
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Perl BasicsPerl Basics

Structure, Style, and Documentation

2 CSci 132 Practical UNIX with Perl

Easy to read programs

Your job as a programmer is to create programs that are:
 easy to read
 easy to understand,
 easy to modify, and
 safe and robust,

They must of course be correct solutions to the problems
they are supposed to solve.
You must believe in the importance of these objectives,
otherwise you will be creating throw-away code of no use to
anyone, not even yourself, not long after you write it.

3 CSci 132 Practical UNIX with Perl

What makes code more readable?

The following is a correct but unreadable Perl program:

$s=0;$i=1;while($i<=10){$s=$s+$i;$i=i+1;
}print "The sum of 1 through 10 is $s\n";

It is a program that no one will want to use because it is
difficult to read and understand. Why?
For one thing, there is no use of space to separate the parts.

4 CSci 132 Practical UNIX with Perl

White space for readability

The same program using "white space" (blanks, tabs,
newlines) to make it readable:
$s = 0;
$i = 1;
while ($i <= 10) {

 $s = $s + $i;
 $i = $i + 1;
}
print "The sum of 1 through 10 is $s\n";
Perl ignores all white space, so you can use it to make the
program easier to read without affecting the meaning of the
program.

5 CSci 132 Practical UNIX with Perl

White space wisdom

These are good rules for using white space well:
 Always put at most one simple statement per line.
 Always put spaces between operators (such as + <= =

) and their operands (variables like $s and $i, and literals
like 1 and 10.)

 Almost never put multiple newlines between statements
that are part of a block. A block is a sequence of
statements between curly braces {}.

 Always use indentation to indicate logical structure, as
explained next.

6 CSci 132 Practical UNIX with Perl

Indentation to indicate structure

The while keyword introduces a loop. We'll learn about
loops soon. Loops are just one of many program structuring
concepts in general, and in Perl too.

It is easier to identify and understand loops if the loop body,
i.e., the code between the curly braces, is indented from the
start of the while keyword, usually by 4 spaces.

while ($i <= 10) {

}

loop body
$s = $s + $i;
$i = $i + 1;

loop condition

7 CSci 132 Practical UNIX with Perl

Indentation to indicate structure

The if keyword introduces a conditional branch,
sometimes called a decision structure. We'll learn about these
very soon. They also require indentation, as illustrated:

if ($i < 0) {

}
else {

}

true branchstatement;
statement;

statement;
statement;

false branch

8 CSci 132 Practical UNIX with Perl

Naming things

In all programming languages, the programmer gets to choose
the names of various things used in a program. What "things"
you can name depend on the language. We begin by focusing
on variables. These “things” are technically called symbols.
A variable is a storage cell for your program. The program
can store data in it and retrieve data from it. It exists
somewhere in memory. Variables have names.
In the example program, $s and $i are variables. (In Perl, a
variable name must begin with a '$', or one of another set of
funny characters like '@' or '%') .

9 CSci 132 Practical UNIX with Perl

Variable names

Naming a variable $s is like naming a child, "child1". (Yes,
George Foreman basically did that.) Pity the poor person who
has to read this program and try to discern what $s is for.

Variables should be given descriptive names. In this program,
$s is being used to accumulate a sum that will be printed in
the end. It is much better to name it $sum.

$i stores the successive values to add to the sum. It is 1, then
2, then 3, and so on. It is like a counter. Naming it
$counter is so much clearer.

Now look at the program.

10 CSci 132 Practical UNIX with Perl

The same program, improved again

$sum = 0;
$counter = 1;
while ($counter <= 10) {

 $sum = $sum + $counter;
 $counter = $counter + 1;
}
print "The sum of 1 to 10 is $sum\n";

Even without knowing Perl, you can probably guess what
this program is doing now.

11 CSci 132 Practical UNIX with Perl

Choosing good names

Perl lets names be up to 251 characters long, so never blame
Perl for being cheap with your names.
Names must begin with a letter or underscore, and after that
it can contain letters, upper or lowercase, digits, and
underscores.
Underscores can be used like spaces in names that you want
to be several words (called underscore_case):
$file_name $money_spent_so_far $user_reply
$line_length $prompt_string $word
$num_amino_acids

12 CSci 132 Practical UNIX with Perl

More about names

Some people do not use underscores. Instead they make each
word after the first start with an Uppercase letter (called
camelCase):

 $fileName $moneySpent $userReply $numAminoAcids

This is a matter of choice. In any one program though, you
should adhere to one convention or the other.
Whatever you do, do not use obscure names like $p, $tt,
and $xyz when writing programs. There are certain limited
conditions under which it is acceptable to name a variable $i
or $j, but until you know what these are, they should not
appear in your programs.

13 CSci 132 Practical UNIX with Perl

Comments

Every programming language provides a means to include
text that will be ignored by the compiler. In Perl, the pound
sign # tells the compiler that the rest of the line, including the
#, should be ignored,

This is your chance to stick stuff into the program that exists
solely for you and the thousands of people who will someday
read your program.
So what stuff do you put there? Comments.
A comment is explanatory text that helps the reader to
understand some part of the program.

14 CSci 132 Practical UNIX with Perl

Uses of comments

Comments can be used in several ways:
 At the beginning of every program file, to provide

information about the file such as author, purpose, list of
changes, etc. This is called a prologue.

 To explain hard-to-follow algorithms;
 To introduce new pieces of a large program visually;
 To provide short descriptions of data structures used in the

program;
 To temporarily remove statements from a program while

testing and debugging it.

15 CSci 132 Practical UNIX with Perl

An example program prologue

#!/usr/bin/perl -w
sums -- prompts user to enter a number N and
prints the sum of all numbers <= N
Written by Stewart Weiss
October 14, 2006
Usage:
sums

#---
This is a title block
#---

.... code goes here

16 CSci 132 Practical UNIX with Perl

Good and bad comment styles

You should look at the various “demo” programs for
examples of good comments. The textbook has examples of
bad commenting too.
In general, if you have named your variables very well, you
will not need to explain as much as if you have not.
You should always have a comment block at the top of every
file, with program name, author, creation date, purpose, usage
information, and list of modifications.
As we go along, I will fill in more about what needs to be in a
good program.

17 CSci 132 Practical UNIX with Perl

Being strict

Perl lets you get away with many dangerous and sloppy
habits. It also provides the means to prevent you from doing
this.
In this class, you will be required to follow the second path,
the path of programming righteousness.
Perl has two tools to accomplish this: warnings and the "use
strict" pragma. You will have to use both of these in each
program you write.
A pragma is a command telling Perl what to do about
something.

18 CSci 132 Practical UNIX with Perl

Warnings

Perl, like most compilers, gives you the option to turn on
warning messages when it checks the syntax of your program.
A warning can be issued when it sees something that might
look like a mistake. Perl cannot be completely sure when
something is a mistake, so it displays a warning and lets you
decide.
For example, if you store a value into a variable but never
use the value from that variable, Perl will issue a warning,
because there is no point in putting a value in a variable and
never using it; this usually means that either you forgot a
statement or you mistyped a variable name. By pointing it out
to you, it helps you to find potential mistakes.

19 CSci 132 Practical UNIX with Perl

Warnings

There are a few ways to turn on warnings.
The -w flag in the first line turns them on, but only if you use
the form

 #!/usr/bin/perl -w

You can instead write
 #!/usr/bin/env perl
 use English;
 $WARNING = 1;

You can use the shorter form of $WARNING, namely $^W ,
and then you do not need the line “Use English;”.

When $^W has the value 1, it is the same thing as using the
-w flag.

20 CSci 132 Practical UNIX with Perl

Example

To illustrate, suppose you made a mistake and wrote this
program instead of the one we created earlier:

$sum = 0;
$i = 1;
while ($i <= 10) {
 $sum = $s + $i; # $s should be $sum
 $i = $i + 1;
}

The -w switch would catch the mistake where you forgot to
change the $s to $sum.

21 CSci 132 Practical UNIX with Perl

Strictness

The "use strict;" pragma tells the compiler to detect
when you are using certain types of constructs that are
error-prone.
A common kind of sloppiness is using variables without first
declaring them, as in

 #!/usr/bin/env perl
 $fastfood = "SloppyJoe";
 print "This program is like $fastfood\n";

$fastfood was supposed to be "declared" first, meaning
that perl was told that $fastfood is a certain type of
variable.

22 CSci 132 Practical UNIX with Perl

Strictness

You should declare all variables that your program uses with
"my" statements:

my $fastfood;
my ($counter, $sum, $name);
If you put a strictness pragma in the program, it will catch
when you are not strict:
You can think of “my” as meaning that these names are names
you created. This is not really accurate, but for now the goal is
an easy way to remember to do this.

23 CSci 132 Practical UNIX with Perl

A sloppy program with strictness
checking

If you try to run this program
 #!/usr/bin/env perl
 # prologue here but no room in slide
 use strict; # turn on strictness
 $^W = 1; # turn on warnings
 $fastfood = "SloppyJoe";
 print "This program is like $fastfood\n";

 you will get the error message
 Global symbol "$fastfood" requires explicit

package name at line 5 in sloppy.pl

24 CSci 132 Practical UNIX with Perl

A sloppy program with strictness
checking

The correct version of the preceding program:

 #!/usr/bin/env perl
 # prologue here but no room in slide
 use strict; # turn on strictness
 $^W = 1; # turn on warnings
 my $fastfood = "SloppyJoe";
 print "This program is like $fastfood\n";

25 CSci 132 Practical UNIX with Perl

Summary of good style

Use white space to indicate structure.
Choose meaningful names.
Use comments to make your code understandable.
Declare all variables with "my" and comment them if
necessary.
Use the -w switch or the $^W variable and the use strict
pragma.
Be consistent in the style choices you make.

	Perl Basics
	Easy To Read Programs
	What Makes Code More Readable?
	White Space for Readability
	White Space Wisdom
	Indentation to Indicate Structure
	Indentation to Indicate Structure
	Naming Things
	Variable Names
	The Same Program, Improved Again
	Choosing Good Names
	More About Names
	Comments
	Uses of Comments
	An Example Program Prologue
	Good and Bad Comment Styles
	Being Strict
	Warnings
	Warnings (2)
	Example
	Strictness
	Strictness (2)
	Strictness Checking Example
	Corrected Program
	Summary of Good Style

