
CSci 132 Practical UNIX and Programming

Project 7: Processing PDB File Data

Prof. Stewart Weiss

Project 7: Processing PDB File Data

1 Overview

For this assignment, you will write a Perl program that can process some of the information contained in the
ATOM records in a PDB �le whose name is supplied on the command line. Roughly speaking, the program
will calculate the frequency of occurrence of various residues and the elements contained in them.

2 Background

The information in this section was provided in Assignment 4. It is repeated in this assignment only
for your convenience. A PDB �le contains information obtained experimentally, usually by either X-ray

crystallography, NMR spectroscopy, or cryo-electron microscopy 1. (You do not need to know this to do the
assignment, but it is important for those who intend to pursue a bioinformatics concentration.) These �les
completely characterize the molecule, providing, for example,

• the three-dimensional positions of every single atom in the �le,

• where the bonds are,

• which amino acids it contains if it is a protein2 (or nucleotides if DNA or RNA) ,

and much more. The information is not necessarily exact. Associated with some of this information are
con�dence values that indicate how accurate it is. A PDB �le is a plain text �le; you can view its contents in
any text editor, such as gedit or nedit, or with commands such as cat, more, and less. Each line in a PDB
�le begins with a word that characterizes what type of line it is. These individual lines are called records.
For example, some lines start with the word REMARK, which means they are comments about the �le itself,
or about the experiment through which the data was collected. Some lines start with SOURCE, and they have
information about the source of the data in the �le. Some lines start with words such as MODEL, CONECT,
ATOM, and HETATM. Each has a di�erent meaning in the �le. Take a look at some of the PDB �les in the
directory /data/biocs/b/student.accounts/cs132/data/pdb_files before you read any further, so that
you can see what they contain. I suggest picking �les that are small, meaning smaller than a megabyte in
size.

Proteins are chains of amino acids. Amino acids are organic compounds that carry out many important
bodily functions, such as giving cells their structure. They are also instrumental in the transport and the
storage of nutrients, and in the functioning of organs, glands, tendons and arteries. Amino acids have
names such as alanine, glycine, tyrosine, and tryptophan. They are also known more succinctly by unique
three-letter codes. The table below lists the twenty standard amino acids with their three-letter codes.

1For a summary of what these methods are, see http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-
Structures/methods.html

2Amino acids are the building blocks of proteins, which may contain many thousands of them.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Int'l License. 1

http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-Structures/methods.html
http://www.pdb.org/pdb/static.do?p=education_discussion/Looking-at-Structures/methods.html
http://creativecommons.org/licenses/by-nc-sa/4.0/ 


CSci 132 Practical UNIX and Programming

Project 7: Processing PDB File Data

Prof. Stewart Weiss

Amino Acid Name Code

Alanine Ala
Arginine Arg
Asparagine Asn
Aspartate Asp
Cysteine Cys
Glutamate Glu
Glutamine Gln
Glycine Gly
Histidine His
Isoleucine Ile
Leucine Leu
Lysine Lys
Methionine Met
Phenylalanine Phe
Proline Pro
Serine Ser
Threonine Thr
Tryptophan Trp
Tyrosine Tyr
Valine Val

Each line that starts with the word ATOM represents a unique atom in the protein. So do the lines that
start with HETATM, but these are atoms in water molecules surrounding the particular protein when it was
crystallized, and we want to ignore them for now. Lines that start with ATOM contain the three-letter code
for the amino acid of which that atom is a part. For example, an atom line for an atom in a phenylalanine
molecule looks like this:

ATOM 3814 N PHE J 24 -17.763 -7.816 -12.014 1.00 0.00 N

The three-letter code is always in uppercase. The exact form of a PDB �le is standardized. The standard is
revised every few years. The most recent standard that describes the format can be found at:

https://www.wwpdb.org/documentation/�le-format-content/format33/v3.3.html

On that page you can scroll down to the Coordinate Section and �nd the link to the ATOM record format.
There you will see that the line for an atom is de�ned by the following table:

Remember that Perl stores the words it �nds on the command line in the @ARGV array and that the �rst
word after the program name is in index 0, not index 1.

• Remember that the ATOM records in the PDB �le are speci�ed by column positions. You must get the
data from the exact set of columns speci�ed above. Therefore, my suggestion is that your program
read an entire line and convert it to an array of characters. Then it can use array subscripts to extract
the exact subarrays that it needs and convert them back to strings. (Remember that column numbers
above start at 1 but arrays start at 0.)

• Remember to follow

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Int'l License. 2

https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://creativecommons.org/licenses/by-nc-sa/4.0/ 


CSci 132 Practical UNIX and Programming

Project 7: Processing PDB File Data

Prof. Stewart Weiss

COLUMNS DATA TYPE FIELD DEFINITION

1 - 6 Record name ATOM

7 - 11 Integer serial Atom serial number.

13 - 16 Atom name Atom name.

17 Character altLoc Alternate location indicator.

18 - 20 Residue name resName Residue name.

22 Character chainID Chain identifier.

23 - 26 Integer resSeq Residue sequence number.

27 AChar iCode Code for insertion of residues.

31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.

39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.

47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.

55 - 60 Real(6.2) occupancy Occupancy.

61 - 66 Real(6.2) tempFactor Temperature factor.

77 - 78 LString(2) element Element symbol, right-justified.

79 - 80 LString(2) charge Charge on the atom.

Notice that the �elds are not necessarily separated by white space or by special characters. Instead they
are de�ned by their exact column numbers on the line. For example, the amino acid name is in columns 18
through 20. (The table calls it the residue name .) At this point it would be bene�cial to you to make sure
that the font you use to view the �les is a �xed-width font, so that you can see where the columns are. By
default, the terminal in a typical Linux installation uses a monospace (�xed-width) font, and so viewing the
�les using cat, more, less, or any terminal-based editor will be �ne.

3 Detailed Requirements

The program should be named pdbtool.pl. It must use the �le named on the command line as its input
�le. For example, if the user types

pdbtool.pl 1A36.pdb

the program must read the data in the �le named 1A36.pdb. If the �le argument is missing, or if the �le
does not exist or cannot be opened for reading, the program should quit with an error message indicating
why it quit and providing correct usage. The program should be robust enough that if the �le is not a PDB
�le, it will not crash. This will require no extra e�ort if the program is designed to look only for the ATOM

records in the �le. The program can assume that all ATOM records are in the correct format; it does not
have to check that the lines follow that format. The program can assume that the �le contains only a single
model. If an ATOM record contains a non-blank character in column 17, it is an alternate location for an atom
already read and should be skipped; the program will use only the �rst position found.

As the program reads the atom records in the �le, it must keep counts of:

• the number of atoms of each element type that it �nds,

• the number of atoms of each residue that it �nds, and

• the total number of distinct atoms.

When the program has �nished reading the �le, it should �rst display, for each distinct element that it found,
a line of the form

element: n

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Int'l License. 3

http://creativecommons.org/licenses/by-nc-sa/4.0/ 


CSci 132 Practical UNIX and Programming

Project 7: Processing PDB File Data

Prof. Stewart Weiss

where element is the element name and n is the number of atoms of that element. The lines should be
sorted alphabetically by element name. Sample output could look like this:

C: 3201

N: 918

O: 1101

P: 42

S: 23

...

After displaying this information, it should display, for each distinct residue that it found in the �le, a line
of the form

residue: n

where residue is the three-letter residue name in UPPERCASE and n is the number of atoms that were
part of the occurrences of that residue in the �le, sorted alphabetically. Sample output could like this:

ALA: 90

ARG: 44

ASN: 16

ASP: 48

GLN: 45

...

This would mean that there were 90 atoms in the �le occurring in one or more alanine chains, 44 occurring
in arginine chains, and so on.

Finally, the program will display a line stating how many atoms were in the �le, such as

5285 atoms in file 1A36.pdb.

4 Programming Considerations

• Remember that Perl stores the words it �nds on the command line in the @ARGV array and that the
�rst word after the program name is in index 0, not index 1.

• Remember that the ATOM records in the PDB �le are speci�ed by column positions. You must get the
data from the exact set of columns speci�ed above. Therefore, my suggestion is that your program
read an entire line and convert it to an array of characters. Then it can use array subscripts to extract
the exact subarrays that it needs and convert them back to strings. (Remember that column numbers
above start at 1 but arrays start at 0.)

• Remember to follow the Programming Rules document, particularly with respect to proper documen-
tation and proper use of indentation.

5 Testing Your Program

Your program should be thoroughly tested before you submit it. Create some sample small PDB �les by
editing the ones in the pdb_files directory. Manually �gure out what the outputs should be or use a
spreadsheet to do this if you are good at spreadsheet calculations. Run your program and make sure that
your output matches the one you manually computed.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Int'l License. 4

http://creativecommons.org/licenses/by-nc-sa/4.0/ 


CSci 132 Practical UNIX and Programming

Project 7: Processing PDB File Data

Prof. Stewart Weiss

6 Rubric

This homework is graded on a 100 point scale. The program will be graded primarily on its correctness.
This means that it does exactly what the assignment states it must do, in detail. Correctness is worth 70%
of the grade. Then it is graded on its documentation and design. Comments and appropriate naming of
variables are worth 20%; good design another 8%. Naming all �les and directories correctly is 2%.

7 Submitting the Program

This assignment is due by the end of the day (i.e. 11:59PM, EST) on Monday, November 19. (I give a grace
period of six hours after that, so it is okay to submit it by 6:00 AM of the following day.)

There is a directory in the CSci Department network whose full path name is

/data/biocs/b/student.accounts/cs132/hwks/hwk7

You must put it in that directory. To submit your project, you must follow the instructions below exactly!
Do not deviate from these instructions.

To be precise:

1. Login using ssh to eniac.cs.hunter.cuny.edu with your valid username and password, and then ssh

into any cslab host. Do not forget this step. You will not be able to run the submithwk command on
eniac.

2. If you did not do the work on one of the computers in our network, then upload the Perl program �le
into your home directory. Create a directory named your-username-hwk7 and put the Perl program
into it.

3. Run the command

zip -r your-username-hwk7.zip your-username-hwk7

This will create the �le your-username-hwk7.zip. The zip command is a special command that
compresses the �les in the directory and creates a new �le that can later be extracted by the unzip com-
mand. So it will create a �zip �le� named your-username-hwk7.zip containing your your-username-hwk7
directory and any �les it contains. For example, I would run

zip -r sweiss-hwk7.zip sweiss-hwk7

4. Run the command

/data/biocs/b/student.accounts/cs132/bin/submithwk 7 your-username-hwk7.zip

Do exactly this. Do not mistype it. The command will create a copy of the �le your-username-hwk6.zip
in the directory

/data/biocs/b/student.accounts/cs132/hwks/hwk7

It will be named hwk7_username , where username is your username on the network. You will not
be able to read this �le, nor will anyone else except for me. If you decide to make any changes and
resubmit, just do all the steps again and it will replace the old �le with the new one. I will be able to
unzip the �le, extracting whatever �les you created. Do not try to put your �le into this directory in
any other way - you will be unable to do this.

5. Do not put anything in this directory other than the �le pdbtool.pl. You will lose one

point for each �le that is in this directory that does not belong there.

Although these instructions may seem complicated, they simplify the way you submit your work and the
way I can retrieve it. If you make mistakes, just start over. If things don't seem to work out, post a question
on Piazza with the details included.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Int'l License. 5

http://creativecommons.org/licenses/by-nc-sa/4.0/ 

	1 Overview
	2 Background
	3 Detailed Requirements
	4 Programming Considerations 
	5 Testing Your Program
	6 Rubric
	7 Submitting the Program

