
CSci132 Practical UNIX and Programming

Programming Rules

Prof. Stewart Weiss

Programming Rules

NOTE. There is a distinction between a rule and a guideline. A rule is a requirement ; it must be followed.
A guideline is a suggestion; it is strongly encouraged but does not have to be followed. The following
are rules; whenever a programming assignment is given, these rules are implicitly part of it and must be
followed. Failure to follow them will result in a loss of points on the assignment, the exact number of which
is dependent on the assignment.

1. You must make sure that your program is free of all errors when it is executed on any of the department's
cslabXX computers, prior to submitting it. These are the machines in the walk-in lab, 1001B, which
are named cslab1, cslab2, and so on. All of these machines have identical architectures and software,
so if a program runs correctly on one, it will run correctly on any other1. In general, a program can
run correctly on one machine but not another, for one reason or another. This requirement stipulates
that it must run correctly on these lab machines speci�cally.

2. Every program must be correct to receive full credit. "Correct" means that for every possible input
allowed by the assignment, it produces output that is consistent with the assignment speci�cation. If
the program produces correct results for some, but not all, inputs, it is not correct. Since there may
be an unbounded number of possible inputs, you cannot possibly establish your program's correctness
by running it on all inputs. You must use a combination of sampling (i.e., testing) and logical analysis
to convince yourself of its correctness. Correctness is usually worth anywhere from 50% to 70% of the

grade. A very common mistake is for a student to hand in a program that does not even run correctly
on the input �les suggested by the instructor. In other words, the student failed to check the outputs
of the program before submitting it. This is either laziness or hubris. It is also very common to make
a �small� last-minute change to a program and fail to re-test the program on all inputs (because after
all it was such a tiny change), only to learn later that the change �broke� the program completely. Test
the exact version that you submit!

3. You must submit all of the source code and absolutely nothing else, unless the assignment states
otherwise. Do not submit any data �les or output �les unless told to do so. This will result in a loss
of points.

4. For full credit, an assignment must be submitted in the manner described in the assignment by the
deadline. Whether or not it is accepted after the deadline, and if so, how much it will be penalized for
lateness, is stated in the syllabus is the determining rule.

5. The program must be your work, and your work alone. You are not free to share solutions or parts
thereof with anyone else unless this has been explicitly stated by the instructor. If you do not under-
stand what it does or why it works because someone else's hand is in it, this will be discovered one
way or another. You are forewarned that your instructor might ask you to explain how your program
works and that you should be able to do so without advance preparation. If you cannot explain it,
then it is not �yours�. Representing someone else's work as your own is plagiarism, and it is a violation
of Hunter College policy. We will �le an o�cial complaint against any student who we believe has
committed plagiarism.

6. Every program must be professionally documented :

(a) Every distinct source code �le, whether a bash script or a Perl program, must contain a preamble
with the �le's title, author, brief purpose and description, date of creation, and a revision history.
The description must be a few sentences long at the minimum. A revision history is a list of brief

1Unless you are so clever that you have �gured out how to make it behave di�erently depending on which host it is running,

in which case you might have �shot yourself in the foot.�

1

CSci132 Practical UNIX and Programming

Programming Rules

Prof. Stewart Weiss

sentences describing revisions to the �le, with the date and author (you) of the revision. This is
an example of a suitable preamble:

#!/usr/bin/env perl

nested_if.pl

Usage : nested_if.pl

Written by : Stewart Weiss

Created on : October 18, 2010

Description : Demonstrates how to "nest" if-statements

#***

(b) All non-trivial algorithms must be documented in plain English in a multi-line comment block.
All non-trivial declarations must have adjoining, brief comments. Documentation is usually worth

10% of the grade, but the speci�c project's rubric might state otherwise.

7. Every Perl program must turn on all warnings and use the strict pragma:

$^W = 1; # turn on warnings

use strict; # behave!

8. Programs should avoid error-prone syntax as much as possible. For example, it is better to write the
condition

if (0 == $number)

than the condition

if ($number == 0)

because of the very common mistake of writing �if ($number = 0)� instead. Similarly, one should
always do this with loop conditions:

until (0 == $count) {

$count = $count - 1;

}

9. Every program must follow commonly accepted stylistic guidelines regarding the use of blank lines,
white space, indentation, and naming of program entities such as variables, functions, and constants.
Your program must be consistent in its use of typographical format for distinguishing variables, func-
tions, and constants. For example, you might decide that all variable names begin with lowercase letters,
or that all variables use underscores to separate the words in the name, as in number_of_scores and
first_author, or that they use changes in case, as in numberOfScores and firstAuthor, which is
called camelCase. Style is usually worth 10% of the grade.

10. The output of any program should be readable and understandable by ordinary human beings who
lack mind-reading capability and who have not read the assignment or the program, unless speci�ed
otherwise. For example, the output

The file �playlist1� contains 6 songs that won Grammies in 2010.

is more understandable than the output

6 songs

or this

playlist1: 6

11. There are no rigid rules. All rules can be broken, but it is best to check with the instructor before
taking a chance.

2

