
CSci132 Practical UNIX and Programming

Assignment 4, Fall 2018

Prof. Stewart Weiss

Assignment 4

1 Overview and Background

Many of the assignments in this course will introduce you to topics in computational biology. You do not
need to know anything about biology to do these assignments other than what is contained in the description
itself. The objective of each assignment is for you to acquire certain particular skills or knowledge, and the
choice of topic is independent of that objective. Sometimes the topics will be related to computational
problems in biology, chemistry, or physics, and sometimes not.

This particular assignment is an exercise in extracting information from �les that are too big for mere mortals
to process manually. The real power of computers is that they can do simple things extremely quickly, mean-
ing millions, perhaps billions of times per second, much faster than people can. There is a kind of �le called
a PDB �le that contains structural information about proteins, nucleic acids, and other macromolecules. A
macromolecule is just a big molecule. Macro means big. PDB is an acronym for the Protein Data Bank.
PDB �les can be downloaded from the Protein Data Bank at http://www.rcsb.org/pdb/home/home.do.

A PDB �le contains information obtained experimentally, usually by either X-ray crystallography, NMR

spectroscopy, or cryo-electron microscopy 1. (You do not need to know this to do the assignment, but it is
important for those who intend to pursue a bioinformatics concentration.) These �les completely characterize
the molecule, providing, for example,

• the three-dimensional positions of every single atom in the �le,

• where the bonds are,

• which amino acids it contains if it is a protein2 (or nucleotides if DNA or RNA) ,

and much more. The information is not necessarily exact. Associated with some of this information are
con�dence values that indicate how accurate it is. A PDB �le is a plain text �le; you can view its contents in
any text editor, such as gedit or nedit, or with commands such as cat, more, and less. Each line in a PDB
�le begins with a word that characterizes what type of line it is. These individual lines are called records.
For example, some lines start with the word REMARK, which means they are comments about the �le itself, or
about the experimemt through which the data was collected. Some lines start with SOURCE, and they have
information about the source of the data in the �le. Some lines start with words such as MODEL, CONECT,
ATOM, and HETATM. Each has a di�erent meaning in the �le. Take a look at some of the PDB �les in the
directory /data/biocs/b/student.accounts/cs132/data/pdb_files before you read any further, so that
you can see what they contain. I suggest picking �les that are small, meaning smaller than a megabyte in
size.

Proteins are chains of amino acids. Amino acids are organic compounds that carry out many important
bodily functions, such as giving cells their structure. They are also instrumental in the transport and the
storage of nutrients, and in the functioning of organs, glands, tendons and arteries. Amino acids have
names such as alanine, glycine, tyrosine, and tryptophan. They are also known more succinctly by unique
three-letter codes. The table below lists the twenty standard amino acids with their three-letter codes.

1For a summary of what these methods are, see http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-
Structures/methods.html

2Amino acids are the building blocks of proteins, which may contain many thousands of them.

1

http://www.rcsb.org/pdb/home/home.do
http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-Structures/methods.html
http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-Structures/methods.html


CSci132 Practical UNIX and Programming

Assignment 4, Fall 2018

Prof. Stewart Weiss

Amino Acid Name Code

Alanine Ala
Arginine Arg
Asparagine Asn
Aspartate Asp
Cysteine Cys
Glutamate Glu
Glutamine Gln
Glycine Gly
Histidine His
Isoleucine Ile
Leucine Leu
Lysine Lys
Methionine Met
Phenylalanine Phe
Proline Pro
Serine Ser
Threonine Thr
Tryptophan Trp
Tyrosine Tyr
Valine Val

Each line that starts with the word ATOM represents a unique atom in the protein. So do the lines that
start with HETATM, but these are atoms in water molecules surrounding the particular protein when it was
crystallized, and we want to ignore them for now. Lines that start with ATOM contain the three-letter code
for the amino acid of which that atom is a part. For example, an atom line for an atom in a phenylalanine
molecule looks like this:

ATOM 3814 N PHE J 24 -17.763 -7.816 -12.014 1.00 0.00 N

The three-letter code is always in uppercase. The exact form of a PDB �le is standardized. The standard is
revised every few years. The most recent standard that describes the format can be found at:

https://www.wwpdb.org/documentation/�le-format-content/format33/v3.3.html

On that page you can scroll down to the Coordinate Section and �nd the link to the ATOM record format.
There you will see that the line for an atom is de�ned by the following table:

COLUMNS DATA TYPE FIELD DEFINITION

1 - 6 Record name ATOM

7 - 11 Integer serial Atom serial number.

13 - 16 Atom name Atom name.

17 Character altLoc Alternate location indicator.

18 - 20 Residue name resName Residue name.

22 Character chainID Chain identifier.

23 - 26 Integer resSeq Residue sequence number.

27 AChar iCode Code for insertion of residues.

31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.

39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.

47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.

55 - 60 Real(6.2) occupancy Occupancy.

61 - 66 Real(6.2) tempFactor Temperature factor.

77 - 78 LString(2) element Element symbol, right-justified.

79 - 80 LString(2) charge Charge on the atom.

2

https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html


CSci132 Practical UNIX and Programming

Assignment 4, Fall 2018

Prof. Stewart Weiss

Notice that the �elds are not necessarily separated by white space or by special characters. Instead they
are de�ned by their exact column numbers on the line. For example, the amino acid name is in columns 18
through 20. (The table calls it the residue name .) At this point it would be bene�cial to you to make sure
that the font you use to view the �les is a �xed-width font, so that you can see where the columns are. By
default, the terminal in a typical Linux installation uses a monospace (�xed-width) font, and so viewing the
�les using cat, more, less, or any terminal-based editor will be �ne.

Suppose for a moment that you had access to several PDB �les representing various proteins and you needed
to know how many atoms within that protein belonged to a particular type of amino acid, i.e., how much
of that protein was made up of a given amino acid, not by weight but by atom count. You could open the
�le and start counting the appropriate lines by hand. This would take a very, very, long time. Instead, you
could use your knowledge of the tools available in UNIX to solve the problem in a few minutes. There are
commands in UNIX that you have learned about in this class so far that you can use to determine such
things as how many atoms are in a PDB �le, how many atoms of a speci�c type are in the �le, or more
complex information such as how many atoms of a given amino acid are at a certain distance from a given
point in the protein. These commands are relatively easy to use, assuming you have a little ingenuity. You
will have to read the man pages for them.

2 Tasks

This assignment consists of two tasks, one related to PDB �les and the other related to nucleotide strings.
The �les that you can use for input for the �rst task are in the directory

/data/biocs/b/student.accounts/cs132/data/pdb_files.

Those for the second are in

/data/biocs/b/student.accounts/cs132/data/dna_textfiles.

1. Write a script named atomcoordinates that will expect on the command line two arguments: a valid
three-letter code of a standard amino acid in uppercase, and the name of a PDB �le. Given a valid
amino acid name and a PDB �le that it can open, the script will display, for each record of that type
that it �nds in the �le, a line of output containing the atom's serial number, its three-letter amino acid

name, and its x, y, and z coordinates. For example, a line in the PDB �le that looks like this:

ATOM 18 CB GLN A 3 83.556 52.126 45.080 1.00 26.06 C

would cause the following output line to be displayed:

18 GLN 83.556 52.126 45.080

because the atom's serial number is 18, its amino acid name is GLN, and its coordinates are 83.556,
52.126, and 45.080. These �ve pieces of information must be separated by white-space such as blanks.
Your script has to extract the serial number, amino acid name, and the coordinates from the line and
display them. Your job is to decide which �lters, or combination of �lters, can achieve this. This will
take some creativity. A hint is that all of the �lters you need have been covered either during class
lectures or are listed in the slides in Lesson 9. Figure out which might be useful, or even better, which
are the most e�cient for you to use.

Error checking: Your script must check that it has both command line arguments, and that the �le
can be read. It must display a message if either of these is not true. It does not need to check whether
the amino acid designation is valid, because if it is not, it should simply display nothing as its output.

3



CSci132 Practical UNIX and Programming

Assignment 4, Fall 2018

Prof. Stewart Weiss

2. A DNA string is a sequence of the letters a, c, g, and t in any order, whose length is a multiple of
3. For example, aacgtttgtaaccagaactgt is a DNA string of length 21. Each letter is called a base,
and a sequence of three consecutive letters is called a codon. For example, in the preceding string, the
codons are aac, gtt, tgt, aac, cag, aac, and tgt. A DNA string can be hundreds of thousands of
codons long, even millions of codons long, so it is hard to count them by hand. It would be useful to
have a simple utility script that could count the number of occurrences of a speci�c codon in such a
string. For instance, in the example string above, aac occurs three times and tgt occurs twice. For
simplicity, we always assume that we look for codons at positions that are multiples of three in the �le,
i.e., starting at positions 0, 3, 6, 9, 12, and so on.

Write a script named countcodon that is given two arguments on the command line. The �rst is a
lowercase three letter codon string such as aaa or cgt. The second is the name of a �le containing a
DNA string with no newline characters or white space characters of any kind except at the end after
the sequence of bases; it is just a sequence of the letters a, c, g, and t. The script will output a single
number, which is the number of occurrences of the given codon in the given �le. It should output

nothing but that number . If it �nds no occurrences, it should output 0. For example, if the above
string is in a �le named dnafile, then it should work like this:

$ countcodon ttt dnafile

1

$ countcodon aac dnafile

3

$ countcodon ccc dnafile

0

The script should check that it has two arguments and exit with a usage message if it does not. It
should make sure that it can open the �le for reading and print a usage statement if it cannot. It does
not have to check that the string is actually a codon, but it should check that the �le contains nothing
but the bases and possible terminating newline character.

Hint: You will not be able to solve this problem using grep alone. There are a number of commands
that might be useful, such as sort, cut, fold, and uniq. One of these makes it very easy. Find the
right one.

3 Rubric

This homework is graded on a 100 point scale. Each script is worth the same number of points. Each script
will be graded primarily on its correctness. This means that it does exactly what the assignment states it
must do, in detail. Correctness is worth 70% of the grade. Then it is graded on its clarity, simplicity, and
e�ciency, as described above. Good comments are worth 15%; good design another 5%, and simplicity and
e�ciency the remaining 5%. Naming all �les and directories correctly is 5%.

4 Submitting the Solution

This assignment is due by the end of the day (i.e. 11:59PM, EST) on Thursday, October 15. (I give a grace
period of six hours after that, so it is okay to submit it by 6:00 AM of the following day.)

There is a directory in the CSci Department network whose full path name is

/data/biocs/b/student.accounts/cs132/hwks/hwk4.

You must put it in that directory. To submit your project, you must follow the instructions below exactly!
Do not deviate from these instructions.

To be precise:

4



CSci132 Practical UNIX and Programming

Assignment 4, Fall 2018

Prof. Stewart Weiss

1. Login using ssh to eniac.cs.hunter.cuny.edu with your valid username and password, and then ssh

into any cslab host. Do not forget this step. You will not be able to run the submithwk command on
eniac.

2. If you did not do the work on one of the computers in our network, then upload the two �les into your
home directory. Create a directory named your-username-hwk4 and put the two scripts into it.

3. Run the command

zip -r your-username-hwk4.zip your-username-hwk4

This will create the �le your-username-hwk4.zip. The zip command is a special command that
compresses the �les in the directory and creates a new �le that can later be extracted by the unzip com-
mand. So it will create a �zip �le� named your-username-hwk4.zip containing your your-username-hwk4
directory and the three �les it contains. For example, I would run

zip -r sweiss-hwk4.zip sweiss-hwk4

4. Run the command

/data/biocs/b/student.accounts/cs132/bin/submithwk 4 your-username-hwk4.zip

Do exactly this. Do not mistype it. The command will create a copy of the �le your-username-hwk4.zip
in the directory

/data/biocs/b/student.accounts/cs132/hwks/hwk4

It will be named hwk4_username , where username is your username on the network. You will not
be able to read this �le, nor will anyone else except for me. If you decide to make any changes and
resubmit, just do all the steps again and it will replace the old �le with the new one. I will be able to
unzip the �le, extracting whatever �les you created. Do not try to put your �le into this directory in
any other way - you will be unable to do this.

Although these instructions may seem complicated, they simplify the way you submit your work and the
way I can retrieve it. If you make mistakes, just start over. If things don't seem to work out, post a question
on Piazza with the details included.

5


	Overview and Background
	Tasks
	Rubric
	Submitting the Solution

