoding
of temporal and event attribute information within regular
n-gram language model features in a unified feature
space.

• We measure the performance of the proposed feature
types on both synthetic and real-world data in comparison
to token gram based features, and discuss suitable model
parameters obtained from comprehensive cross valida-
tion.

The paper is structured as follows: Related work is presented
in Section II which outlines the current approaches towards
malicious user behavior detection. The main contribution of
this paper is presented in Section III which provides details
on our proposed solution. A comprehensive experimental
evaluation of the proposed methods on synthetic data as well as
real security audit log data is presented in Section IV. Finally,
conclusions can be found in Section V.

II. RELATED WORK

An interesting unsupervised approach is proposed in [21].
Unlike our approach which focuses on modeling user behavior
on IT systems, authors introduce a clustering-based method
over features extracted from network traffic (e.g. IP addresses,
domains, connections, user-agent strings) and meta-data (e.g.

22

2020 13th International Conference on Systematic Approaches to Digital Forensic Engineering (SADFE)

978-1-7281-9459-2/20/$31.00 ©2020 IEEE
DOI 10.1109/SADFE51007.2020.00012

connection spikes) to detect suspicious connection behavior
over correlated system logs (e.g. VPN, DHCP, web proxies
etc.) and demonstrate that their approach is able to identify
malicious events and policy violations not detected by rule-
based systems.

In the realm of insider threat detection, numerous anomaly-
based approaches are proposed [2], [3], [9], [10], [15]. Grier
et al. [10] uses statistical analysis over extracted file meta-
data features (e.g. file access timestamps) to detect emerging
patterns of file copying. Another approach [3] aims at detect-
ing anomalies using k-nearest neighbors over user generated
actions. Hidden Markov Models in [15] are used to predict
the probability of activity sequences. Chung et al. [4] present
a method to detect misuse on relational databases employ-
ing working scopes of users (including schemes, tables and
attributes), which are trained using frequent item set mining
techniques.

A multitude of different feature types are investigated in the
realm of anomaly-based insider threat detection [1], [8], [11].
Liu et al. [11] suggest to use n-gram and histogram models
over operating system calls for insider threat detection, which
are generated by higher-level user activities, e.g. db admin
activity, email, open office applications, or software devel-
opment. Anomalies are determined based on the Hamming
distance between a syscall record and records in the training
set for a given user. The authors also suggest an extension of
the syscall n-gram model to include parameters in order to
improve detection accuracy. Eberle et al. [8] suggest a graph-
based approach to uncover structural differences in domains
such as email correspondences and business processes. Al-
though specific to the fields of network security Duessel et
al. [6], [7] propose an attributed token based comparison of
semi-structured byte sequences (e.g. HTTP) by incorporating
network protocol analysis into byte-level language modeling.
Their approach allows for learning language models (e.g. n-
grams) over parsed attributes extracted from concrete syntax
trees (CST) - a syntactic representation of application-level
messages - using One-Class Support Vector Machines. Sim-
ilarity between sequences is determined by convolution of
kernels of matching attributes.

III. METHODOLOGY

In this section we provide a brief introduction on content-
based behavioral anomaly detection. This approach focuses
on modeling privileged user activity based on the analysis
of security audit logs. The following four stages outline the
essential building blocks of the approach and will be explained
in detail.

1) Data Extraction. Security events are extracted from
security audit logs, which are usually provided by on-
board utilities of the operating system [12], [16]. In
this contribution we will refer to the security audit logs
provided by Microsoft Server 2008. To carry out behav-
ioral analysis, single-host and cross-host user sessions
are generated from security audit event streams. The
analysis of cross-host user activity not only provides

capabilities to detect nested sessions of privileged users
(e.g. admin logs on to a local machine and remotely
connects to a different machine using either his own,
a shared, or compromised user id) but also detection of
lateral movement. Details of the event extraction process
can be found in Section III-A.

2) Feature Extraction. Upon session labeling, security
events are mapped onto a metric space using data
representations and features which reflect essential char-
acteristics of each event. Details of the feature extraction
process can be found in Section III-B.

3) Similarity Computation. The similarity computation
between user sessions is crucial in order to carry out
behavioral analysis in geometric spaces. With the uti-
lization of vector data representations the similarity of
security events can be determined by calculating their
pairwise distance in the designated geometric space.
Different similarity measures are considered in Sec-
tion III-C.

4) Anomaly Detection. An anomaly detection algorithm
learns a model of normality. Based on the model,
malicious user sessions can be identified using similarity
computation. Details on the anomaly detection process
can be found in Section IV-C.

A. Data Extraction

Operating systems allow for mechanisms to log user activity.
The context of user activities is entailed by a user’s session. In
this subsection we will introduce the underlying user session
model.

Let E = (e1, ..., ei, ..., em) be a list of chronologically
ordered events ei ∈ Σ, as typically found in system audit
logs. A user session S = (e1, ..., en) ⊆ E can be considered
an ordered set of activities represented by logged events ei
executed by a specific user on a specific host, where each
event is logged at a point of time i and 1 ≤ i ≤ n and
1 ≤ i ≤ m. Each session is bounded by a session logon event
and the session logoff event, respectively.

A user session model G = (Σ, Q, q̂, T,F) can be defined
as a directed graph where Σ refers to the universal set of
audit log events, Q denotes the set of states of a user session
(represented as nodes), with q̂ being the initial state, T : Q×
Σ → Q being the state transition function used to specify
permissible state changes based on the observed log events
and F being the set of terminal states.

q0start q1 q2 q3

e1 e2

e3

e4

Fig. 1. Example of a user session graph with activity loop

The graph shows a user who logs onto a computer resulting
in state q0. After logon, the user carries out a series of activities
logged by event ei which inhibits a state transition to the

23

respective state qi. Finally, the user logs out (e4) resulting
in terminal state q3.

With respect to Microsoft’s security logging format, a user
session in our model consists of a time-ordered list of security
events identified by a specific user (i.e. SubjectUserName
or TargetUserName), host (i.e. ComputerName) and logging
context on the local machine (i.e. SubjectLogonId or Target-
LogonId). New sessions are recognized by a specific security
event token (i.e. 4624). A user session is closed, if the session
is regularly ended by another specific security event token (e.g.
4634).

The example below shows the format of a security event
logged on a Microsoft Windows Server 2008.

<Event>
<System>
<Provider Name=”Microsoft−Windows−Security−Auditing” Guid=”

{54849625−5478−4994−A5BA−3E3B0328C30D}” />
<EventID>4634</EventID>
<Version>0</Version>
<Level>0</Level>
<Task>12545</Task>
<Opcode>0</Opcode>
<Keywords>0x8020000000000000</Keywords>
<TimeCreated SystemTime=”2016−05−19T10:32:02.550644500Z” />
<EventRecordID>1025108</EventRecordID>
<Correlation />
<Execution ProcessID=”788” ThreadID=”3144” />
<Channel>Security</Channel>
<Computer>76ffa691</Computer>
<Security />

</System>
<EventData>
<Data Name=”TargetUserSid”>8c0c6e34</Data>
<Data Name=”TargetUserName”>3dee5118</Data>
<Data Name=”TargetDomainName”>300fb30c</Data>
<Data Name=”TargetLogonId”>0xf73f4b</Data>
<Data Name=”LogonType”>3</Data>

</EventData>
</Event>

Listing 1. Windows user session logon security audit event

Each event consists of two parts. The first part records
system configuration information, including version, time,
process, etc., while the second part records event-specific
information such as user security ID, name, the domain name
and event type. The computer name in the System section as
well as TargetUserId, TargetUserName, TargetDomainName
and TargetLogonId in the EventData section are sanitized
for privacy reasons.

B. Feature Extraction

In order to determine similarity between data points, at this
stage user activity is mapped to a high-dimensional feature
space using features which reflect essential characteristics of
the user activity. In this contribution we focus on content-
based features rather than typical meta-data features (e.g.
session length, or the number of commands executed during
the session).

In order to map a data point x from the domain of
user activities into an N -dimensional vector space over real
numbers, a feature map φ : X 7→ RN is used. It defines
extraction and mapping of features, where φi(x) ∈ R≥0 refers
to the value of the i-th dimension in RN :

x 7−→ φ(x) = (φ1(x), φ2(x), . . . , φN (x)), (1)

Thereby, the sole choice of the mapping function φ(x)
provides a powerful instrument to transform data into a rep-
resentation that is suitable for a given problem.The following
paragraphs describes different types of features that can be
used to model user behavior:

1) Token Features.: Let L ⊆ Σk be a language comprising
state sub-sequences w = (qi, .., qj) ∈ L of audit events of
length k with i ≥ 0 and i < j ≤ n − k + 1. Given the
language L, a user session S can be mapped to an |Lk|-
dimensional feature space based on the following embedding
function φw(S):

φw(S) =

{
σ(w,GS), if w ∈ GS
0, otherwise,

(2)

where σ(w, S) refers to a feature embedding function which
returns either a binary value, a count or a relative frequency
of w observed in S. We will evaluate all three embedding
functions during cross-validation.

2) Temporal Token Features: As an extension of the plain
token features, time stamp information from security events
can be incorporated into the user session model. Let S =
(e1, ..., ej , .., em) be a non-empty list of chronologically or-
dered events where each event ej is associated with a time
stamp uj . Furthermore, let T = (t1, t2, ..., ti, ..., tr|ti−1 < ti)
be an ordered set of r pre-defined time intervals, the following
embedding function φwi

(S) can be defined for each token
gram w = (ej , ..., ej+k−1 | 1 ≤ j ≤ m − k + 1) of event
tokens contained in user session S :

φwi
(S) =

{
σ(w,GS), ifw ∈ GS ∧ ti−1 ≤ u1 ≤ ti
0, otherwise,

(3)
where u1 represents the time stamp of the first token of a

particular token gram w. In our implementation, the function
time index(T,w) extracts and returns the index of the time
stamp field of the first event of each extracted token gram
w according to the list of pre-defined time intervals T (e.g.
weekdays, hours of day etc.). Although this feature embedding
also maps user activity to an Lk-dimensional feature space,
two matching sub-sequences have non-zero values if and only
if the start time of the execution of activities described by w
falls into the same pre-defined time interval.

This feature type can be particularly useful to model user
activity based on the time of execution (e.g. regular adminis-
trative activities or service account activities).

3) Attributed Token Features: Attributed token features are
another extension of activity features. Some events may have
attributes (e.g. command parameters) which provide additional
discriminating information. Let S = (e1, ej , .., em) be a non-
empty list of chronologically ordered events where each event
ej = {ai, vi}∗ is associated with a set of attribute-value
pairs (e.g. argument strings of invoked commands). A feature
mapping function φw(S) can be defined to map a sequence of
events w to an n-dimensional metric space F ∈ Rn:

24

φw(S) =

{
σ(w,GS), if w ∈ GS
0, otherwise.

(4)

Unlike the extraction of user activity tokens, each feature is in-
dexed by not only the event type but also by its attribute values.
Thus, identical events (e.g. 4624) with different attribute-value
sets are mapped to different regions in F . This feature set is
most expressive, but also most expensive from a computational
point of view. Attributed features have been introduced for the
area of network intrusion detection [6], [7].

C. Similarity Computation

The similarity computation between sequences is a crucial
task for behavior-based anomaly detection. With the utilization
of vectorial data representations, user activities can be com-
pared by calculating their pairwise distance in a designated
geometric space. Once a user session is mapped into a feature
space F , a distance function k : X × X → R can be
applied to determine pairwise similarity between user sessions
{S1, ..., Sn} ⊂ S.

There are several distance and kernel functions available to
measure similarity between data points in vector spaces [17].
For the purpose of our contribution, we use the linear kernel
and the Radial Basis Function (RBF) kernel.

The linear kernel is one of the most intuitive similarity
measures and is defined by a dot product between two vectors
x and y:

k(x, y) = 〈φ(x), φ(y)〉

=
n∑
i=1

φi(x)φi(y).
. (5)

As opposed to linear kernels, non-linear kernels allow for an
implicit non-linear mapping of data points in the feature space.
A more complex similarity measure is provided by the Radial
Basis Function Kernel (RBF) which is defined as follows:

k(x, y) = exp

(
−‖x− y‖

2

2σ2

)
, (6)

where σ controls the width of the Gaussian distribution and
directly affects the shape of the learner’s decision surface. A
large σ results in a linear decision surface which indicates a
linearly separable problem, while a small value of σ generates
a peaky surface which strongly adapts to the distribution of
the data in the feature space.

D. Anomaly Detection

For the purpose of this contribution, we will use the OC-
SVM [18] as a means of geometric outlier detection for the
identification of malicious user behavior. Based on known
literature [13], [18] we provide a short introduction to One-
class Support Vector Machines in this section as we will
discuss data models in Section. IV as a result of model
selection. The OC-SVM fits a minimal enclosing hyper-sphere

to the data which is characterized by a center θ and a radius
R. Mathematically, this can be formulated as a quadratic
programming optimization problem:

min
R∈R
ξ∈Rn

R2 + C
n∑
i=1

ξi

subject to: ||φ(xi)− θ||2 ≤ R2 + ξi,

ξi ≥ 0.

(7)

Given the constraint that the training objects are still contained
in the sphere, expressed by the constraint in Eq.(7), minimizing
R2 will minimize the volume of the hypersphere.

A major benefit of this approach is the ability to control
the generalization ability of the algorithm [14], which enables
one to cope with noise in the training data and thus dispense
with laborious sanitization, as proposed by Cretu et al. [5].
By introducing slack variables, such as ξi and penalizing
the cost function, we allow the constraint to be softened.
The regularization parameter, C = 1

Nν , controls the trade-
off between radius and errors (the number of training points
that violate the constraint), where ν can be interpreted as the
permissible fraction of outliers in the training data.

Having learned a model of normality learned, the anomaly
score Sz for an unknown data point z can be defined as the
distance from the center θ =

∑
i

αiφ(xi) defined by support

vectors in the feature space:

Sz = ||φ(z)− θ||2

= k(z, z)− 2
∑
i

αik(z, xi) +
∑
i,j

αiαjk(xi, xj),
(8)

where the similarity measure, k(x, y), between two points x
and y, defines a kernel function as introduced in Section III-C.
Depending on the similarity measure at hand, data models of
different complexity can be learned. For example, as shown
in Fig. 2(a) utilization of a linear kernel always results in
an uniform hyper-sphere. Thus, the resulting model provides
a rather general description of the data. However, if the
data happens to follow a multi-modal distribution, the risk
of absorbing outliers in low density regions of the hyper-
sphere might increase. On the contrary, utilizing an RBF-
kernel supports the distribution characteristics of the data, and
therefore results in more complex data models, as shown in
Fig. 2(b). The downside of these kinds of measures is their
lack of interpretability, considering the data points are mapped
onto an infinite dimension feature space.

IV. EXPERIMENTS

In this section we present the results of the evaluation of
the proposed method. Experiments are conducted on two data
sets. Preliminary experiments are performed on synthetic user
session data. Finally the feature types are evaluated on real
security audit log data. Characteristics of both data sets are
outlined below.

25

(a) Linear Kernel (b) RBF Kernel

Fig. 2. Learning and anomaly detection using OC-SVM - Example data models obtained over synthetic data (red squares represent support vectors constituting
the data model by defining the decision surface for separation between normal data and outliers.))

A. Data Set

In this section we will describe data sets used for exper-
imental evaluation. Apart from conducting experiments on
real-world security audit log data we have created a synthetic
data set in order to evaluate the detection performance of our
method for corner cases, i.e. detection of temporal anomalies
and detection of semantic anomalies in user activity using the
proposed novel feature types under the assumption that an
attacker is able to mimic normal user behavior (i.e. masquerad-
ing).

1) Synthetic Data Set: Two synthetic data sets are created
to investigate the performance and study the strengths and
limitations of both temporal token and attributed token gram
features.

a) Temporal Data Set: To this end, a base set of random
event sequences is generated with a length in the range of
[2, 20]. Each sequence consists of a series of events which
are randomly drawn from a fixed set of 20 unique event
identifiers. For the normal data set, sequence instances are
randomly drawn from the base set of event sequences. In order
to simulate the variance of user behavior, a fixed percentage
of events in each sequence is permuted. The permutation
factor is in the range of [0, 0.5] with 0 being no permutation
and 0.5 resulting in full permutation of the events recorded
during a session. In order to show the benefits of the temporal
feature type, each event is timestamped to 1200PM UTC.
For the attack partition, a percentage of event sequences are
randomly drawn from the normal data set. In order to simulate
the variance of the attacker’s behavior, a fixed percentage of
events in each sequence is permuted. Furthermore, permutation
factors for normal and ”attack” data sets are independent.
Attack instances are timestamped to 1200PM+4h UTC.

b) Attribute Data Set: Similarly to the temporal data
set, a base set of random event sequences is generated with

a length in the range of [2, 20]. Each sequence consists of
a series of events which are randomly drawn from a fixed
set of 20 unique event identifiers. For the normal data set,
sequence instances are randomly drawn from the base set
of event sequences. In order to simulate a variance of user
behavior, a fixed percentage of events in each sequence is
permuted. The permutation factor is in the range of [0, 0.5].
In order to show the benefits of the attributed feature type, each
event is associated with a set of attribute-values. The number
of attribute-values for each event is random, but limited to
a maximum number of 5 in our experiments. For the attack
partition, a percentage of event sequences are randomly drawn
from the normal data set. In order to simulate the variance in
the attacker’s behavior, a fixed percentage of events in each
sequence is permuted. The permutation factor is independent
from the permutation factor used to modify normal sequence
instances. Furthermore, an additional attribute mutation factor
is introduced for the attack dataset which allows to replace
either individual attributes or associated values for each event
by distinctive random numbers, not seen before. The mutation
factor is in the range of [0, 1] where 0 refers to no replacement
of attributes or values at all and 1 refers to full replacement
of existing attribute or value identifiers. The mutation factor
should simulate variation of properties of identical events.

2) Real-world Data Set: The Los Alamos National Labo-
ratory (LANL) data set [19] is a well known among security
practitioners for the analysis of host security events. However,
limitations of this data set (e.g. anonymized time stamps
and limited logging of event details) required us to record
a separate, more detailed data set to support our experiments.
The data set consists of 107,892 security audit events recorded
on a Windows Server 2008 (Terminal Server) over a period
of two months (May 18, 2016 - July 5, 2016). The server is
located in a production environment of a company with more

26

than 5.000 employees 1.The audit log data set contains 11,606
sanitized user sessions executed by 178 distinct users. Table I
shows descriptive session statistics for two different users in
the baseline data set. Criteria for the selection of users include
the number of sessions available as well as average, minimum
and maximum number of events across sessions.

Id User Id #Sessions Session Length
Nmin Nmax Navg

0 897ee68c4ce0900 5230 1 72 2
1 14a7a913da97fe3 531 1 990 38

TABLE I
SESSION STATISTICS FROM REAL-WORLD DATASET

Examples of user sessions for two users are presented in
Table II.

User Sample User Sessions

14a7a913
(4624,4634), (4624 ,4647)

(4624,4690,4658,4656,4658,4690,4658,4656,4658,4690, 4658,4656,4658,4647)
(46254,4689,4689,4689,4689,4689,4689,4689,4689,4689,4689,4689,4689)

897ee68c (4624,4634), (4624,4647), (4624,4656)
(4624,4688,4888,4888)

TABLE II
EXAMPLES OF USER SESSIONS PER USER

In order to investigate the detection of privilege misuse,
45 sessions from 15 pre-defined privilege misuse use cases
were executed and recorded in a separate Windows 7 test
environment. The logging environment was consistently con-
figured before recording (i.e. identical local security policy
settings) 2. The use cases define key activities such that the
execution of individual user sessions may vary between users.
The specific activities that are preformed and the tools that
are used, during the execution of individual use cases, are
documented. Time stamps, users and hosts were adjusted
to match the characteristics of the baseline data set before
merging them with the baseline log data. Although some of
the use cases (e.g. case #9-15) might also be detectable by
policy monitoring or network traffic monitoring, objective in
our experiments is to evaluate to what extent use case specific
activity patterns are reflected by the Windows security logging
and to what extent these patterns deviate from a learned normal
user behavior model. A detailed description of privilege misuse
use cases can be found in Table VI.

B. Experiment Setup

Detection accuracy is measured in terms of the receiver op-
erating curve (ROC) which integrates true positive value over
a defined false positive range between zero and one percent
(i.e.[0, 0.01]). In order to determine the optimal data model
parameters a 10-fold cross validation is conducted. Training,

1Due to confidentiality constraints the name of the organization cannot be
disclosed.

2Logging parameters are configured to log successful audit events related
to account logon, account log management, log events, object access, policy
change, privilege use, process tracking and system events

validation and test data sets are distinct in order to avoid
over-fitting effects. Privilege misuse sessions are specifically
excluded from training and validation partitions during cross-
validation and only included in distinct test partitions to enable
unknown threat detection. Models are trained on the training
partition using different model parameters and subsequently
evaluated against the validation partition. Finally the optimal
model is tested on a distinct test partition in order to determine
the test error. For statistical reason experiments are repeated
10 times. False positives, false negatives and area-under-ROC
(AUC) is averaged over experiment repetitions. Parameters and
ranges evaluated during experiments are depicted in Table III.

Parameter Range Description

kernel ’linear’, ’rbf’ Refers to choice of kernel function to
be used bty the Support Vector Machine
which creates a linear or non-linear deci-
sion surface.

ftype ’token’,
’attr-token’,
’temp-token’

Refers to type of features to extract from
user sessions (token: plain event ids, attr-
token: event ids with parameters (e.g.
command arguments), temp-token: event
ids associated with timestamps.

embed ’freq’,
’binary’,
’count’

Refers to embedding of extracted features
in feature space (binary: 0/1 embedding,
count: number of occurrences of a specific
feature observed in data instance, freq:
relative frequency of a feature specific
feature observed in a data instance.)

klen 1, 2, 3, 4 Refers to length of extracted gram fea-
tures.

nu 0.001, 0.01,
0.1, 1

Nu - Refers to regularization parameter
used by the Support Vector Machine to
learn a data model. Lower regularization
increases the margin at the decision sur-
face and prevents over-fitting by allowing
a certain amount of constraint violation
during optimization.

gamma 0.01, 0.1,
0.5, 0.75, 1.0

Refers to width of a non-linear Radial
Basis Function (RBF) kernel and affects
the shape of the decision surface. Gamma
is important for linear non-separable data
samples. A higher gamma value will re-
sult a more “flat” decision surface. Low
gamma values are preferable for data
samples which are not easily separable by
a linear kernel function.

TABLE III
MODEL PARAMETERS

C. Experimental Results

In this section we will present the results of the experimental
evaluation of anomaly detection over privileged user sessions.

1) Experiments on synthetic data: An artificial data set
is generated to simulate user sessions and objectively test
sensitivity and benefits of temporal and attributed token
features for boundary use cases. However, both feature types
are also investigated on realistic data in this section as well.
The synthetic data set contains 10% attack sequences. For
the experiments, event ids in user sessions are permuted by
10% for both normal and attack sequence instances to simulate
variation in user behavior during user sessions. The data Set

27

also contains 10% attack sequences. An OC-SVM is used
to train on 750 “normal” instances. Optimal parameters are
determined following a 10-fold cross validation approach.
Unlike classification tasks labels of training data are not taken
into account to learn a decision function. In the context of
unsupervised learning, data labels are solely used for the
purpose of evaluating the detection accuracy.

a) Temporal Token Anomaly Detection: In order to
evaluate temporal behavior anomaly detection a synthetic
dataset is created as described in Section IV-A. As shown in
Fig. 3 temporal token gram features significantly outperform
regular token gram features on the data set.

Fig. 3. Detection accuracy - temporal token features

The reason for the improved detection accuracy resides in
the temporal annotation of individual events. Fig. 4 shows a
comparison of regular token and temporal token features.

Fig. 4. 1-gram feature map - token grams (left) vs. temporal token grams
(right)

The last 20 rows in the matrix represent synthetic attack
instances (where similar activity is executed during different
times of the day). As shown, it is almost impossible to
differentiate normal from attack instances using regular token
grams extracted from event id sequences (left). However,
through incorporation of temporal information attacks can be

perfectly separated from normal data as shown in the right
figure.

b) Attribute Token Anomaly Detection: In this section
we investigate the benefits attributed token gram features of
model user activity based not only on the event type, but also
considering the event properties. To this end we leverage a
synthetic data set described in Section IV-A to test boundary
use cases. As shown in Fig. IV-C1b attributed token gram
features outperform regular token gram features on the data
set due to the encoding of meta-data features in the extracted
features.

Fig. 5. Detection accuracy - attributed token features

2) Experiments on real-world data: In this section we will
investigate the performance of proposed feature types on real
data. To this end, we extract user sessions of a non-technical
privileged user (”14a7a913”) as well as a technical privileged
user (”897ee68c”), in order to evaluate detection accuracy for
different user types.

Fig. 6. Detection accuracy - User ”14a7a913’ (non-technical user)

As shown in Fig 6 and Fig. 7 all feature types demonstrate
similar detection capabilities. The results on real-world data

28

Fig. 7. Detection accuracy - User ”897ee68c” (technical user)

show that regular token grams seem to be the preferred feature
type as results suggest in Table IV. This is mainly due to the
fact that the real user sessions are not as difficult to delineate
as user sessions used during the preliminary experiments on
synthetic data. Based on investigated misuse cases and event
types, the sequence of events in misuse sessions significantly
differ from the normal user sessions. Thus, in the context of
this data set, token gram features seem to be sufficient to detect
anomalous behavior of both technical and non-technical users.

User Feature Parameters AUC Freq.

897ee68c
token k=linear, nu=0.001, n=1,e=cnt 1.0 100%

temporal k=linear, nu=0.001, n=1,e=cnt, w=24 1.0 100%
attributes k=linear, nu=0.001, klen=1,e=cnt 1.0 100%

14a7a913 token
k=linear, nu=0.001, n=1,e=cnt 1.0 75%
k=linear, nu=0.001, n=3,e=freq 1.0 20%
k=linear, nu=0.001, n=2,e=cnt 1.0 5%

temporal
k=linear, nu=0.001, n=1,e=cnt,w=24 1.0 80%
k=linear, nu=0.001, n=3,e=freq ,w=24 1.0 15%
k=linear, nu=0.001, n=2,e=cnt ,w=24 1.0 5%

attributes
k=linear, nu=0.001, klen=1,e=cnt,max attr=5 0.95 60%
k=linear, nu=0.1, klen=1,e=cnt,max attr=5 0.84 30%
k=rbf, nu=0.01, klen=1,e=cnt,max attr=5 0.53 10%

TABLE IV
AVERAGE ACCURACY (AUC) ON THE TEST DATA OF THE MOST FREQUENT

MODELS PER FEATURE TYPE OVER VALIDATION DATA (20 REPETITIONS)

The example below shows the session of detected suspicious
user behavior - a session in which a privileged user bypasses
existing firewall configurations. The administrator logs in
locally and deploys a port forwarding tool (ie. fpipe) which
allows to accept inbound traffic at a specific port and forward
to another local listening port which could not be accessed
from outside due to firewall configuration. To this end, the
administrator logs in with dedicated admin account, opens the
File Explorer, accesses the USB drive and copies the “fpipe”
tool to the local file system. The administrator then configure
and start fpipe as persistent service and finally logs out. As
shown below, several security events are generated for this user
activity sequence. Most of the events are related to process
creation (i.e. 4688) and differ from the sample sequence in

Table II significantly. The highlighted security events represent
the anatomy of the “firewall bypass” use case. The user
logs on to the system locally (i.e. 4624), the system triggers
successful logon with Local Security Authority (i.e. 4611),
“dllhost.exe” process is created (i.e. 4688 - in “ProcessName”
attribute) followed by installation and registration of “svchost”
with the Service Control Manager (i.e. 4697) and creation of
several key processes (i.e. 4688). The user then inserts the
USB drive which is detected as an external device (i.e. 6416)
triggering creation of several additional processes (i.e. 4688)
and execution of “fpipe” tool (i.e. 4697) which results in the
creation and installation of a corresponding process handling
and re-directing inbound network packets.

4624, 4624, 4611, 4688, 4697, 4697, 4697, 4697, 4697, 4697, 4688, 4688,
4688, 4688, 4688,4688, 4688, 4688, 4688, 4688, 4688, 4611, 4611, 4688,
4688, 4688, 4688)
(4624, 4688, 4688, 4688, 4688, 6416, 6416, 6416, 4688, 6416, 4688, 4688,
4688, 4688, 4688, 4688, 4688, 4688, 4688, 4611, 4688, 4611, 4688, 4688,
4688, 4688, 4697, 4688, 4688, 4688)
(4624, 4688, 4888, 4847)

TABLE V
EXAMPLE OF DETECTED PRIVILEGE MISUSE USER SESSIONS FROM

REAL-WORLD DATA SET (FIREWALL BYPASS)

As shown in the example above the meaning of logged
security events cannot be determined easily. Specific details
are logged as part of security event attributes (i.e. EventData)
which provides additional context for user activity triggered
events. An example of an‘fpipe” execution (i.e. 4697) log entry
is depicted below.

<Event>
<System>
<EventID>4697</EventID>

...
</System>
<EventData>
<Data Name=”SubjectUserSid”>S

−1−5−21−1505976851−2394108727−4248911256−1002</Data>
<Data Name=”SubjectUserName”>admin1</Data>
<Data Name=”SubjectDomainName”>DESKTOP−1BMDPVD</Data>
<Data Name=”SubjectLogonId”>0x2f1c5d</Data>
<Data Name=”ServiceName”>forwardMe</Data>
<Data Name=”ServiceFileName”>”C:\Users\root\Downloads\fpipe\

FPipe.exe” −−l=”8080” −−s=”8080” −−r=”80 10.x.x.x”</Data>
<Data Name=”ServiceType”>0x10</Data>
<Data Name=”ServiceStartType”>2</Data>
<Data Name=”ServiceAccount”>LocalSystem</Data>

</EventData>
</Event>

Listing 2. “New service” event with “Fpipe” specific event attributes

An analysis of false negatives revealed that instances
of attack class#1 (i.e. ‘shutdown”) were most frequently
missed during testing. Involved session instances are compa-
rably short and do not differ significantly from the sessions
that are considered normal. For instance, the session S =
(4624, 4624, 4624, 1100, 4647) is an example of an undetected
session. Except for the event logging service shutdown event
(i.e. 1100) itself, no discriminating activity is logged. Overall,
the false positive rate involving experiments over real-world
data does not exceed 1.5%.

29

V. CONCLUSION

In this contribution we have proposed a method to de-
tect privilege misuse based on the automated content-based
analysis of security audit logs using unsupervised machine
learning. To this end, we have defined three feature extraction
methods (i.e. token, temporal token as well as attributed
token grams) that can be used to embed semi-structured
information contained in security audit log data into geometric
spaces for geometric outlier detection. We have conducted
experiments on both synthetic data as well as real-world
security audit logs to investigate the effect of different types
and similarity measures on the detection of privilege misuse.
For the purpose of experiments we have defined and recorded
a comprehensive set of 45 different privilege misuse sessions.
The model selection was carried out through extensive cross
validation. The best models were applied on distinct test data
partitions. Throughout experiments, privilege misuse sessions
were distinctively included in both validation as well as test
data partitions whereas training data partitions did not include
any privilege misuse sessions.

Experimental results confirmed suitability of unsupervised
machine learning using language models extracted from se-
curity audit log data. Our results on real-world data suggest
that all feature types show comparable performance based
on models trained for individual users while attaining low
false positive rates on real data of less than 1.5%. Based
on an average of 232 sessions per days observed in the
real-world data set, the number of false positives per days
is therefore lower than four. Overall, low n-gram length
and count embedding with low regularization chosen during
cross validation indicates a low complex hyper-sphere enclos-
ing normal data. While results on real-world data indicate
comparable performance of all feature types, experiments on
synthetic data - designed to test corner use cases - showed that
there are scenarios where both temporal and attributed token
grams significantly outperform plain token grams, such as in
advanced scenarios where attackers may mimic normal user
behavior in an attempt to bypass detection. Novel feature types
boosted detection accuracy from 0 to 63% for temporal token
grams and 0 to 40% at 0% false positives for attributed token
grams. The reason for of both feature types outperforming
plain token features resides in the incorporation of additional
content and session meta-data information in tokens, thereby
reducing the amount of ambiguity that could lead to false
positives or false negatives.

REFERENCES

[1] A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian, “Behav-
ioral analysis of insider threat: A survey and bootstrapped prediction in
imbalanced data,” IEEE Transactions on Computational Social Systems,
vol. 1, no. 2, pp. 135–155, June 2014.

[2] Balabit, “Shell Control Box - Privileged User Monitoring,” Internet:
https://www.balabit.com/network-security/scb, 2016.

[3] B. Böse, B. Avasarala, S. Tirthapura, Y. Y. Chung, and D. Steiner,
“Detecting insider threats using radish: A system for real-time anomaly
detection in heterogeneous data streams,” IEEE Systems Journal, vol. PP,
no. 99, pp. 1–12, 2017.

[4] C. Chung, M. Gertz, and K. Levitt, “Demids: A misuse detection system
for database systems,” in Integrity and Internal Control in Information
Systems. Springer, 2000, pp. 159–178.

[5] G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and A. Keromytis, “Casting
out demons: Sanitizing training data for anomaly sensors,” in Proceed-
ings of the 2008 IEEE Symposium on Security and Privacy, 2008.

[6] P. Düssel, C. Gehl, U. Flegel, S. Dietrich, and M. Meier, “Detecting
zero-day attacks using context-aware anomaly detection at application-
layer,” in International Journal of Information Security, 2016, pp. 1–16.

[7] P. Düssel, C. Gehl, P. Laskov, and K. Rieck, “Incorporation of appli-
cation layer protocol syntax into anomaly detection,” in International
Conference on Information Systems Security, 2008, pp. 188–202.

[8] W. Eberle, J. Graves, and L. Holder, “Insider threat detection using a
graph-based approach,” Journal of Applied Security Research, vol. 6,
no. 1, pp. 32–81, 2010.

[9] E.Yuan and S. Malek, “Mining software component interactions to
detect security threats at the architectural level,” in 2016 13th Working
IEEE/IFIP Conference on Software Architecture, Apr. 2016, pp. 211–
220.

[10] J. Grier, “Detecting data theft using stochastic forensics,” Digit.
Investig., vol. 8, pp. S71–S77, Aug. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.diin.2011.05.009

[11] A. Liu, C. Martin, T. Hetherington, and S. Matzner, “A comparison
of system call feature representations for insider threat detection,” in
Proceedings from the Sixth Annual IEEE SMC Information Assurance
Workshop, June 2005, pp. 340–347.

[12] Microsoft, “Security Auditing Overview,”
Internet: https://technet.microsoft.com/en-
us/library/dn319078%28v=ws.11%29.aspx, 2016.

[13] K.-R. Mueller, S. Mika, G. Raetsch, K. Tsuda, and B. Schoelkopf,
“An introduction to kernel-based learning algorithms,” IEEE TRANSAC-
TIONS ON NEURAL NETWORKS, vol. 12, no. 2, pp. 181–201, 2001.

[14] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An in-
troduction to kernel-based learning algorithms,” IEEE Neural Networks,
vol. 12, no. 2, pp. 181–201, May 2001.

[15] T. Rashid, I. Agrafiotis, and J. Nurse, “A new take on detecting insider
threats: Exploring the use of hidden markov models,” in Proceedings of
the 8th ACM CCS International Workshop on Managing Insider Security
Threats, ser. MIST ’16. New York, NY, USA: ACM, 2016, pp. 47–56.

[16] Redhat, “Understanding Redhat Audit Log Files,”
Internet: https://access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/Security Guide/sec-
Understanding Audit Log Files.html, 2016.

[17] K. Rieck and P. Laskov, “Linear-time computation of similarity measures
for sequential data,” Journal of Machine Learning Research, vol. 9, pp.
23–48, 2008.

[18] D. Tax and R. Duin, “Data domain description by support vectors,” in
Proc. ESANN, M. Verleysen, Ed. Brussels: D. Facto Press, 1999, pp.
251–256.

[19] M. J. M. Turcotte, A. D. Kent, and C. Hash, Unified Host and
Network Data Set. World Scientific, nov 2018, ch. Chapter 1, pp.
1–22. [Online]. Available: https://www.worldscientific.com/doi/abs/10.
1142/9781786345646 001

[20] Verizon, “Verizon Data Breach Investigations Report,” Internet:
https://enterprise.verizon.com/resources/reports/2019-data-breach-
investigations-report.pdf, 2019.

[21] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda, “Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks,” in Proceedings of the 29th Annual
Computer Security Applications Conference, ser. ACSAC ’13. New
York, NY, USA: ACM, 2013, pp. 199–208.

30

APPENDIX

Privilege Misuse Use Cases

Id Use Case Title Desription #Sessions

1 Assign Admin Privileges Admin assigns admin privileges to non-admin user during approved shutdown session. 3
2 Create Batch Job Admin registers batch file with Windows scheduler during approved shutdown session. 3
3 Disable Antivirus Admin disables anti-virus during approved shutdown session. 3
4 Change Policy Admin performs one policy change during approved shutdown session. 3
5 Change Multi Policy Admin performs five policy changes during approved shutdown session. 3

6 Change Firewall Admin performs one firewall change (e.g. disable firewall, add/change/delete rule) during approved
restart session. 3

7 Data Leakage SAM Admin copies local SAM file for offline password cracking to local USB drive. 3
8 Data Leakage Sensitive File Admin copies sensitive file from network drive to local USB drive. 3

9 Software Install Fpipe Admin installs fpipe tool to accept and forward inbound traffic at specific port to another local
port in order to bypass firewall ingress configuration. 3

10 Software Install Malware Admin installs keylogger to record credentials of all users on a machine. Anti-malware is assumed
to be disabled. 3

11 Delete Audit Log Admin deletes audit log file using wevtutil utility tool 3
12 Network Scanning Admin performs network scanning using nmap tool. 3

13 Embedded Admin Session Admin opens console and logs in as another admin (out of the three most active users in baseline
data set) to perform some activities. 3

14 Network Data Exfiltration Admin exfiltrates a file using on-board TFTP, FTP or netcat tool 3

15 Time Stomping Admin alters time stamps of file (i.e. modify,access,change) using anti-forensics tools to obfuscate
tracks. 3

TABLE VI
PRIVILEGE MISUSE USER SESSIONS

31

