
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Perl Data Types and VariablesPerl Data Types and Variables

Data, variables, expressions, and much more

2 CSci 132 Practical UNIX with Perl

Data types in Perl

Perl is unlike most high-level languages in that it does not
make a formal distinction between numeric data and character
data, nor between whole numbers and numbers with fractional
parts.
Most modern languages invented before Perl ask you to
declare in advance whether a variable will store a character, a
whole number, a floating point number, or something else.
Not Perl.

3 CSci 132 Practical UNIX with Perl

Typelessness in Perl

To illustrate, if we declare a variable named $anything
using the statement

 my $anything;

 then all of the following assignment statements are valid:
 $anything = "Now I am a string";
 $anything = 10;
 $anything = 3.141592;

In short, in Perl, variables are untyped.

4 CSci 132 Practical UNIX with Perl

Three data classes

However, Perl does distinguish the class of data, i.e., whether
it is primitive or structured. Scalars are primitive and lists and
hashes are structured:

 scalar data a single data item

 list data a sequence or ordered list of scalars

 hash data an unordered collection of (key,value) pairs

Scalars may be numbers such as 12 or 44.3 or strings like

 "the swarthy toads did gyre and gimble in the wabe".
There are other kinds of scalars as well, as you will now see.

5 CSci 132 Practical UNIX with Perl

Literals

A literal is a value explicitly represented in a program. For
example, in

print 56;

the numeral 56 is a numeric literal, and in

print "This is a string literal.";

the string "This is a string literal." is a string
literal.
Some people call literals constants. It is more accurate to call
them literals.

6 CSci 132 Practical UNIX with Perl

Numeric literals in Perl

Integers:
-52 6994 6_994

 #Note that _ can be used in place of ','

Fixed decimal:
3.1415 -2.635 1.00

Floating point (scientific notation):
7.25e45 # 7.25 x 10^45
-12e-48 # -12.0 x 10^(-48)
1.000E-5 # 1.000 x 10^(-5)

Octal: 0377 # octal, starts with 0
Hexadecimal: 0x34Fb # hexadecimal, case insensitive

7 CSci 132 Practical UNIX with Perl

Internal representation of numbers

Internally, all numbers are stored and computed on as floating
point values. Floating-point representation is like scientific
notation; a number is stored as a mantissa and an exponent,
either of which may be positive or negative or zero.
The advantage of floating-point is that it can represent
fractions, extremely large magnitudes such as the number of
stars in the universe, and extremely small magnitudes such as
the distance from a nucleus to an electron in meters.
The disadvantage is that not all numbers can be represented
accurately. This is not only because of scientific notation, but
because of the nature of digital computers.

8 CSci 132 Practical UNIX with Perl

Inaccuracy of numbers

Not all numbers can be represented exactly in a digital
computer, because computers can only represent numbers as
sums of powers of 2. Try writing 1/3 as a sum of powers of 2
and you will see it cannot be done. How about 1/5th? Not that
either. Not 1/10th either. In fact, most numbers are
represented with some small inaccuracy.

9 CSci 132 Practical UNIX with Perl

Gaps in numeric representation

Imagine that the black rectangles below represent numbers
that can be represented in floating point and blue are those
that cannot. The rectangle below is like a piece of the number
line showing that there are big gaps between representable
numbers.

The inaccuracies and gaps can lead to large errors in
calculations. Numerical Methods is a branch of computer
science concerned with methods of computation that do not
produce large errors.

10 CSci 132 Practical UNIX with Perl

String literals: Double-quoted strings

Double-quoted strings can contain special characters, such as:
\n, \t, \r, \177 (octal 177)

 You have already seen that \n is a newline character. \t is
the tab. You can see a more complete list of these special
characters in the textbook.
\c is the prefix for inserting control characters into strings, as
in:

\cC \cD control-C and control-D

11 CSci 132 Practical UNIX with Perl

String literals: Case conversion

Other useful special characters are \L, \U, and \E. The pair

\Ltext\E converts text to lowercase

 \Utext\E converts text to UPPERCASE:

 "\LABc\E" # is abc
 "\UaBc\E" # is ABC
 "\L123\E" # is 123

12 CSci 132 Practical UNIX with Perl

Backslash escape character

If you want to insert a character that has special meaning, you
use the backslash to "escape" the special meaning. Since " is
a special character, to insert a " into a string, write \"

To insert a backslash, use \\. Example:
print "Use \\ before \" to put a \" in a string.";

This will print:
Use \ before " to put a " in a string.

13 CSci 132 Practical UNIX with Perl

Variables in double-quoted strings

You can put a variable in a double-quoted string. When the
string is evaluated, the variable's value will be substituted into
the string in the given position.
$greeting = "Welcome to my planet";
$count = 40_000_000_000;
print "$greeting.\nThere are $count of us here.\n";

will print
Welcome to my planet.
There are 40000000000 of us here.

14 CSci 132 Practical UNIX with Perl

String literals: Single-quoted strings

Perl also has single-quoted strings, and they behave
differently than double-quoted strings.
Within a single quoted string, variables are not substituted
and backslashed special characters have no meaning:

$number = 100;
print '$number';# prints $number
print '
';
 # prints a blank line

15 CSci 132 Practical UNIX with Perl

String literals: single-quoted strings

To put ' or \ into a single-quoted string, precede with a \ as
in
'don\'t do it!' # don't do it!
'\\/\\/' # \/\/

16 CSci 132 Practical UNIX with Perl

Scalar variables

Scalar variables can store numeric data, strings, and
references. We will get to references later.
Although Perl does not require you to declare variables before
using them, in this class, you will be required to use the
strict pragma, which forces you to declare them first (or
use another alternative.)
The my declaration declares variables. To declare more than
one, put them in parentheses, otherwise only the first will be
declared properly:

my ($count, $pattern);

17 CSci 132 Practical UNIX with Perl

The scoop on my declarations

When you use my to declare a variable, as in

my $var;

you are telling Perl two things:
1. That $var is a name that can be used from that point

forward in the innermost enclosing block (pair of curly
braces), and

2. that there is storage set aside for $var

In this case you are also telling Perl that it is a scalar
variable.

18 CSci 132 Practical UNIX with Perl

Variables, names, and storage

You should picture the relationship between the variable, its
name, and its storage like this:

$var

The declaration creates the empty storage container and the
name, and binds (attaches) the name $var to the container.
The blue dot represents the connection between the name and
the storage in the schematic.

19 CSci 132 Practical UNIX with Perl

The assignment operator

The assignment operator, =, is used to store a value into a
variable, as in:

$count = 0;
$pi = 3.141592;
$title = "A First Perl Program";

The assignment operator is also used for list assignments, as
in:
 ($firstname, $initial, $lastname) =

 ('Alfred', 'E', 'Newman');

This assigns 'Alfred' to $firstname, 'E' to $initial, and
'Newman' to $lastname.

20 CSci 132 Practical UNIX with Perl

Assignment statement semantics

The effect of the assignment statement,
$var = 100;

on the schematic diagram of the name-variable relationship is
as follows:

$var

100$var

$var = 100;

21 CSci 132 Practical UNIX with Perl

Rules to remember

Reading a value from a variable does not remove the value
from the variable.
Storing a value in a variable replaces any value that was there
before.
If you have not assigned a value to a variable, it will have the
value 0 or undef or "", depending on the context in which
it is used. undef is a special value in Perl that represents the
idea of nothingness.

22 CSci 132 Practical UNIX with Perl

Input

You saw in the first Perl program an example of input:
my $response = <STDIN>;

declares the variable $response and assigns to it whatever
the user enters on the keyboard, up to and including the first
newline character.
The <STDIN> symbol represents an input operation in Perl.

For now, this is the only means you have of obtaining user
input in your program. Later you will learn about other
options.

23 CSci 132 Practical UNIX with Perl

Reading Multiple Values

To read multiple values, one way is to write repeated
instructions like this:

my $x1 = <STDIN>;
 my $x2 = <STDIN>;
 my $x3 = <STDIN>;

and then enter the values on separate lines (using the ENTER
key to separate them). Later you will see how to read a list of
values from STDIN using a single instruction.

24 CSci 132 Practical UNIX with Perl

Expressions

An expression, informally, is either a simple variable or
literal or function that returns a value, or a composition of
these things built up by applying various kinds of operations
such as arithmetic operations and other operations as well.
These are examples of legal Perl expressions:
12 + 9 # 21 : 12 + 9 == 21
6 * 7 # 42 : '*' is 'times', 6*7 == 42
$sum/$count # division of $sum by $count
3 ** 2 # 9 : 3 raised to 2nd power
$count - 1 # $count minus 1
16 % 10 # 6 : 16 % 10 is remainder of 16 / 10

25 CSci 132 Practical UNIX with Perl

More examples

Assume that $x == 5, $y == 11, and $z == 3.
$x ** $z # 5**3 == 125

$y % $z # 11 % 3 == 2 because 11/3 = 3 rem 2
2 ** $x # 2**5 == 32

As in math, operators have precedence. For example, 3+5*4
is really 3+(5*4) because * has higher precedence than +.
5+4 * 3 # 5 + 12 == 17
72 /6/3 # (72/6)/3 == 12/3 == 4
2 ** 3 ** 2 # 2 ** 9 == 512

I.e., all operators are left-associative except **, which is right
associative.

26 CSci 132 Practical UNIX with Perl

Parentheses

You can use parentheses to alter the precedence of operators.
(5 + 4) * 3 # 9*3 == 27
72 / (6 / 3) # 72/2 == 36
(2 ** 3) ** 2 # 8**2 == 64

Remember that it does not matter how much white space you
put in an expression -- it will not alter the precedence!

27 CSci 132 Practical UNIX with Perl

String expressions

While the arithmetic operators are familiar enough, string
operators may be something new for you. Perl provides two
that you should know.
The . is a concatenation operator:

print 'Humpty' . 'Dumpty.';

prints HumptyDumpty.

 $x = "1234567890";
 print $x . $x . $x;

prints 123456789012345678901234567890

28 CSci 132 Practical UNIX with Perl

Repetition

The x is a repetition operator. It replicates the preceding string.
Thus,
 print 'walla' x 2 . 'bingbang';

prints wallawallabingbang

Repetition can be convenient. Consider these two statements:
$dots = '. . ' x 40;
print $dots x 24;

which fills the screen with alternating dots very succinctly.

29 CSci 132 Practical UNIX with Perl

Mixed types

Since a variable might contain a string or a number, how does
Perl execute an instruction like

 $z = $x + $y;

The answer is simple: the operator is the key. Perl uses the
operator to decide.
 + is an addition operator. It only acts on numeric values. So
Perl tries to interpret whatever is in $x and $y as numbers.

30 CSci 132 Practical UNIX with Perl

Mixed types

Similarly, in $first . $last, the . is a string operator,
so Perl tries to convert whatever is in $first and $last
into strings and then concatenate them.
In short, Perl's solution to mixed types is to try to convert
operands to the type that matches the operator when the
program reaches that point.

31 CSci 132 Practical UNIX with Perl

Type conversion rules

A string will be converted to a number as follows:
Any leading white space is stripped.
If the first character looks like the start of a number (a + or -,
or a digit), all characters that can be part of the number are
taken to be part of the number. As soon as a non-number
character is found, the rest of the string is discarded.
If there is no number found by this rule, it has the value 0.

 " +32.7" becomes 32.7

"hello" becomes 0

" 12.3xy" becomes 12.3 because the xy is dropped

32 CSci 132 Practical UNIX with Perl

Type conversion

Numbers are converted to strings in the obvious way: Perl just
converts the number to its decimal numeral. Thus
32.5 becomes the string "32.5".

3.141592 becomes the string "3.141592".

With the -w switch turned on, you will see warnings when
Perl does conversions from strings that do not look like
numbers to numbers.

33 CSci 132 Practical UNIX with Perl

Shorthand assignments

Perl, like some other languages, provides shorthand
assignment operators. These combine a binary operator such
as +, *, -, %, / or string operators with the assignment
operator.
$count += 1; is shorthand for $count = $count + 1;
$prod *= 2; is shorthand for $prod = $prod * 2;

$str .= "/"; is shorthand for $str = $str . "/";

These are, quite literally, just shorthand notations to reduce
the amount of typing you have to do. They are useful, but it is
not essential that you know them.

34 CSci 132 Practical UNIX with Perl

List data

In Perl, a list is an ordered collection of scalar values. A list
is written as a comma-separated list of scalar expressions
enclosed in parentheses:

(11, 7, 5, 3, 2.0)

("Foollum", 'N.E.', "Howe", 'U', "Khan")

($base, $height, $base * $height / 2)
($position, $salary * 7 , 3.141592)

Notice that the elements do not have to be the same "type". In
Perl there is no concept of type. You can mix expressions
containing any numbers, strings, and variables.

35 CSci 132 Practical UNIX with Perl

Lists inside lists

You can even interpolate one list into another:
((1, 2, 3), (4, 5), 6))

is the same list as
(1, 2, 3, 4, 5, 6)

If $a == 4 and $b == 3, then
(($a/2,$b, $a),($a + $b),(),$a + $b)

is the list
(2, 3, 4, 7, 7)

Notice the empty list () in this example. Lists can be empty.
Interpolating an empty list into a list has no effect on it.

36 CSci 132 Practical UNIX with Perl

Lists formed from ranges

You can also create a list using the ellipsis to create a range.
For example:

 (1..5) means (1,2,3,4,5)

 (1..5,6,8) means (1,2,3,4,5,6,8)

 ('a' .. 'd') means ('a', 'b', 'c', 'd')

 ('aa'.. 'cc') means ('aa','ab’,...’az’,
 'ba','bb',...'bz',
 'ca', 'cb', 'cc')

This last one shows that Perl enumerates the strings as if they
were numbers, treating 'a' like a 1 and 'c' like a 2.

37 CSci 132 Practical UNIX with Perl

Printing lists

The print function can also take a list as its argument,
instead of a quoted string. In

print ('See', 'Spot', 'run.', "\n");

the print function is given a list with four elements. But it
prints "SeeSpotrun." which is not what you really want.

If the print function is given a list, it prints the elements
literally, without padding them with white space. You need to
supply the white space yourself:

print ('See ', 'Spot ', 'run.', "\n");

 which prints See Spot run.

38 CSci 132 Practical UNIX with Perl

Quoteword qw()

The quoteword function, qw(), takes a sequence of
whitespace-separated words and returns a list of quoted
strings. This is a convenient function because it reduces the
chance of mistyping a quote.

qw(See Spot run.)

is the same as
('See', 'Spot', 'run.')

You can use a different pair of delimiters. In fact any non-
alphanumeric character can be used:

qw/See Spot run/ or qw#See Spot run#

39 CSci 132 Practical UNIX with Perl

Array (list) variables

An array or list variable is a variable that can store list data.
Array variables start with the @ symbol, not the $. (Think of
the @ as the letter 'a' for array.)
@steps = (1, 2, 3);
@shortcut = (@steps,6,7,8);
@steps is interpolated into shortcut, so
@shortcut is (1,2,3,6,7,8)
@steps = (@steps,@steps);
@steps is now (1,2,3,1,2,3)
@newsteps = @steps;
@newsteps is (1,2,3,1,2,3)

40 CSci 132 Practical UNIX with Perl

Accessing the Elements

The assignment

causes the array named @steps to be filled as shown below.
@steps = (4, 2, 8);

@steps 4 2 8

To refer to an individual element of the array, you need to use
the subscript operator, [] and change the @ to a $

print $steps[0];

prints 4, the first value. You must use $ because a single array
element is a scalar, not a list. The $ is always the first symbol
in a scalar.

41 CSci 132 Practical UNIX with Perl

Subscript operator

Notice two things:
 you have to use $ instead of @ when subscripting the

array to access a single element because a single element
is a scalar value, and $ indicates scalars, and

 the first subscript is 0, not 1.
For example

print $steps[1];

prints the second value, 2, and

 copies the second value into the first.

$steps[0] = $steps[1];

42 CSci 132 Practical UNIX with Perl

Array assignment

The statement,
@steps = (4, 2, 8);

is an array assignment, also called a list assignment.
Although the assignment operator '=' looks the same in the
following two statements:

@steps = (4, 2, 8); # list assignment

$size = 12; # scalar assignment

it is not the same operation. In the first, a list of things is
copied into a list on the left. In the second, a single value is
copied into the variable on the left.

43 CSci 132 Practical UNIX with Perl

The Importance of arrays

Array variables are important because most of the time,
programs must process lists of values. Arrays give you a
convenient way to access the elements of a list.
Soon you will see how arrays and loops go hand in hand, and
how very small Perl programs can be used to apply the same
set of operations to data sets of large size, precisely because
of loops and arrays.
It is important to master this concept now.

44 CSci 132 Practical UNIX with Perl

Array slices

An array slice is a sublist of an array. Suppose that we have
an array named @scores. Suppose

 @scores == (80,85,90,70,75,100,95)

 Then if we assign a slice to @sample_scores as follows:
 my @sample_scores = @scores[0, 2, 5];

 @sample_scores will be (80,90,100)

This is a very powerful tool. In general, it is of the form
@array_name[list of index values]

The list of values can even be a range or another list.

45 CSci 132 Practical UNIX with Perl

Examples of Array Slices

Fill @numbers with 0,1,2,3,4,…, 40
my @numbers = (0..40);
declare @some_numbers to have 10 0's
my @some_numbers = (0,0,0,0,0,0,0,0,0,0);

use slice to copy 2,3,6 into 1,2,3
@some_numbers[1,2,3] = @numbers[0,3,6];

 # @some_numbers is now (0,2,3,6,0,0,0,0,0,0)

declare an array containing the numbers (1,4,7)
my @indices = (1,4,7);

print $numbers[1], $numbers[4], $numbers[7]:
print @numbers[@indices], "\n";

46 CSci 132 Practical UNIX with Perl

Array functions

Perl has a number of functions that act on arrays. For now, we
will look at these: unshift(), shift(), push(),
and pop():
 shift() removes the first element from an array;
 unshift() inserts a new element before the first

element in the array;
 push() adds a new element after the last element in an

array;
 pop() removes the last element from the array.

The following slides demonstrate.

47 CSci 132 Practical UNIX with Perl

shift() and unshift() Functions

Shifting an array means sliding all of its elements to the left.
Imagine you are in a theatre in a full row, and the usher
comes along and asks everyone in the row to move over one
seat to the left. The person in the leftmost seat of the row has
to leave. That is a shift.
Unshifting is just the opposite of shifting. It is an unintuitive
name for the operation perhaps. Unshifting is what would
happen if the usher arrived with a new patron who wants to sit
in the leftmost seat. The usher tells everyone to move one seat
to the right, and seats the new person in the vacant leftmost
seat.
The next slides illustrate.

48 CSci 132 Practical UNIX with Perl

Shifting

The effect of executing $x = shift(@list)

0…

$x = shift(@list);

0…

before:

after:

56 4 7 9

5 4 7 96

$x

@list$x

$x @list

49 CSci 132 Practical UNIX with Perl

Unshifting

The effect of executing unshift(@list,$x);

0…
unshift(@list, $x);

0…

before:

after:
58 4 7 9

5 4 7 9

8

$x

8

@list

$x

$x

@list

50 CSci 132 Practical UNIX with Perl

Examples of shift() and unshift()

my $x = 25;
my @mylist = (5,10,15,20);

unshift(@mylist,$x);
@mylist is now (25, 5, 10, 15, 20)
unshift(@mylist,4,6);
@mylist is now (4, 6, 25, 5, 10, 15, 20)
NOT (6, 4, 25, 5, 10, 15, 20) !!!!
$x = shift(@list);
$x is 4 and @mylist is (6, 25, 5, 10, 15, 20)

51 CSci 132 Practical UNIX with Perl

The push() function

If @list is an array, then
push(@list, $x);

puts the value in $x at the end of the @list array, as shown

0…

push(@list, $x);

before:

after:
5 4 7 96

$x

0…

5 4 7 96 @list$x

$x @list 6

52 CSci 132 Practical UNIX with Perl

More examples

@a = (1, 2, 3); # @a is (1,2,3)
push(@a, 5,6,7); # @a is now (1,2,3,5,6,7)
push(@a,(10,12)); # @a is now (1,2,3,5,6,7,10,12)
@b = (1 ,2, 3); # @b is (1,2,3)
push(@b, @b); # @b is now (1,2,3,1,2,3)

53 CSci 132 Practical UNIX with Perl

The pop() function

If @list is an array, then
pop(@list);

removes the last element from @list. It returns its value so
that it can be accessed:

print pop(@list);
prints the value that was removed.

54 CSci 132 Practical UNIX with Perl

The pop() function

The effect of executing $x = pop(@list)

0…

$x = pop(@list);

0…

before:

after:

45 7 9 6

5 4 7 96

$x

@list$x

$x @list

55 CSci 132 Practical UNIX with Perl

The concept of a hash

A hash is an unordered collection of key-value pairs. A key-
value pair consists of a key and a value associated uniquely
with that key. Keys must always be strings, but values can be
any scalars.
Examples of key-value pairs:
KEY VALUE
last name phone number
ss# salary
country capital city

In general, a key is a look-up term, and the value associated
with the key is the thing you want to find.

56 CSci 132 Practical UNIX with Perl

A hash is a finite function

A hash is really just a finite function. A finite function is a
function on a finite set that assigns to each member of the set
a unique value.
For example, let S be the set of usernames in our class. For
each username, there is a unique password assigned to that
username on the server. Let passwd(x) be the function that
returns the password for username x. Then, passwd() is
essentially a hash: it is a collection of pairs of the form

(username, password)

57 CSci 132 Practical UNIX with Perl

Defining a hash

In Perl, I can create a hash variable named %passwd that can
contain the collection of pairs. I can initialize it as follows:
%passwd = (

'lsnicket' => 'kjashdu',
'ijones' => 'yn89234j',
'jcricket' => '63ndcj8fs',
'aeinstein'=> 'emc2jk'
 # Notice the commas, not semicolons!

);

The notation key => value creates a pair; this hash has four
pairs, such as key 'ijones' with value 'yn89234j'.

58 CSci 132 Practical UNIX with Perl

Hash literals

The form of a hash literal looks like a list literal -- it is
enclosed in parentheses and consists of a comma-separated
list of pairs. The first member of each pair does not have to
have quotes. This is a hash literal:
(

lsnicket => 'kjashdu',
ijones => 'yn89234j',
jcricket => '63ndcj8fs',
aeinstein => 'emc2jk'

)

There are other forms, but for now, we will stick to this one.

59 CSci 132 Practical UNIX with Perl

Hash variables

Hash variables always begin with a percent sign %.

The value associated with a single key is a scalar, and to
access it, you use the syntax:
$hashname{key}

Notice that the $ is used instead of % and that curly braces
{} are used around the key. This is important; the only
difference in syntax between array element access and hash
element access is the difference between [] and {}.

60 CSci 132 Practical UNIX with Perl

Examples

my %phones = (zach => "123-4567",
 anna => "335-7877");
add a new pair dynamically:
$phones{taylor} = "634-5789";

change zach's phone number:
$phones{zach} = "123-9999";

remove anna and her phone from the hash using the
delete function:
delete $phones{anna};

61 CSci 132 Practical UNIX with Perl

Example Continued

here's how to look-up a (key,value) in a hash
print "Enter name to look up:";
my $name = <STDIN>; # read user's input into $name
chomp($name); # remove newline character from $name

This will be explained shortly:
if $phones{$name} { # if exists a key-value pair
 print "$name : $phones{$name}\n";
} else {
 print "$name not found.\n";
}

62 CSci 132 Practical UNIX with Perl

Example Continued Further

The keys() function returns a list of the keys
in its hash argument:
my @names = keys(%phones);
print "@names\n";

The values() function returns a list of the values
in the hash:
my @numbers = values(%phones);
print "@numbers\n";

Run the hashes_01.pl demo in chapter04 to see how
this works.

63 CSci 132 Practical UNIX with Perl

Some reminders about hashes

Hashes do not have any ordering. You cannot assume that the
pairs are in the same order in which you first wrote them.
If you print out the elements of a hash as if they were a list,
the order will not be predictable.
Use $hashname{key} to access a single value.

If key does not exist in the hash, $hashname{key} is
undefined and the same as logical false.
Assigning to $hashname{key} replaces the value that was
there before or creates a pair if it did not exist.

64 CSci 132 Practical UNIX with Perl

Context

In Perl, every operation or evaluation takes place in a specific
context. Roughly, there are two contexts, list and scalar.
For example, consider the two assignment statements:
@scores = (18, 20, 24);
$x = 10;

The first is list assignment because the variable on the left of
the = is an array, which forces the expression on the right to
be evaluated as a list. The second is scalar assignment,
because the variable on the left is a scalar, so the expression
on the right is evaluated in scalar context.

65 CSci 132 Practical UNIX with Perl

Scalar Context

But consider this statement:
$z = @scores;

There is a scalar on the left side and an array on the right.
What will Perl do?
The rule remains the same: The scalar $z on the left forces
the assignment to be scalar assignment, which forces
@scores to be evaluated in scalar context. The scalar value
of an array variable is the number of elements in the array,
which is 3, so $z is assigned the number 3.

66 CSci 132 Practical UNIX with Perl

List Context

Now consider this statement:
@scores = 5;

There is an array on the left side and a scalar on the right.
The rule remains the same: The array @scores on the left
forces the assignment to be list assignment, which forces 5 to
be evaluated in list context. The list value of a scalar is the list
consisting of that scalar alone, (5), so @scores gets (5).

67 CSci 132 Practical UNIX with Perl

Determining context

There are different types of scalar context. For example,
sometimes an expression is a string expression and sometimes
it is numeric. How can you determine how Perl will evaluate
expressions?
Unfortunately, there is no simple rule. But usually it is
intuitive.
One rule that will help in most cases is that the operators and
functions themselves are specific to contexts.

68 CSci 132 Practical UNIX with Perl

Determining context

For example, the string repetition operator x expects a string
on the left and a number on the right, so it tries to evaluate its
left as a string and its right as a number:
print 32 x "4a";

will print 32323232 because Perl will convert 32 to "32"
and use its rules for converting strings to numbers, which
converts "4a" to 4.

In the expression ("smith" == $name), the ==
operator is numeric comparison, so Perl will convert
"smith" to a number, which will be 0 and compare it to
whatever value is in $name as a number.

69 CSci 132 Practical UNIX with Perl

Scalar value of a list literal

Perl throws us for a loop here. Although the scalar value of an
array variable is the number of elements in the array, the
scalar value of a list literal is the value of its last element. In
$foo = (10, 20, 30, 40, 50);

$foo will have the value 50, not 5. But in

@bar = (10, 20, 30, 40, 50);
$huh = @bar;

$huh will have the value 5.

70 CSci 132 Practical UNIX with Perl

References

When I introduced variables, I showed you this schematic
diagram:

$var

I wrote in that slide that the blue dot represents the connection
between the name and storage in the schematic. It is time to
say this more accurately.

71 CSci 132 Practical UNIX with Perl

Variables, names, and addresses

The storage container for a variable exists somewhere in
memory when the program is running. It has a memory
address.
When you create a variable in Perl, associated to the
variable's name is the address of the storage container.
Now that you have learned about hashes, think of it this way.
The set of variable names and the addresses of their storage
containers is essentially a hash that Perl uses when your
program is running! The pair is essentially

(variable name, address of storage)

72 CSci 132 Practical UNIX with Perl

Variables exposed

The blue dot in the schematic

is the address of the storage container. When you write $var
in your program, Perl looks up the name var in its look-up
table and finds the address of $var. It can then access the
storage container.

$var

73 CSci 132 Practical UNIX with Perl

Backslash operator

The address of a variable's storage container can be assigned
to a different variable. The backslash operator '\' applied to
a scalar variable, returns the address of its storage container:
$var = 21;

$ref = \$var;

21$var

$ref

74 CSci 132 Practical UNIX with Perl

Reference variables store addresses

The variable $ref created in the preceding slide contains a
reference to $var. It is a full-fledged variable, just like
$var, with its own name and storage container, but inside its
storage container is an address of another variable. (In some
languages, it would be called a pointer variable.)
You can print the value stored in $ref using an ordinary
print statement, and you will see that it is an address, in
hexadecimal in the form

SCALAR(0x9025324)

75 CSci 132 Practical UNIX with Perl

Dereferencing references

To access the storage container referenced by the reference
variable, you need to dereference the variable.
As I said before, when Perl sees a variable like $var, it looks
up var in its look-up table to get the address of its storage
container. The '$' tells Perl to look for either a variable name
or something that evaluates to an address.
If $ref contains an address, it follows that $$ref is the
value in the variable it refers to. This takes some getting used
to!
In short, to dereference a reference, put the $ before it.

76 CSci 132 Practical UNIX with Perl

Examples

$var = 21; # $var has 21
$ref = \$var; # $ref has address of $var
$newref = $ref; # $newref also has address of $var
$x = $$ref + 1;# $x = 22
$y = $$newref; # $y = 21
$ref = \$y; # $ref has address of $y
print $$ref -1; # prints 20 because $$ref == 21

77 CSci 132 Practical UNIX with Perl

References to arrays

A variable can store a reference to any kind of object that has
an address. Later we will see examples of this. Now you are
ready to see how references to arrays can be used.
@fibs = (1, 1, 2, 3, 5);
$rfibs = \@fibs; # $rfibs has address of @fibs

In this example, $rfibs is a reference variable that stores
the address of an array. To dereference it and get the entire
array, use

@$rfibs

To access a single array element, use
$$rfibs[1]

78 CSci 132 Practical UNIX with Perl

Example

my @fibs = (1, 1, 2, 3, 5);
my $rfibs = \@fibs;
print "@$rfibs\n"; # prints 1 1 2 3 5
print $$rfibs[2], "\n"; # prints 2

this pushes 8 (=3+5) onto end of array:
push(@$rfibs, $$rfibs[3] + $$rfibs[4]);

print "@$rfibs\n"; # prints 1 1 2 3 5 8

79 CSci 132 Practical UNIX with Perl

Summary

Literals are constants in your program.
Scalars can be numeric, string, or references.
Perl has 3 data classes: scalars, lists, and hashes.
Variables are declared with my, and use $ for scalar, @ for arrays,
and % for hashes.
Assignment statements copy values into variables.
Expressions are built from operands and operators.
Arrays are list variables.
Hashes are like look-up tables and are unordered.
Perl uses context to determine how to evaluate variables and
expressions at run-time.
References are addresses.

	Perl Data Types and Variables
	Data Types in Perl
	Typelessness
	Three Data Classes
	Literals
	Numeric Literals in Perl
	Internal Representation of Numbers
	Inaccuracy of Numbers
	Gaps in Numeric Representation
	String Literals: Double-quoted Strings
	Case Conversion
	Backslash to Escape Characters
	Variables in Double-Quoted Strings
	Single-quoted Strings
	String Literals: Single-quoted Strings
	Scalar Variables
	The Scoop on my Declarations
	Variables, Names, and Storage
	The Assignment Operator
	Assignment Semantics
	Rules to Remember
	Input
	Reading Multiple Values
	Expressions
	More Examples
	Parentheses
	String Expressions
	Repetition
	Mixed Types
	Mixed Types (2)
	Type Conversion
	Type Conversion (2)
	Shorthand Assignments
	List Data
	Lists Inside Lists
	Lists Formed from Ranges
	Printing Lists
	QuoteWord qw()
	Array Variables
	Accessing the Elements
	Subscript Operator
	Array Assignment
	The Importance of Arrays
	Array Slices
	Examples of Array Slices
	Array Functions
	shift() and unshift() Functions
	Shifting
	Unshifting
	Examples of shift() and unshift()
	The push() Function
	More Examples
	The pop() Function
	The pop() Function
	The Concept of a Hash
	A Hash is a Finite Function
	Defining a Hash
	Hash Literals
	Hash Variables
	Example
	Example Continued
	Example Continued Further
	Some Reminders About Hashes
	Context
	Scalar Context
	List Context
	Determining Context
	Determining Context (2)
	Scalar Value of a List Literal
	References
	Variables, Names, and Addresses
	Variables Exposed
	Backslash Operator
	Reference Variables Store Addresses
	Dereferencing References
	Examples
	References to Arrays
	Example
	Summary

