
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

A Big StepA Big Step

Shell Scripts, I/O Redirection, Ownership and
Permission Concepts, and Binary Numbers

2 CSci 132 Practical UNIX with Perl

What a shell really does

Here is the scoop on shells.
A shell is a program that displays a prompt (like '$') and then
waits for you to type a command. When you type the
command, the shell runs the file whose name is that
command. When the shell finishes running that file, it
displays the prompt and starts this all over again.
Of course it is a bit more complicated to do this than it
sounds, but this is the gist of it.
The key point right now is that commands are just files (well,
not always.)

3 CSci 132 Practical UNIX with Perl

About commands

A command is (usually) just a file that is executed by the shell
when you type its name. For example, ls is really the file
/bin/ls.
You can find the location of a command with the whereis
(and on some systems, the locate) command:

Not all commands are files; some are built into the shell itself.
For example cd is not a file. It is part of bash. When you
type cd, bash itself changes your working directory.

$ whereis ls
/bin/ls
$

4 CSci 132 Practical UNIX with Perl

Executable files

If a command is just a file, then how can it be run?
First of all, the file has to contain a program – a sequence of
instructions to be executed. It cannot contain your best
friend's favorite song or a photo.
But that is not enough. UNIX protects you and itself by
requiring that if a file is supposed to be executable, then its
"execute-bit" must be turned on for every set of users that
should be able to execute it. Remember from an earlier lesson
that the execute-bit is part of the file mode, and that there are
three such sets of users: user, group, and others.
So how do you tell UNIX to turn on that bit?

5 CSci 132 Practical UNIX with Perl

Making files executable

 To change the mode of the file, you use the chmod
command. chmod is a mnemonic:

chmod

ch for change, mod for mode

 To make a file named filename executable for everyone
(user, group, and others), type

 chmod +x filename

To make it executable for the user and turn it off for group,
 chmod u+x,g-x filename

We will learn more about chmod later.

6 CSci 132 Practical UNIX with Perl

Digression: Output redirection

All commands in UNIX display their output, i.e., their results,
on your terminal. You do not have to do anything special for
this to happen. For example, when you type ls, it displays
the list of files in your terminal window.
In an earlier lesson, you saw that UNIX provides a way to
redirect that output to a file instead using the output
redirection operator, >, as in
$ ls > currentdir_contents

which puts the output of ls into a file named
currentdir_contents in the current working
directory.

7 CSci 132 Practical UNIX with Perl

Creating files using >

It should be obvious that this is a convenient way to create
files, especially with the echo command. Assuming that the
file file1 does not exist in the working directory,

 $ echo “Some days you're a bug.” > file1
 puts the text “ Some days you're a bug. “ in file1

(without the quotes):

$ cat file1
Some days you're a bug.
$

8 CSci 132 Practical UNIX with Perl

Appending to files using >>

If a file already exists and you want the output of a command
to be appended (added) to the end of the file, you can use the
output redirection append operator, >>. This puts the output
after the last line of the file, as in

 $ echo “Other days a windshield.” >> file1
 adds the text “'Other days a windshield.” to the end

of file1 :

$ cat file1
Some days you're a bug.
Other days a windshield.
$

9 CSci 132 Practical UNIX with Perl

About quotes ' “ in commands

It is usually safest to enclose the argument to echo in
single quotes: ' ' . The reason is partly explained
below. But if the argument itself contains a single
quote, then you must enclose it in double quotes:
“it's”.
The shell treats certain characters as special, but the
single quotes hide their specialness from the shell.
Double quotes only hide certain characters and not
others. Which ones are hidden by single quotes but
not double quotes is a topic for a future lesson.

10 CSci 132 Practical UNIX with Perl

Creating a simple script

We can use these operators to create files without using a text
editor. We will create our first shell script this way.

Try typing these three commands:

The file first_script has two lines, which I now explain.

$ echo '#!/bin/bash' > first_script
$ echo 'hello world! ' >> first_script
$ cat first_script
#!/bin/bash
echo hello world!
$

11 CSci 132 Practical UNIX with Perl

The script explained

The first line tells the shell to run the interpreter
/bin/bash using the rest of the file as its input. In effect, it
 says, "I am a bash script". You must put it at the top of every
bash script.

In general, a script must start with the two characters #!
followed by the absolute pathname of the script interpreter. A
Perl script would have the first line #!/usr/bin/perl on
our system because the perl command is located in /usr/
bin. (Later I will show you how to do this when you do not
know where the interpreter is.)
The second line is the echo command. It simply displays the
words "hello world!" on the standard output.

12 CSci 132 Practical UNIX with Perl

Scripts must be executable

If you try running this script this without making the file
executable, all you will get is an error message like this:
-bash: ./first_script: Permission denied

We must make it executable:
chmod +x first_script

 Then when we type ./first_script we will see

 hello world!

13 CSci 132 Practical UNIX with Perl

 chmod revisited

chmod is given a group of flags and a list of files and it
gives those files the mode defined by the flags.
The flags consist of 3 parts, the user set, the modification
operator, and the permissions to modify.

chmod

u
g
o
a

+
-
=

list of files
r
w
x

user set
modification

operator
permissions

+ ++ +

any combination
of exactly one of any combination

of

14 CSci 132 Practical UNIX with Perl

Some chmod details

The u,g,o, and a stand for user, group, others, and all
respectively. (I remember ugo by remembering Victor Hugo
-- Hugo sounds like ugo, user-group-other. Pretty lame but it
works.)
+ adds a permission, - removes it, and = sets the mode to
exactly the ones specified.
r,w, and x are read, write, and execute respectively.

You cannot put space anywhere between the parts.

15 CSci 132 Practical UNIX with Perl

chmod examples

chmod u+rw foo

adds read and write permission for owner of foo

chmod g+rx foo

adds read and execute permission for group of foo

chmod go–w foo

removes write permission for everyone in group and others
for foo. (So only owner can modify the file.)

chmod u=rwx foo

sets the mode to rwx------ for foo

16 CSci 132 Practical UNIX with Perl

More about the chmod command

If the set of users flag is omitted (i.e., ugo), the permission
flags are applied to all three sets, user, group, and others.

chmod +x foo

adds execute permission for everyone
chmod -w foo

removes write permission for everyone, including the user
(owner), who will not be able to modify foo after this
without changing the mode.

17 CSci 132 Practical UNIX with Perl

Advice about chmod

In short, you can create any possible combination of
permissions on any file using the chmod command. (How
many possible combinations are there?)
Usually the owner has the greatest permission, then the group,
then everyone else. Usually write permission is restricted to
the owner alone, or to the group if it is a file being
cooperatively written. If it is executable, usually everyone has
that permission set. Lastly, read permission is given to
everyone only when it is a document intended for global
consumption.

18 CSci 132 Practical UNIX with Perl

Back to the script

Even if first_script is executable, it may not run; we
will get an error if it is not also readable for us, because the
shell has to read this file in order to execute it.
Therefore you must make sure that it is both readable and
executable. (It will be readable for its owner unless you went
out of your way to make it unreadable.)
Files that contain shell commands and are executable are
called shell scripts. They are like DOS batch files.

19 CSci 132 Practical UNIX with Perl

Directory permissions

You also use chmod to change the mode of directories, but
you have to understand how UNIX uses the read, write, and
execute bits for directories.
After all, what does it mean to read a directory, or to write or
execute a directory?

20 CSci 132 Practical UNIX with Perl

Reading a directory

Read permission on a directory gives the user the ability to
view the directory file's contents, which, you should recall, is
a table containing the names of the files in that directory and
their index numbers.
If read permission is turned off, you cannot list the contents of
that directory, i.e., the names of the files in that directory. ls
will display an error message.

21 CSci 132 Practical UNIX with Perl

Writing a directory

Write permission on a directory gives the user the ability to
modify the directory file. Since adding a file to a directory or
removing a file from a directory changes the directory's
contents, you cannot add or remove files from a directory
unless you have write permission on that directory.
Be careful – you can modify files themselves even though you
cannot delete them or add new ones. You can completely
empty a file but you cannot remove it from the directory if
you do not have write permission on the directory.

22 CSci 132 Practical UNIX with Perl

Executing a directory?

This should sound strange to you. You cannot execute a
directory, but UNIX uses the execute bit to control whether
you can "cd" into a directory:
If you do not have execute permission for a directory, then
you cannot cd into it. If that directory is any part of a
pathname to a file you want to open or execute for any reason,
you will not be able to access that file, because you need to
"get through that directory" to reach it.
Therefore, you need to have execute permission for each
directory on the path to a file you want to execute. This also
applies to programs that you try to run to open that file.

23 CSci 132 Practical UNIX with Perl

More about execute permission

A command such as
ls –l testdir

must do two things to display results. First, it must read the
directory file, and for each filename it finds there, it must use
the index number to find the file in the file system. When it
finds the file in the file system, it has to open the part of the
file where its properties are stored. This will fail if you do not
have execute permission, because it requires opening the file,
which cannot be done without execute permission on every
directory in its absolute pathname.

24 CSci 132 Practical UNIX with Perl

An experiment

Create a directory temp and a file named foo inside it.

$ mkdir temp; cd temp; touch foo; cd ..

(You can put multiple commands on a line if you separate
them with semi-colons.)
Type ls –l temp to see the properties of foo.

Now remove execute permission from temp, type ls –l
temp and observe the results:

$ chmod -x temp; ls –l temp
ls -l temp
total 0
?--------- ? ? ? ? ? foo

25 CSci 132 Practical UNIX with Perl

The time has come, the Walrus said, …

You cannot move forward without an understanding of the
binary number system. The decimal number system has ten
digits, 0,1,2,3,…, 9 but the binary has two, just 0 and 1.
It is nonetheless possible to write all possible numbers in this
system. Here are the first 8 numbers in binary and decimal:
binary: 0, 1, 10, 11, 100, 101, 110, 111

decimal: 0, 1, 2, 3, 4, 5, 6, 7

You can figure out the sequence if you know how to add 1 to
a number in the binary number system.

26 CSci 132 Practical UNIX with Perl

Binary numerals

In the decimal system, there is the ones' place, the tens' place,
the hundreds' place, going up by powers of ten, and so on.
In the binary system, there is the ones' place, the twos' place,
the fours' place, the eights' place and so on, going up by
powers of two. Reading from right to left, the number
 11001

has 1 one, 0 twos, 0 fours, 1 eight, and 1 sixteen, for a total of
1+8+16=25 in base ten. So 11001 in binary is 25 in decimal.

27 CSci 132 Practical UNIX with Perl

Finding the value of a binary numeral

To find the value of a binary numeral, follow the example
below. Suppose the numeral is 101101. List the powers of 2
in row 1, their values in row 2, and the binary in row 3:

For each 1 in the bottom row, add the number above it to the
value. The value of 101101 is therefore 25 + 23 + 22 +
20 = 32 + 8 + 4 + 1 = 45.

25 24 23 22 21 20

32 16 8 4 2 1

1 0 1 1 0 1

28 CSci 132 Practical UNIX with Perl

Binary addition

Adding binary numbers uses the same principles as adding
decimal numbers, using place values and carrying if the sum
in one place is greater than the largest possible digit.
In base 10, if the sum exceeds 9 (10 less 1), you perform a
carry.
In base 2, if the sum exceeds 1 (2 less 1), you perform a carry.
When you learned base 10 addition in elementary school, you
began with an addition table. We do the same thing now with
base 2.

29 CSci 132 Practical UNIX with Perl

Binary Addition Table

The addition table:

 11 1
+ 1
1 0 0

To the right we add 11 + 1 and get
100 because 1 + 1 = 10, and the 1
is carried to the next bit, as shown. Then
1+1 = 10 is written below.

+ 0 1

0 0 1

1 1 10

Notice that 1 + 1 = 2, which
is 10 in binary. Armed with this
table, the rest is easy.

30 CSci 132 Practical UNIX with Perl

Binary Addition Continued

If you can carry, you can add any two numbers:

 1111 1
+ 1 1
 1 0 1 0

Notice that 1+1+1= (1+1)+1 = 10 + 1 = 11. It is
now possible to write the binary numerals in sequence, until
you get bored with them:

0, 1, 10, 11, 100, 101, 110, 111, 1000,
1001, 1010, 1011, 1100, 1101, 1110, 1111,
10000, 10001, 10010, 10011, 10100, …

31 CSci 132 Practical UNIX with Perl

Decimal to binary conversion

Given a decimal number, x, do the following to get its binary
numeral:

1. Divide x by 2.
2. Write the remainder to the immediate left of the previous

remainder. If this is the first remainder, right it down leaving
room to its left for more bits.

3. If the quotient is not 0, replace x by the quotient and go back
to step 1, otherwise go to step 4.

4. The binary numeral is the sequence of remainders in left-to-
right order.

32 CSci 132 Practical UNIX with Perl

Example

x Arithmetic Quotient Remainder

53 53/2=26 r 1 26 1

26 26/2=13 r 0 13 01

13 13/2 = 6 r 1 6 101

6 6/2 = 3 r 0 3 0101

3 3/2 = 1 r 1 1 10101

1 1/2 = 0 r 1 0 110101

So the binary for 53 is 110101.

33 CSci 132 Practical UNIX with Perl

Permissions as numbers

Recall that the permission string has 3 bits for each of user,
group, and others:

_ _ _ _ _ _ _ _ _
 r w x r w x r w x

user group others

• Each of these bits is a binary bit that is either 1, if the
permission is on, or 0, if it is off. Thus, the string r-x is
equivalent to the bit pattern 101. Since 101 is the number 5
in decimal, three decimal numbers can represent a permission
string. (They are really octal numbers, but we ignore that for
now.

34 CSci 132 Practical UNIX with Perl

Eight possible combinations

Permission
String

Binary
Equivalent

Decimal
Equivalent

--- 000 0

--x 001 1

-w- 010 2

-wx 011 3

r-- 100 4

r-x 101 5

rw- 110 6

rwx 111 7

35 CSci 132 Practical UNIX with Perl

Permission strings as 3-digit numbers

Since each set of three bits can be represented by a decimal
number from 0 to 7, the permissions on a file can be
represented by a set of 3 numbers from 0 to 7.

For example, the number 751 represents the binary numeral
111 101 001, which is converted to the permission string
rwx r-x -–x, meaning that the owner has full privilege,
the group, read and execute, and everyone else, just execute.

36 CSci 132 Practical UNIX with Perl

Common Permission Values

There are certain permissions that occur very frequently
because of the concentric nature of security in UNIX.

755 - owner has full privilege; rest cannot write
700 - owner has full privilege; rest have none (secret stuff)
644 - owner has full privilege; rest cannot write, but file is not

executable nor a directory
600 - owner has full privilege; rest have none (secret stuff), but

file is not executable nor a directory
666 - everyone can read and write (certain device files look

this way.)

37 CSci 132 Practical UNIX with Perl

Absolute permissions for chmod

The chmod command can accept numeric flags instead of the
more complicated flags described earlier.

chmod 755 myfile

for example sets the permission string of myfile to 755,
which is rwxr-xr-x, and

chmod 600 privatestuff

sets the permission of privatestuff to rw-------.

38 CSci 132 Practical UNIX with Perl

The umask command (may be skipped)

When you create a file, it is given default permissions. For
example, if you enter the commands

$ touch newfile
$ ls -l newfile
-rw-r--r--

you see that the new file was created with a default of 644 in
numeric form. The umask command controls these
defaults.

The umask command is given what looks like a permission
string written in numeric form. It is a mask though, not a set
of permissions.

39 CSci 132 Practical UNIX with Perl

Masks and the umask (may be skipped)

The umask is a mask. This means that each 1 bit acts like a
blocker and each 0 bit acts like a hole. Masks hide stuff. A 1
means "hide" and a 0 means "don't hide."
The umask 037 is the binary numeral 000 011 111,
since 3 is 011 and 7 is 111. This means that when UNIX
creates a file with this mask, wherever there is a 1, there will
be a 0 in the permission string, and wherever there is a 0,
there may be a 1. Maybe not. If the file is not executable, then
UNIX is smart enough not to try to turn that bit on.
Typing umask by itself displays the current umask.

40 CSci 132 Practical UNIX with Perl

Example (may be skipped)

$ umask
0037 # ignore the leading 0 for now
$ touch newfile
$ ls -l newfile
-rw-r----- 1 sweiss cs49366 0 Aug 10 21:32 newfile
$

The following example show how the umask behaves.

The umask 037 is 000 011 111. The most permission
possible is 111 100 000 (the numbers reversed.) But
touch does not create executable files, so turn off the execute
bits and you get 110 100 000, which is rw- r-- ---.

41 CSci 132 Practical UNIX with Perl

Back to shell scripts

Now that you've learned a few commands and can
edit files, you can start to write shell scripts.
You need a few more tools to make this possible. For
starters, you need to know how a shell script can
access the words you type on its command line.
For example, suppose I want to write a script named
swap that when called like this:

 swap word1 word2

 would output this:
 word2 word1

42 CSci 132 Practical UNIX with Perl

Command line arguments

Bash can access the words on the command line
using the variables $1, $2, $3, and so on. The first
word is stored in $1, the second, in $2, etc.

The number of words on the line, excluding the
command itself, is stored in a variable named $#.

Therefore, our swap script would be as simple as
 #!/bin/bash
 echo $2 $1

This displays the second word, then the first word

43 CSci 132 Practical UNIX with Perl

Adding error-checking: test

Scripts should always check that they have the correct number
of arguments and that they are all valid. swap just has to
check that there are exactly 2 words, so it needs to test
whether $# is equal to 2.

The test command evaluates an expression. For example

 test 1 -ne 2

 is true because 1 is not equal to 2.
 test 2 -eq 2

 is true because 2 equals 2. The other operators are -le,

 -lt, -gt, and -ge. Can you guess what these mean?

44 CSci 132 Practical UNIX with Perl

Other forms of test

If you read the man page for test, you will see that there are
other ways to use it. For example

 [1 -ne 2]

 is equivalent to
 test 1 -ne 2

You can put square brackets around an expression but there
must be spaces on either side of them:

 [1 -ne 2]

 would be an error.

45 CSci 132 Practical UNIX with Perl

Using the if command

Every shell has a command named if. In bash, you
have to follow a very specific set of rules to use it. In
its simplest form it looks like this:

 if test-command
 then
 any sequence of commands
 fi

where the words if, then, and fi are on separate
lines.

46 CSci 132 Practical UNIX with Perl

Example if command

 if test $# -ne 2
 then
 echo usage: swap word1 word2
 exit
 fi

This piece of shell script will print a usage message if the
number of words on the command line is not equal to 2.
It will also quit immediately after printing the message, no
matter what commands follow the word fi.

47 CSci 132 Practical UNIX with Perl

Putting it all together

We can put the testing bit of stuff ahead of our
echo command to do our input-checking, and we
now have a safe script:

 #!/bin/bash
 if test $# -ne 2
 then
 echo usage: swap word1 word2
 exit
 fi
 echo $2 $1

48 CSci 132 Practical UNIX with Perl

Another Type of Test

The test command has many different types of tests.
Many are called file tests and they can be used to test
whether a file exists, or is of a given type, or size, or
has some other property. For example:

 #!/bin/bash
 if test -e $1
 then
 echo “$1 exists”
 fi

49 CSci 132 Practical UNIX with Perl

Negating Tests

There is no test that is true if a file does not exist. If
you want to print an error message if the user did not
supply a filename, you need to negate the test. The
exclamation mark negates expressions:

 if test ! -e myfile

is true if myfile does not exist, and is false if it does.
If $1 is a command line argument then

 if test ! -e $1

is true if it is not the name of a file that exists.

50 CSci 132 Practical UNIX with Perl

More About if

The if statement can also have an “else” part like this:

The statement after “else” is executed if the test evaluates
to false.

#!/bin/bash
if test -e $1
then
 echo “$1 exists”
else
 echo “$1 does not exist”
fi

51 CSci 132 Practical UNIX with Perl

More About if

The if statement can also have multiple elif parts:

#!/bin/bash
if test $# -eq 0
then
 echo “No arguments”
elif test $# -eq 1
 echo “$1”
elif test $# -eq 2
 echo “$1 $2”
else
 echo “More than 2 arguments”
fi

52 CSci 132 Practical UNIX with Perl

Adding comments to the script

A line that starts with # and no ! after it is called a
comment. The shell ignores everything to the right of
the #.

In fact, the # can be written to the right of a
command and the shell will ignore the rest of the line
after the #:

 # Written by Stewart Weiss, 09/24/2009
 # This script swaps words.
 echo $2 $1 # swap first and second words

53 CSci 132 Practical UNIX with Perl

Shell comments

Always add your authorship and other information in
a comment :

 #!/bin/bash
 # Written by Stewart Weiss, 09/24/2009
 if test $# -ne 2
 then
 echo usage: swap word1 word2
 else
 echo $2 $1
 fi

54 CSci 132 Practical UNIX with Perl

Things to try

Try creating a few simple scripts of your own. It will give
you practice using gedit if you are at a UNIX console, or
vi or nano if you are not.

Read about the test command and learn its tricky syntax.

Play around with > to store the output of various commands.

Get comfortable with binary numbers.

	A Big Step
	The Scoop on Shells
	About Commands
	Executable Files
	Executable Files
	Output Redirection
	Creating Files Using >
	Appending to Files
	About Quotes in Commands
	Creating A Simple Script
	The Script Explained
	Scripts Must Be Executable
	chmod Revisited
	Some chmod Details
	chmod Examples
	More About chmod
	Advice About chmod
	Back to the Script
	Directory Permissions
	Reading a Directory
	Writing a Directory
	Executing a Directory ?
	More About Execute Permission
	An Experiment
	The time has come, the Walrus said, …
	Binary Numbers
	Binary to Decimal Conversion
	Binary Addition
	Binary Addition Table
	Binary Addition Continued
	Decimal to Binary Conversion
	Example
	Permissions as Numbers
	Nine Possible Combinations
	Permission Strings as 3-Digit Numbers
	Common Permission Values
	Absolute Permissions for chmod
	The umask Command
	Masks and the umask
	umask Example
	Back to Shell Scripts
	Command Line Arguments
	Adding Error-Checking: test
	Other Forms of Test
	Using The if-Command
	Example if-Command
	Putting It All Together
	Another Type of Test
	Negating Tests
	More About if
	Slide 51
	Adding Comments to the Script
	Shell Comments
	Things to Try

