
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

A First Perl ProjectA First Perl Project

Building a Program from Scratch

2 CSci 132 Practical UNIX with Perl

Overview

In this lesson we develop a Perl program from scratch in order
to demonstrate the process of program development.
The problem statement will be initially vague, as they usually
are. Problem refinement is an iterative process in which, as
the user or client interacts with you, the developer, he or she
clarifies the objectives and the details of the program. The
ultimate goal of this process is to create a precise and
unambiguous problem statement, called a requirements
specification, in software engineering jargon.
In this scenario, you are the developer and the client is
imaginary.

3 CSci 132 Practical UNIX with Perl

The problem

We would like a program that repeatedly displays simple
multiplication and division problems, waits for the user's
answer, and checks the answer for correctness.
Each multiplication problem will have single-digit operands.
Each division problem shall be the inverse of a multiplication
problem with single-digit operands, so that the answer will
also be a single digit.
The program will display a prompt character '>' to let the user
know it is waiting for an answer.
The program will terminate when the user presses the 'q' key.

4 CSci 132 Practical UNIX with Perl

Examples of problems

These are the kinds of problems it should create:
 8 x 9 = ?

63 / 7 = ?
56 / 7 = ?
5 x 0 = ?

It can use the 'x' to represent multiplication and '/' to
represent division.

5 CSci 132 Practical UNIX with Perl

Example session

A session may look like
$ mathq
Welcome to the math question program.
4 x 8 = ?
> 32
Correct!
54 / 6 = ?
> 8
Incorrect. 54 / 6 = 9
7 * 7 = ?
> q
Thank you for playing mathq. Bye.
$

6 CSci 132 Practical UNIX with Perl

Handling user input

There are four possible responses from the user:
 He/she typed a correct numerical answer
 He/she typed an incorrect numerical answer
 He/she typed q to quit.
 He/she typed something "invalid".

The Problem Statement is supposed to tell us what the
program should do in the last case. If it does not, it is up to
use to decide what is reasonable. Most likely our choice will
not make the client happy, so that will result in a change in the
Problem Statement.

7 CSci 132 Practical UNIX with Perl

Handling bad user input

For this first project, we, the developers, shall make the
reasonable decision that if the user enters any input other than
a number or the letter 'q', the program will display some
simple error message and redisplay the question and prompt.
The error message will be
"That was an invalid response. Enter an integer or
'q' to quit."

8 CSci 132 Practical UNIX with Perl

Program design

Having created an informal but precise problem statement, we
are ready to design the program.
There are several schools of thought about how to design a
program. We will start with a top-down approach.
In this approach, we start with descriptions of the sweeping
tasks that the program needs to accomplish, and we gradually
take each task in turn and decompose it into smaller tasks.
Eventually the small tasks get converted to program code.

9 CSci 132 Practical UNIX with Perl

First pass

The following are some of the tasks the program needs to do
display the startup message
generate a random math question and solution
display the question and get valid response
check correctness of user's response
display the exit message

This is not a description of the program flow; it is just a set of
tasks that the program has to do.

10 CSci 132 Practical UNIX with Perl

Second pass

We now write a rough design for the program, using the tasks
we just described.
display the startup message
LOOP: until the user wants to quit:
{

 generate a random math question and solution
 display the question and get valid response
 check correctness of user's response

} end of LOOP
display the exit message

11 CSci 132 Practical UNIX with Perl

Pseudo-code

The previous description of the program is written in a
language commonly called pseudo-code. Pseudo-code is like
a pidgin language of computer scientists; it is a language that
is part programming language and part English, evolved to
describe programs in an English-like way.
The textbook by Andrew Johnson uses a style of pseudo-code
based on an idea called Literate Programming, invented by
Don Knuth. We will follow it only loosely.
Each pseudo-code task is enclosed in << >> pairs and is
called a chunk.
If I use a Perl keyword anywhere, I will underline it.

12 CSci 132 Practical UNIX with Perl

Literate programming version

<<mathq>>==
display the startup message
LOOP: until the user wants to quit:
{
 <<generate a random math question and solution>>
 <<display the question and get valid response>>
 <<check correctness of user's response>>
} end of LOOP
display the exit message

Some tasks are not complex enough to be considered chunks;
they will be replaced by a single statement eventually.

13 CSci 132 Practical UNIX with Perl

Chunks

The first line,
<<mathq>>==

is a chunk definition. It means that the the task <<mathq>>
is defined by the following sequence of statements.
mathq is the outermost chunk. We now take each chunk in
turn and decompose it into programming statements. We start
with generating questions and solutions.

14 CSci 132 Practical UNIX with Perl

Generating math questions

We need to pick two one-digit numbers randomly. We also
need to pick an operation, multiplication or division,
randomly.
Fortunately, Perl has a function that can generate random
numbers, so we can use that function to solve this problem.
A function in a programming language is like a mathematical
function. It has arguments and it has a value. For example, in
math, if we write f(x) = x2

 then we say that f(x) is a function whose value is x2.
In computer science we would say that f(x) is a function that
returns the square of x.

15 CSci 132 Practical UNIX with Perl

Task: generate a random math question and solution
 set first_num to a random integer in 0..9
 set second_num to a random integer in 0..9
 pick a random integer from 0 to 1
 if it is 1 {
 <<create mult question and solution>>
 } else {
 <<create division question and solution>>
 } #endif

It is assumed that the questions will use the two numbers
chosen in the first two steps.

Generating math questions (2)

16 CSci 132 Practical UNIX with Perl

The if-else statement

The preceding chunk used the if … else structure that you
saw briefly in an earlier lesson. Its syntax in Perl is

 if (expression) {

 true_statement_block
 } else {
 false_statement_block
 } #endif

If the expression has a true value, the true statement block
will be executed. Otherwise the false statement block will be
executed. After either, the next instruction to be executed is
the one after the #endif comment. Look at the demo
program in Chapter03 on our UNIX host.

17 CSci 132 Practical UNIX with Perl

Refining further: Multiplication question

We now refine the two chunks inside the previous chunk.
 Task: create mult question and solution
 set solution to first_num times second_num
 set question to "first_num x second_num = ?"

In the question, we are not writing the literal words
"first_num" or "second_num"; we are writing the numbers
that were randomly generated. For example, if first_num is 7
and second_num is 8, the question would be

 "7 x 8 = ?"

18 CSci 132 Practical UNIX with Perl

Refining further: Division question

The division question requires some ingenuity. We want the
answer to be a whole number. Therefore, we can generate a
multiplication problem such as 7 x 6 = ?, calculate the answer,
42, and then swap the answer with the first number, turning
into division at the same time: 42 / 6 = ?
This will always give us an integer solution.

 Task: create division question and solution
 set solution to first_num times second_num
 swap values of first_num and solution
 set question to "first_num / second_num = ?"

19 CSci 132 Practical UNIX with Perl

Incorporating refinements

We can incorporate the preceding refinements into a single
piece of code that will eventually become the instructions to
implement the <<generate a random math question and
solution>> chunk. That code is found in the
perldemos/chapter03 directory in the cs132 directory
tree.
We can repeat this process for each of the second level chunks
written as tasks in <<mathq>>.

20 CSci 132 Practical UNIX with Perl

Refining the next chunk

Displaying a question is easy, and getting the user's reply is
also easy. But ensuring that it is a valid response requires
looking at the response and, if it is not valid, making them try
again, and doing this until they enter a valid response. This is,
in effect, a loop:

 Task: display question and get valid response
 set response_is_valid to FALSE
 LOOP: until response_is_valid is TRUE {
 display question
 get user's response
 <<check if response is valid>>
 #sets response_is_valid if it really is
 } end of LOOP

21 CSci 132 Practical UNIX with Perl

Notes

The pseudo-code statement
 set response_is_valid to FALSE

is almost like a Perl statement. It is almost explicitly stating
that we need a variable, here named
response_is_valid, and that we will set its value to the
logical value FALSE. (Hopefully you know enough logic to
know that there are just two values, FALSE and TRUE.)
The hardest task is figuring out how to design the <<check
if response is valid>> chunk.

22 CSci 132 Practical UNIX with Perl

Checking validity of input

A task in every interactive programming project is validating
input. It sometimes requires more code than the rest of the
program.
In this program, the task is not too difficult; the user is
allowed to enter either all digits or the letter 'q'. Therefore,
this task is reduced to:

 Task: check if response is valid
 if response is all digits or 'q' {
 set response_is_valid to TRUE
 } end of if

23 CSci 132 Practical UNIX with Perl

Checking correctness of user input

The check for correctness is to compare the number that the
user entered to the solution generated earlier:

<<check correctness of user's response>>==
 if response equals solution {
 display correct_response_message
 } else {
 display incorrect_response_message
 } end if

 But the result of the chunk
<<display question and get valid response>>

could be 'q' to quit. We need to test for that first.

24 CSci 132 Practical UNIX with Perl

Checking correctness, revised

The complete chunk is therefore
Task: check correctness of user's response

 if response equals 'q' {
 set user_wants_to_quit to TRUE
 } else {
 if response equals solution {
 display correct_response_message
 } else {
 display incorrect_response_message
 } end if

25 CSci 132 Practical UNIX with Perl

Assembling the chunks

All of the chunks have been written. The entire pseudo-code
program can be assembled now. Take a look at the complete
program, called mathq-pseudo-code.pl, in the
Chapter03 demo program directory.

It is simply a matter of replacing the chunk descriptors by the
chunk definitions that we wrote.
Each of the lines in this program starts with a # so that it is
treated like a comment. I can compile this program as is. It
will do nothing. This way I can slowly convert the code to
Perl and check as I go along.

26 CSci 132 Practical UNIX with Perl

Creating the Perl program: Line 1

The Perl program can be written by converting the
pseudo-code file line by line into legal Perl code. To do this,
you need to know Perl. Since you have not learned Perl yet,
this will be an introduction to Perl by example.
We start with the first line,
display the startup message
print "Welcome to the mathq program.\n";

You can see that all we need is the Perl print statement,
which you have seen before.

27 CSci 132 Practical UNIX with Perl

Creating the Perl program: Outer loop

The next step is to encode the logic of the main loop of the
program. The main loop is the outer loop, the one that
contains the three chunks.
Perl has an until loop. The until loop looks like:
 until (condition) {

 statement_block
 }

As long as the condition is false, the statement block is
executed, and the condition is retested. When the condition is
false, the program continues to the statement after the loop.

28 CSci 132 Practical UNIX with Perl

Creating the Perl program: Outer loop

We need to declare and initialize the variable to control the
loop. In Perl, there is no special value FALSE or TRUE. The
value 0 is FALSE (and so is the empty string). Any non-zero
value is TRUE. (Perl borrowed this idea from C.)
The main loop is therefore:
 my $user_wants_to_quit = 0;
 until ($user_wants_to_quit) {

 statement_block
 }

We will rewrite this in the next slide, with the inner chunks
and the closing statement.

29 CSci 132 Practical UNIX with Perl

The main loop

This is the main loop so far. The next step is converting the
chunks to code.

print "Welcome to the mathq program.\n";
my $user_wants_to_quit = 0;
until ($user_wants_to_quit) {
 <<generate a random math question and solution>>
 <<display the question and get valid response>>
 <<check correctness of user's response>>
}
print "Exiting the mathq program.\n";

30 CSci 132 Practical UNIX with Perl

Perl functions: rand()

Perl has a function named rand() that works as follows. If
you give rand() an argument, say 10, as in
 $x = rand(10);

then rand() will generate a random number, possibly with
a fractional part, at least 0 but less than 10, and return it. In
this case it would be assigned to the variable $x.

When we write the names of functions, like rand(), we
always put empty parentheses after the name so that the
reader knows it is a function. When you use it in a program,
you put a value between the parentheses.

31 CSci 132 Practical UNIX with Perl

Creating random integers

Because rand() returns numbers with fractions, we need to
"chop off" the fraction. The function int() chops the
fraction off of its argument. For example,
 int(3.5) has the value 3

To create two random integers between 0 and 9 and assign
them to the variables $first_num and $second_num, we
therefore compose int() on rand() as in
 my $first_num = int(rand(10));
 my $second_num = int(rand(10));

32 CSci 132 Practical UNIX with Perl

Choosing the operator randomly

To choose the operator randomly, int(rand(2)) will be
used. This will return either 0 or 1. (Why?)
We arbitrarily decide that if it is a 0, we will use division and
if it is 1, we use multiplication:
my $operator = int(rand(2));
if ($operator == 1)
 <<create mult question and solution>>
else
 <<create division question and solution>>

33 CSci 132 Practical UNIX with Perl

Declaring variables

Sometimes as you write a program you will discover that you
need more variables. The variable declarations (those "my"
declarations) should be placed before the place you use the
variables. Exactly where to put them depends on concepts you
have yet to learn.
For now, we need to declare two more variables:
$question and $solution. $question will contain
the text of the question and $solution will contain the
numerical answer that we calculate.
The entire <<generate a question and its solution>>
is on the next slide.

34 CSci 132 Practical UNIX with Perl

The Code to generate math questions

my $first_num = int(rand(10));
my $second_num = int(rand(10));
my $question;
my $solution;
my $operator = int(rand(2));
if ($operator == 1) {
 $solution = $first_num * $second_num;
 $question = "$first_num x $second_num = ?";
} else {
 $solution = $first_num * $second_num;
 ($solution, $first_num) = ($first_num, $solution);
 $question = "$first_num / $second_num = ?";
}

35 CSci 132 Practical UNIX with Perl

Explanation

In the preceding slide, the statement,
($solution, $first_num) = ($first_num, $solution);

is an example of a list assignment. We will learn about these
later. In effect, it copies the value from $first_num into
$solution and copies the old value of $solution into
$firstnum.

Also, you should notice that there are variables inside the
strings, as in

"$first_num x $second_num = ?"

In this case, Perl first evaluates the variables, and then puts
the values into the string.

36 CSci 132 Practical UNIX with Perl

Code to process input

The next chunk is elaborated now. We need a variable to store
the user response and one to store the test if it is valid:
 my $response;
 my $response_is_valid;

The chunk once again is:
 Task: display question and get valid response
 set response_is_valid to FALSE
 LOOP: until response_is_valid is TRUE {
 display question
 get user's response
 <<check if response is valid>>
 } end of LOOP

37 CSci 132 Practical UNIX with Perl

Code to process input (2)

Our first pass is:
 my $response;
 my $response_is_valid = 0; # set to FALSE
 until ($response_is_valid) {

 print "$question\n"; # display question
 get user's response
 <<check if response is valid>>
 }

We now have to fill in the code to get the user's response and
check it.

38 CSci 132 Practical UNIX with Perl

Getting user input

Reading the keyboard input is accomplished with:
 $response = <STDIN>;

This statement causes everything the user types on the
keyboard up to and including the first <ENTER> keypress, to
be stored in the variable $response. To remove the
<ENTER> key character from $response, Perl has a function
called chomp(). chomp() removes that character:
 $response = <STDIN>;

 chomp($response);

39 CSci 132 Practical UNIX with Perl

Incorporating the input

Putting it together, we now have:
 my $response;
 my $response_is_valid = 0; # set to FALSE
 until ($response_is_valid) {

 print "$question\n> "; # display question
 $response = <STDIN>;
 chomp($response);
 <<check if response is valid>>
 }

Next we fill in the chunk that validates input.

40 CSci 132 Practical UNIX with Perl

Input validation chunk

We need to complete this chunk:
 Task: check if response is valid
 if response is all digits or 'q' {
 set response_is_valid to TRUE
 } end of if

How can we test if $response is all digits or equals the
letter q? With Perl's matching operator and regular
expressions.
Perl has regular expressions similar to grep's.

41 CSci 132 Practical UNIX with Perl

Perl's match operator

We can check whether a variable, such as $response,
contains a string that matches a pattern using the expression:
 $response =~ m/pattern/

where pattern is a regular expression with mostly the same
syntax as that of grep. The =~ operator is Perl's binding
operator. The variable on the left-hand side of =~ is
searched for a match of the pattern on the right-hand side. If a
match is found, a true value is returned, otherwise a false
value is returned.
The m// operator is the match operator. (You do not
need the 'm' -- // by itself also works.

42 CSci 132 Practical UNIX with Perl

Perl's match operator

For example, to check if $response matches a line that
contains at least one digit and nothing but digits:
 $response =~ m/^[0-9]+$/

or equivalently,
 $response =~ m/^\d+$/

since \d is the pattern that matches any digit, and + is the "1
or more occurrences" operator. Do you remember that ^ and
$ are anchors to the beginning and end of a line in grep? In
Perl they anchor to the beginning and end of a string.

43 CSci 132 Practical UNIX with Perl

Comparing strings

To check if $response is equal to a particular string, we can
use the string comparison operator, eq:
$response eq 'q'

This returns true if and only if the string stored in
$response is exactly 'q'. Putting this together, we have:

 if ($response =~ m/^[0-9]+$/ or $response eq 'q'){
 $response_is_valid = 1;
 }
 else {
 print "Invalid Input:Enter an integer ";
 print "or 'q' quit\n";
}

44 CSci 132 Practical UNIX with Perl

Finishing up

The last chunk to convert is the chunk that compares the
response to the solution and displays the appropriate message.
Task: check correctness of user's response

 if response equals solution {
 display correct_response_message
 } else {
 display incorrect_response_message
 } end if

This is easily transformed into code, as shown next.

45 CSci 132 Practical UNIX with Perl

Checking correctness

Task: check correctness of user's response
 if ($response == $solution) {
 print "Correct!\n";
 } else {
 print "Incorrect: $question $solution\n";
 }

This completes the code. Take a look at the final program in
the Chapter03 directory.

46 CSci 132 Practical UNIX with Perl

Is the program correct?

If you typed the program correctly, you should have no syntax
errors. If not, you might find some. When you run the
program, Perl will tell you the line number on which they
occur. You can use any line editor to find that line and fix the
mistake.
If the program runs, it is not necessarily correct. You need to
test it with many different types of inputs, and try to make it
fail.
This particular program is correct, except for one error: it will
occasionally generate a division by zero, such as 6/0 = ?
Fixing this requires some redesign.

47 CSci 132 Practical UNIX with Perl

What next?

You just had an overview of the development of a Perl
program from problem statement to solution, like building a
house starting with the client's ideas for what it is supposed to
look like. This gives you the big picture.
The method was a top-down approach, starting with large
ideas and making them more detailed and precise with each
step.
You don't have to know Perl to design chunks. but you do
have to learn the bricks and mortar of Perl to write the
program. That is what follows.

	A First Perl Project
	Overview
	The Problem
	Examples of Problems
	Example Session
	Handling User Input
	Handling Bad User Input
	Program Design
	First Pass
	Second Pass
	Pseudo-Code
	Literate Programming Version
	Chunks
	Generating Math Questions
	Generating Math Questions (2)
	The If-Else Statement
	Refining Further: Multiplication Question
	Refining Further: Division Question
	Incorporating Refinements
	Refining the Next Chunk
	Notes
	Checking Validity of Input
	Checking Correctness of User Input
	Checking Correctness, Revised
	Assembling the Chunks
	Creating the Perl Program: Line 1
	Creating the Perl Program: Outer Loop
	Creating the Perl Program: Outer Loop
	The Main Loop
	Perl Functions: rand()
	Creating Random Integers
	Choosing the Operator Randomly
	Declaring Variables
	The Code to Generate Math Questions
	Explanation
	Code to Process Input
	Code to Process Input, 2
	Getting User Input
	Incorporating the Input
	Input Validation Chunk
	Perl's Match Operator
	Perl's Match Operator (2)
	Comparing Strings
	Finishing Up
	Checking Correctness
	Is The Program Correct?
	What Next?

