
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Pattern Matching Pattern Matching

An Introduction to File Globs and Regular Expressions

2 CSci 132 Practical UNIX with Perl

The danger that lies ahead

Much to your disadvantage, there are two different forms of
patterns in UNIX, one used when representing file names, and
another used by commands, such as grep, sed, awk, and
vi. You need to remember that the two types of patterns are
different.
Still worse, the textbook covers both of these in the same
chapter, and I will do the same, so as not to digress from the
order in the book. This will make it a little harder for you, but
with practice you will get the hang of it.

3 CSci 132 Practical UNIX with Perl

File globs

In card games, a wildcard is a playing card that can be used as
if it were any other card, such as the Joker. Computer science
has borrowed the idea of a wildcard, and taken it several steps
further.
All shells give you the ability to write patterns that represent
sets of filenames, using special characters called wildcards.
(These patterns are not regular expressions, but they look like
them.) The patterns are called file globs. The name "glob"
comes from the name of the original UNIX program that
expanded the pattern into a set of matching filenames.
A string is a wildcard pattern if it contains one of the
characters '?', '*' or '['.

4 CSci 132 Practical UNIX with Perl

File glob rules

Rule 1: a character always matches itself, except for the
wildcards. So a matches 'a' and 'b' matches 'b' and so on.

Rule 2: A sequence of characters that does not contain any
wildcards matches itself, so hello matches 'hello'.

Rule 3: ? matches exactly one character, including blanks
and wildcard characters. It matches itself as well. So ??
matches any filename with exactly two characters in it, such
as 'aa' or 'bb' or 'b?' or '_t'. ? is an example of a wildcard.

Rule 4: ? will not match a '.' when it is the first character in
the file name.

5 CSci 132 Practical UNIX with Perl

File globs: character classes

[list-of-characters] matches any single character in the list.
The list-of-characters can be specified as a range, which is of
the form c-d, where c and d are characters and no space is
between. Examples:
[a-zA-Z] matches any single letter

[0-9] matches any single digit

[a-zA-Z0-9] matches any letter or digit

[[] matches left bracket '['

 [-a] matches 'a' or '-'

 []] matches ']'

6 CSci 132 Practical UNIX with Perl

File globs: character class complements

Putting a ! as the first character in the list forms the
complement list. [!list-of-characters] matches any character
NOT in the list. Examples:
[!] matches any character that is not a space

[!a-zA-Z] matches any character except letters

7 CSci 132 Practical UNIX with Perl

File glob wildcards: *

'*' matches 0 or more characters. Examples:

s* matches any filename starting with s

bin* matches any filename starting with bin

t*c matches any filename starting with t and ending with
c.

But

* matches all filenames except those starting with '.'.

.* matches only filenames starting with '.'

8 CSci 132 Practical UNIX with Perl

File glob examples

hwk[0-9].???

matches all files whose names start with hwk and are
followed by a single digit then a '.' then 3 characters, such as
hwk1.bak.

w*.[a-z][a-z][a-z]

matches all filenames starting with 'w' having a '.'
somewhere after w after which are 3 lowercase letters.

[!a-zA-Z]*_*

matches all files whose names start with a character other
than a letter, and have an underscore somewhere in them.

9 CSci 132 Practical UNIX with Perl

More file glob examples

/data/biocs/b/student.accounts/*/.bashrc

matches all .bashrc in all user home directories, provided
all home directories are in student.accounts.

 NOTE – You cannot match a slash "/" in a pathname with
a wildcard. File globs are only used to match what goes in
between the slashes in the pathname.

[!.]* matches all filenames not starting with a '.' .

For more details on using globs, consult the man page for
glob in section 7. (Type man 7 glob.)

10 CSci 132 Practical UNIX with Perl

Empty file globs

 If a file glob does not match any filenames, bash does not
replace it with an empty string; instead it treats the pattern
as the filename. For example, if there are no files in the
current working directory that end with a “.” then
ls *.

 matches will try to list a file whose actual name is ‘*.’
which will be an error. The bash variable nullglob can be set
(using shopt -s nullglob) to replace the name by a
null string.

11 CSci 132 Practical UNIX with Perl

Regular expressions in filters

The next several slides introduce regular expressions. These
are a special kind of pattern used by grep, its two cousins,
egrep and fgrep, as well as vi, sed, ed, and awk.

They are used within the vi editor for searching and
replacement of strings.
They are also partly the foundation of pattern-matching in
Perl.

Therefore, they are of fundamental importance in using UNIX
efficiently.

12 CSci 132 Practical UNIX with Perl

Regular expressions in filters

In the remainder of these slides you will learn the rules for
constructing regular expressions. The best way to understand
them is to see what they do when given as patterns to grep.

For example, suppose that you are curious what the regular
expression "[acgt][acgt]*" matches. If you type the
command

 grep -w "[acgt][acgt]*"

without a file name after it, then grep will use whatever lines
you type on the keyboard to find a match. If what you type
matches, then when you press the Enter key, it will echo it
below. If not it will not echo it.

13 CSci 132 Practical UNIX with Perl

Regular expressions: What are they?

A regular expression (re, for short) is a pattern that
represents a set of character strings. A character string, or a
string for short, is any sequence of characters, including
blanks, newlines, punctuation, and control characters.
For example, if we invented a rule that '#' represents any
single digit from 0 to 9, then the pattern ## would represent
all strings consisting of exactly two digits, such as 00, 01,
02, 03, …, 10, 11, …, 20, …, 30, … 97, 98, and 99.

We say that a re matches a string s if s is in the set that the re
defines. Thus ## would match 56 in our fictitious regular
expression language.

14 CSci 132 Practical UNIX with Perl

Regular expression form

The rules that define the form of re's may vary from one
operating system to another or from one application to
another, so there is no single set of rules that defines how they
look.
Versions of UNIX that conform to the POSIX 1003.2
standard will have the same regular expressions. In spite of
the standard, there will be small differences in form.
The regex man page in section 7 defines the POSIX-
compliant regular expressions. The re's described in these
slides are a subset that are common to all UNIX systems.

15 CSci 132 Practical UNIX with Perl

Regular expression building blocks

Basic regular expressions are built up from operands and
operators in much the same way that arithmetic expressions
are constructed.
The fundamental building block of a regular expression is a
single character. Most single characters match themselves
(not all do.) E.g.

a matches 'a'

b matches 'b'

1 matches '1'

and so on.

16 CSci 132 Practical UNIX with Perl

Basic re operations: Concatenation

Concatenation is the juxtaposition of two strings.
The concatenation of two regular expressions r and s is the
set of all possible strings xy, where r matches x and s
matches y.
ab matches 'ab'

11 matches '11'

Concatenation is associative:
abcis really (ab)c and so it matches 'ab' concatenated with
'c' which is 'abc'.

Concatenation is really called product.

17 CSci 132 Practical UNIX with Perl

Basic re operations: Closure (*)

The only explicit, basic operator is *, which is the closure
operator.
 A regular expression followed by * matches the
concatenation of 0 or more strings each of which is matched
by the regular expression.
For example:
a* matches 0 or more a's: , a, aa, aaa, aaaa …

ca*matches c followed by whatever matches a*, so it
matches c, ca, caa, caaa, caaaa, …

ca*t matches ct, cat, caat, caaat, ccaaaat, …

18 CSci 132 Practical UNIX with Perl

Basic re operations: Closure (*)

cc*aa* is the product of cc* and aa*. It matches all
strings formed in all possible ways by concatenating a string
from cc* to one from aa*. The best way to list these is by
writing all strings of length 2, then length 3, then 4 and so on:

 ca, cca, caa, ccca, ccaa, caaa,

 cccca, cccaa, ccaaa, caaaa , ...

Because a pattern like a* matches zero a's as well as 1 or
more a's, if you want to match one or more a's, you need to
use the re aa*, which matches a, aa, aaa, and so on.

19 CSci 132 Practical UNIX with Perl

More Examples of *

If you want to apply the * operator to more than one
character, you have to enclose it in \(\) brackets. For
example, an re that matches all strings of the form
ababababab, i.e., ab repeated any number of times, is

\(ab\)*

This also matches the empty string. If you want to match only
lines containing at least one ab, you should use either

 \(ab\)*ab or ab\(ab\)*

20 CSci 132 Practical UNIX with Perl

Basic character classes

The period '.' matches any single character.

There are other one character regular expressions.
[list-of-characters] matches any single character in the list.
This is the same rule as file globs:
[a6j&] matches a, 6, j, or &

[0-9] matches any single digit

[a-zA-Z0-9] matches any letter or digit

The ^ inside brackets means the complement:

[^a6j&] matches anything BUT a, 6, j, or &

[^0-9] matches anything but a digit.

21 CSci 132 Practical UNIX with Perl

Basic character classes

 []] matches]

[0-9-] matches any single digit and hyphen -

 [-0-9] matches any single digit and hyphen -

22 CSci 132 Practical UNIX with Perl

Character classes combined with *

You can use character classes with the * operator to create
useful patterns:

 \(c[acgt]g\)* matches 0 or more sequences of cag,
 ccg, cgg, or ctg

 [1-9][0-9]* matches any decimal numeral except 0

 [A-Z][a-z]* matches words that start with an uppercase
letter.

\(...\)* matches any string whose length is a
 multiple of 3..

23 CSci 132 Practical UNIX with Perl

Predefined character classes

Certain character classes have special names. Some of them
are:
[[:alpha:]] matches any letter, upper or lowercase

[[:alnum:]] matches any letter or digit

[[:lower:]] matches lowercase letters

[[:upper:]] matches uppercase letters

[[:punct:]] matches punctuation

\w equivalent to [[:alnum:]]

These must be typed exactly as I have written them here.

24 CSci 132 Practical UNIX with Perl

Anchors

The caret ^ anchors a re to the beginning of a line, and the
dollar sign, $, anchors it to the end of the line. For example:

^drwx matches lines whose first 4 characters are drwx

^\w matches lines that begins with a letter or digit

abcd$ matches lines whose last 4 characters are abcd

^abc$ matches lines that contain only abc

^$ matches empty lines

^[]*$ matches empty lines or lines containing only spaces

25 CSci 132 Practical UNIX with Perl

Metacharacters

If you want to match one of the special characters such as *,
[,], ., or -, you need to put a backslash in front of it:

\. matches .

* matches *

\[matches [

\] matches]

\\ matches \

These characters are called metacharacters.
Note: there are other ways to do this. These are just the easiest
to remember.

26 CSci 132 Practical UNIX with Perl

Extended regular expressions

The set of basic regular expressions was extended to include
more powerful operators and has come to be called the
extended regular expression language.
The egrep filter recognizes these expressions. So does
grep if you give it the -E option: egrep is the same as
grep -E.

Other programs recognize the extended regular expression
language. Most notable are sed and vi.

The grep man page describes these expressions in sufficient
detail. In these slides, I will cover just a few useful operators.

27 CSci 132 Practical UNIX with Perl

Extended regular expressions: | and +

| This is the OR-operator. If r and s are regular
expressions, then r|s matches either strings that r
matches or strings that s matches:

acg|act matches either acg or act

aa*|bb* matches either a sequence of 1 or more a's or
a sequence of 1 or more b's.

+ This is called positive closure. It is identical to * except it
matches 1 or more instead of 0 or more occurrences:
a+ is the same as aa*

a+|b+ is the same as aa*|bb*

28 CSci 132 Practical UNIX with Perl

Extended regular expressions: ?

? This matches 0 or 1 occurrences of its argument.

a? matches either the empty string or a

 ab?a matches either aa or aba

 ..? matches any single symbol or two symbols

 (cc?)+ matches 1 or more combinations of cc and c

Beware: it is different than the glob ? operator !!!

29 CSci 132 Practical UNIX with Perl

Backreferences

When you enclose a basic regular expression in \(\)
brackets, or an extended regular expression in ordinary
parentheses (), the string that matched it is "remembered"
for future use. The regular expression backreference, \1,
matches the first "remembered string."

For example, in
\(aa*\)b\1

any string that matches aa* is saved into a memory cell
named \1. Therefore the only strings that this expression
matches are either aba, aabaa, aaabaaa, aaaabaaaa,
etc.

30 CSci 132 Practical UNIX with Perl

Backreference examples

^\([acgt][acgt][acgt]\)[acgt]*\1$

matches any dna string that starts and ends with the same
codon.

 \([0-9]\)\1\1-\1\1\1\1

 matches phone numbers like 111-1111, 222-2222, 333-
3333 and so on.

31 CSci 132 Practical UNIX with Perl

Backreferences in general

In general, the expressions \1, \2, \3, …, \9 remember
matches of the 1st, 2nd, 3rd, up to 9th parenthesized regular
expressions.
This complicated expression
^\(.*\):\(.*\)::\1:\2$

matches lines of the form
x:y::x:y

where x and y are possible empty strings, such as

abc:666::abc:666

32 CSci 132 Practical UNIX with Perl

fgrep

The third member of the grep family, fgrep, is the fixed-
string version of grep. The way that it is intended to be used
is as follows.
Create a list of strings, one per line, in a file. Suppose the file
is named patternfile.

fgrep -f patternfile searchfile

will display all lines in searchfile that match any of the
strings that occur in patternfile. In a sense,
patternfile acts like a dictionary of words whose
presence you want to check in searchfile.

33 CSci 132 Practical UNIX with Perl

Summary

This lesson introduced a very powerful computational tool
called regular expressions. The work that goes on behind the
scenes to match them is significant. Tools like grep can
simplify many of the tasks you have to do, so it is worth the
time to master regular expressions now.

34 CSci 132 Practical UNIX with Perl

Things to try

Write a grep command to display all files in the PWD that
are executable by user, group, and others.
Write a command that lists all files in the PWD that are Perl
scripts. (Use the file command with grep.)
Write a command that lists all nitrogen atoms in the valine
amino acids in a given PDB file. (N is the symbol for nitrogen
and VAL is the symbol for valine.)
Read the man page in section 7 for regex.

	Pattern Matching
	The Danger That Lies Ahead
	File Globs
	Wildcards in File Globs: *
	File Globs: Character Classes
	File Globs: Character Class Complements
	File Glob Wildcards
	Wildcards in File Globs: Examples
	More File Glob Examples
	Empty File Globs
	Regular Expressions in Filters
	grep and Regular Expressions
	Regular Expressions: What Are They?
	Regular Expression Form
	Regular Expression Building Blocks
	Basic re Operations: Concatenation
	Basic re Operations: Closure (*)
	Basic re Operations: Closure (*)
	More Examples of *
	Basic Character Classes
	More About Character Classes
	Character Classes Combined with *
	Predefined Character Classes
	Anchors
	Metacharacters
	Extended Regular Expressions
	Extended Regular Expressions: | and +
	Extended Regular Expressions: ?
	Backreferences
	Backreference Examples
	Backreferences in General
	fgrep
	Summary
	Things To Try

